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Abstract 

In this paper, we consider the stability analysis of uncertain discrete 
systems with time-delay when the states are unmeasurable. Takagi-
Sugeno (T-S) fuzzy model is used to describe this kind of systems. Based 
on Lyapunov functional approach, a new design method of observer-based 
output feedback controller is proposed. A numerical example is given to 
illustrate the effectiveness of our method. 

1. Introduction 

In the past few decades, a number of research activities have been concentrated 
on the topic of stability analysis of nonlinear time-delay systems with parameter 
uncertainties. This kind of systems can be found in many real life systems such as 
electric systems, rolling mill systems, different types of societal systems and so on. 
Takagi-Sugeno (T-S) fuzzy model [10] can be used to describe this kind of systems. 
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For continuous-time systems, Cao et al. [1, 5, 8, 9, 17, 19] considered the robust 

∞H  control; and Huang et al. [6, 13, 14, 16, 20] proposed some design methods of 

fuzzy controller for the discrete-time systems. When the states are measurable, Antai 
et al. [3] designed a stabilizing state-feedback controller for uncertain time-delay 
systems, Li and Xia [7] studied the 2H  controller design for uncertain discrete-time 

delay piecewise systems, and stabilizability of linear quadratic state-feedback control 
problem has been researched in [12]. Under the unmeasurable states environment, 
stability and stabilization conditions for uncertain fuzzy systems with time-delay are 
also considered via output feedback controller in [11, 15, 16]. In a previous paper 
[4], we proposed an observer-based output feedback controller design method for a 
class of uncertain T-S fuzzy systems with time-delay, this method fixed an error in 
[11], and now we pay attention to stability analysis of the discrete-time systems 
when the states are unmeasurable in this paper. 

Notation. For a symmetric matrix X, the notation 0>X  means that the matrix 

X is positive definite. I is an identity matrix of appropriate dimension. TX  denotes 

the transpose of matrix X. For any nonsingular matrix X, 1−X  denotes the inverse of 

matrix X. nR  denotes the n-dimensional Euclidean space. nmR ×  is the set of all 
nm ×  matrices. ∗ denotes the transposed element in the symmetric position of a 

matrix. 

2. System Description 

Consider the following parameter uncertain discrete system with time-delay 
described by Takagi-Sugeno fuzzy model: 

Plant rule i. If ( )tz1  is 1iλ  and ( )tz2  is 2iλ  and  and ( )tzg  is ,igλ  then 
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where ,...,,2,1 ni =  n is the number of rules; ( ) ( ) ( )tztztz g...,,, 21  are the premise 

variables; ( )gjniij ...,,2,1,...,,2,1 ==λ  is the fuzzy set; ( ) qRtx ∈  is the state 

vector; ( ) mRtu ∈  is the input vector; ( ) lRty ∈  is the output vector; 0>d  is the 
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upper bound of time-delay; ( )tϕ  is the initial condition of system (1); 11
~

ii AA   

( ),1 tAiΔ+  ( )tAAA iii 222
~

Δ+  and ( );~ tBBB iii Δ+  ,1iA  ,2iA  ,iB  1iC  and 

( )niCi ...,,2,12 =  are constant matrices of appropriate dimensions; ( ),1 tAiΔ  

( ),2 tAiΔ  ( )tBiΔ  ( )ni ...,,2,1=  are real valued unknown matrices representing 

time-varying parameter uncertainties of (1) and satisfy the following assumption: 

Assumption 1. 

 ( ) ( ) ( )[ ] ( )[ ],,,,, 2121 iiiiiiii EEEtFUtBtAtA =ΔΔΔ  (2) 

where ,iU  ,1iE  2iE  and ( )niEi ...,,2,1=  are known real constant matrices of 

appropriate dimensions. ( ) ( )nitFi ...,,2,1=  is an unknown real time-varying 

matrix with Lebesgue measurable elements satisfying 

 ( ) ( ) ....,,2,1, niItFtF i
T

i =≤  (3) 

Let ( )( )tziμ  be the normalized membership function of the inferred fuzzy set 

( )( ),tziρ  i.e., 
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( ( ))tz jijλ  is the grade of membership of ( )tz j  in .ijλ  It is assumed that 
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n

i
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By using the center-average defuzzifier, product inference and singleton 
fuzzifier, the T-S fuzzy model (1) can be expressed by the following model: 
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 (4) 

where ( )( ).tzii μμ   

Similar to the continuous system in [4], we design the fuzzy state observer as 
follows: 

:iR  If ( )tz1  is 1iλ  and ( )tz2  is 2iλ  and and ( )tzg  is ,igλ  then 
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 (5) 

where lq
i RG ×∈  is the observer gain to be determined. Then the overall fuzzy 

observer is given by 
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 (6) 

Based on fuzzy observer, we can design the overall output feedback controller: 

 ( ) ( )∑
=

μ=
n

i
ii txKtu

1

,ˆ  (7) 

where qm
i RK ×∈  is the controller gain to be determined. 

Define the observation error as follows: 

 ( ) ( ) ( ).ˆ txtxte −=  (8) 

Combining (4), (6), (7) and (8), we can obtain the global model: 
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where ( ) ( ) ,1 jiiij KtBtAR Δ+Δ=  ( ) ,11 jijiiij KtBCGAS Δ−−=  .22 jiiij CGAT −=  

3. Main Result 

Two important lemmas should be introduced because they are the key to prove 
the main theorem. 

Lemma 1 [2]. For any two matrices ,nmRX ×∈  ,nmRY ×∈  we have 

,1YSYSXXXYYX TTTT −+≤+  

where mmRS ×∈  and .0>S  

Lemma 2 [18]. Y, U and E are the matrices of appropriate dimensions, and 

,TYY =  then for any matrix F satisfying ,IFFT ≤  we have the following 
equivalent condition: 

0<++ TTT UFEUFEY  

if and only if there exists a constant 0>ε  satisfying 

.01 <ε+ε+ − EEUUY TT  

When the states are unmeasurable, based on the Lyapunov functional approach, 
the delay-independent stabilization result of T-S fuzzy discrete system (9) is 
summarized in the following theorem: 

Theorem 1. For the prescribed scalars 0>εij  and ( ),10 njiij ≤≤≤>η  if 

there exist matrices ,0>X  ,0~
2 >P  ,03 >P  ,04 >P  iY  and ( )njiNi ...,,2,1, =  

satisfying the following LMIs: 
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,1,0 niii ≤≤<Ψ  (12) 

,1,0 njijiij ≤<≤<Ψ+Ψ  (13) 

then the closed-loop fuzzy system (9) is asymptotically stable. Moreover, the 
controller gains are given by 

 ,1−= XYK ii  (14) 
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Proof. Choose the Lyapunov function as 
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where ( ).4,3,2,10 => kPk  Let 
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If 0)16( <  while ( ) 0~ ≠tx  and ( ) ,0~ ≠te  then the discrete system (9) is 

asymptotically stable. Similar to the method proposed in [4], suppose each sum in 
(16) is negative definite, we can complete the proof of Theorem 1 by using Lemma 
1, Lemma 2 and Schur complement. 

Remark 1. With the following steps: 

Step 1. Solving LMIs (10) and (11), we can obtain X, iY  and ;3P  

Step 2. By equation (14), we can have ;iK  

Step 3. Put the above results into equations (12) and (13), then calculate 4P  and 

iG  by solving the LMIs (12) and (13); 

we can easily have the controller gains iK  and the observer gains ( )....,,2,1 niGi =  
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4. A Numerical Example 

In this section, an example is used to illustrate the proposed method. 

Example. Assuming an uncertain T-S fuzzy discrete system with time-delay (4) 
has the following parameters: 
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Let ,16.1211 =ε  55.622 =ε  and ,73.812 =ε  solving LMIs (10) and (11), by 

Step 2 in Remark 1, we have 
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by Step 3 in Remark 1. 

5. Conclusion 

In this paper, under the unmeasurable states environment, we proposed a new 
method to design an observer-based output feedback controller for a class of 
uncertain T-S fuzzy discrete systems with time-delay. The effectiveness of this 
method can be verified by the given numerical example. 
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