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Abstract

In order to study tensor fields of type (0, 2) on manifolds and fibrations

we introduce a new formalism that we called s-space. The s-spaces
induced a one to one correspondence between the (0, 2) tensor fields and

some differential matricial applications. Using this relationship, we
generalized the concept of natural tensor without making use of the theory
of natural operators and differential invariants.

1. Introduction

In [9], Kowalski and Sekizawa defined and characterized the natural tensor
fields on the tangent bundle TM of a manifold M. They called a tensor g of type
(0, 2) on TM natural if it cames from a second order natural operator of a metric g
on M. They showed that there exist natural F-metrics &;, &, and &3 (i.e. a bundle
morphism of the form &:TM @ TM @ TM — M x R linear in the second and in
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the third argument) derived from g, such that § = &9 + &2’ 9 +¢e39 with & and

&3 symmetric, where &9, gg*g and &3 9 are the classical Sasaki, horizontal and

vertical lift of &;, &, and &3, respectively. Also, Kowalski and Sekizawa [10] study

the natural tensor fields on the linear frame bundles of a manifold endowed with a
linear connection.

In [2], Calvo and Keilhauer showed that any (0, 2) tensor field on TM over a
Riemannian manifold (M, g) admits a global matrix representation. Using this one

to one relationship, they defined and characterized what they called natural tensor.
In the symmetric case, this concept coincides with the one of Kowalski and
Sekizawa. Keilhauer [7] defined and characterized the tensor fields of type (0, 2) on

the linear frame bundle of a Riemannian manifold LM endowed with a linear

connection. The natural tensors on the tangent and cotangent bundle T*M of a
semi Riemannian manifold was characterized by Araujo and Keilhauer in [1]. The
main idea of [1], [2] and [7] is to use a suitable fiber bundle P in order to see the

tensor fields on TM, T*M and LM as matricial functions from P to R™™. The
principal difference between [9] and [10], [1, 2] and [7] is that these last works do
not make use of the theory of differential invariant developed by Krupka [11] (see
[8, 12]).

The aim of this work is generalized the notion of natural tensor fields in the
sense of [1], [2] and [7] to manifolds and fibrations. With this purpose we introduce
the concept of s-space. In Section 2, we define and give some examples of s-spaces.
We see general properties of s-spaces, for example, that there exists a one to one
relationship between the tensor fields of type (0, 2) and some types of matricial

maps. This relationship allows us to study the tensor fields in the sense of [2]. We
characterize the s-spaces which its group acts without fixed point. We study some
general statement of morphisms of s-spaces and tensor fields on manifolds in
Section 3. In Section 4, we define connections on s-spaces, that coincides with the
well known notion of connection when the s-space is also a principal fiber bundle.
We give a condition that a s-space endowed with a connection has to be satisfied in
order to has a parallelizable space manifold. Also, using a connection we show a
useful way of lift metrics to the space manifold of the s-space. The concept of
s-space gives several notions of naturality. The A-natural and A-natural tensors with
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respect to a fibration are defined in Section 5. We give examples and see that these
notions extend the idea of naturality of [1], [2] and [7]. In Section 7, we define the
notion of atlas of s-spaces and use them to generalize the A-naturality. In Section 8,
we consider some s-spaces over a Lie group and characterized the natural tensors
fields on it. Finally, we study the bundle metrics on a principal fiber bundle endowed
with a linear connection.

2. s-spaces

Definition 2.1. Let M be a manifold of dimension n. Then a collection A =
(N, v, O, R, {&}) is called a s-space over M if:

(@) N is a manifold.

(b) v : N — M isasubmersion.

(c) O is a Lie group and R is a right action of the group O over N which is
transitive in each fibers. The action also must satisfied that w o Ry =y for all

aeO.

(d) g :N—>TM, with 1<i<n, are differential functions such that
{e1(2), ..., en(2)} is abasis of M,(,) forall z e N.

If w(z) = p, then {&)(2), ..., e,(2)} and {ey(z.a), ..., ey(z.a)} are bases of M.
Therefore there exists an invertible matrix L(z, a) such that {g;(z.a)} = {g(2)}.
L(z, a), (i.e. g(za)= Zr}:le'(z)L!(z, a) for 1<i<n). If the matrix L only

depends of the parameter of the Lie group O, we have a differentiable map L : O —
GL(n) such that

i} o Ra = {&i} - L(a).

We called this map the base change morphism of the s-space A. It easy to see
that L is a group morphism. In this case, we define that A have a rigid base change.
From now on, we will consider only this class of s-spaces.

In the sequel, unless otherwise stated, dimM =n, dimO =k and we will
denote the Lie algebra of O by o. Also, we assume that all tensor are of type (0, 2).
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Example 2.2. The linear frame bundle of M induces a s-space A = (LM, T,
GL(n), (), {m;}) over M, where 7 is the projection of the bundle, (-) is the canonical
action of the general linear group over LM and ;(p, u) = u;. The base change
morphism is given by L(a) = a for all a € GL(n). This example shows that every

manifolds admits a s-space. For simplicity of notation, let us denote this s-space with
LM. If we consider a Riemannian metric on M or an orientation, then the bundle of
orthonormal frames and the bundle of orientated bases induced similar s-spaces over
M.

Example 2.3. Let o = (P, w, G, -) be a principal fiber bundle over M, and ® be

aconnectionon a. Let A = (N, y, O, R, {g;}), where
@ N ={(p,u, w): peP,uandware abases of M) and g, respectively}.
(b) w(p, u, w) = p.
(¢) O = GL(n) x GL(k) and R(a p)(p, u, w) =(p, u-a, w-b).

(d)For 1<i<n and 1< j <k, e(p, u, w) is the horizontal lift with respect

to  of u; at p and ey, j(p, u, w) is the only vertical vector on P, such that

o(p) Ens (P, U, W) = W;.
) is a s-space over P and its base change morphism is given by L(a, b) =

(5 )

Example 2.4. This example can be found in [7]. Let M be a manifold and V be
a linear connection on it. Let K : TTM — TM be the connection function induced
by V (i.e., Kis the unique function that for v e M, satisfies that K |py : TM, —

M is a surjective linear map and for any vector field Y on M such that Y(p)=v,

K(Y*p(w)) =V,Y). For 1<i, j <n, consider the 1-forms 0' and c)ij defined by

Ty (B) = > 0'(p, u)(b)u; and K((j)s ) (0)) = > o(p, u)(b)u;. Let A =
=1 i-1

(LM x GL(n), v, GL(n), R, {H;, Vji}), where y(p, u, b) = (p, u-hb), the action is
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Ry(p, u, b)=(p, u-a, a~lb) and {H;, Vji} is dual to {0', (oij}. ) is a s-space over
the frame bundle of M with base change morphism L(a) = Id,.,-

The importance of the s-spaces for the study of the tensor fields is given by the
following proposition.

Proposition 2.5. Let A = (N, v, O, R, {¢}) be a s-space over M with base
change morphism L. There is a one to one correspondence between tensor fields of
type (0, 2) on M and the differentiable maps *T : N — R™" that satisfy the

invariance property

T oR, = (L)' - T - L(a).

Proof. Let T be a tensor on M. Consider the matrix function *T : N — R™"
defined by [*T(2)]} = T(w(2))(ei(2), €j(2)). For a e O, we have that the (i, j)

entry of the matrix *T(z-a) is [XT(z-a)]ij =T(y(z-a))(ei(z-a), ej(z-a) =

T(w(z»[zler(zn(a){ &) L(a)i-j = 2r o @) "T(2)5 - L(@)j, hence *T

satisfies the invariance property. Let F : N — R™" be a differentiable function that

satisfies the invariance property. If X is a vector field on M, then it induces a map
n

X = (X, .. Xp): N = R" such that X (y(z)) = > xi(2)ej(2). Itis easy to check
i=1

that * X o Ry = *X -[L(a)'T™. Then, we define T(p)(X,Y)="X(z)-F(z)-(*Y(2)),,

where y(z) = p. Consider z and Z such that y(z) = y(Z) = p. Since O acts

transitively on the fibers of N, there exists a € O that satisfies Z = z - a. Therefore,

"X(2)-F@)- (@) =*X(2)- (@)™ L@) - F@)- L) (L@) (Y (@)

=*X(2)- F(2)- (*Y(2))', what it proves that T it is well defined. Given X and Y

vector fields on M, T(X,Y):M — R is a differentiable function because

T(X,Y)oy is differentiable and v is a submersion. Since T is (M )-bilinear, we

conclude that T is a tensor of type (0, 2) on M. Finally, it is clear that *T = F. O

Theorem 2.6. Let & = (N, y, O, R, {g;}) be a s-space over M, such that O acts
without fixed point. Then (N, v, O, R) is a principal fiber bundle over M.
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Let us denote by z ~ z' the equivalence relation induced by the action of the
group O on the manifold N. To prove the previous Theorem we will need the
following next two lemmas.

Lemma 2.7. Let & = (N, v, O, R, {¢j}) be a s-space over M. Then N/O has

differentiable manifold structure and = : N — N/O is a submersion.

Proof. Consider the map p: Nx N — M x M defined by p(z, z') = (y(z),
y(z')) - p is a submersion since v it is. Let the set A = {(z, z'):z ~ z'} and A be
the diagonal submanifold of N x N. Since z ~ z' if and only if y(z) = y(z'), we
have that A = p_l(A). Therefore A is a closed submanifold of N x N. It is well
known that if a group O acts on a manifold N, N/O has a structure of differentiable

manifold such that the canonical projection = is a submersion if and only if A is a
closed submanifold of N x N. In this case, the differentiable structure of N/O is

unique. 0
Lemma 2.8. Under the hypotheses of the previous lemma:
(i) N/O is diffeomorphic to M.
(ii) ker m, = ker ..

Proof. Let f :N/O — M defined by f([z]) = w(z). By definition f o =y,
then f is differentiable function and ker n, < kery,. On the other hand, let g : M
— N/O be the function defined by g(p) = n(z) where z e N satisfies that y(z)
= p. Since O acts transitively on the fibers of N, g is well defined. As T =g oy
we have that g is a differentiable function and that ker vy, < kerm,. An easy

verification shows that g o f = Idy/0 and f o g = Idy. O

Remark 2.9. If L = (N, y, O, R, {g;}) is a s-space over M, then (N, y, O, R)

is a principal fiber bundle over N/O.

Proof of Theorem 2.6. It remains to prove that (N, y, O, R) satisfies the local

triviality property, (i.e. all p e M has an open neighbourhood U on M, and a

diffeomorphism ©:y~}(U) — U x O such that t = (y, ¢), where ¢(z-a) = ¢(z)-a
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forall a € O). Let p € M, take [zy] € N/O such that f([zg]) = p. As (N, v, O, R)
is a principal fiber bundle over N/O. Then there exist an open neighbourhood V of

[zo] and a diffeomorphism T = (n(z), ¢(z)) such that satisfy the local triviality

property. U = f (V) is an open neighbourhood of p on M, since f is a diffeomorphism,
and it satisfies that w~(U) = n 1(V). Finally, if we define t:y *(U) > U x O
by ©(z) = (y(z), ¢(z)), U and  satisfy the local triviality property on p. O

Remark 2.10. Note that there exist s-spaces that are not principal fiber bundles.
For example, let A = (R" x(R" - {0}), pr, GL(n), R, {¢;}) over R", where

o . _
pr(p, @)= p, Ra(p,a)=(p,q-a) and e(p, q)=—-| is the basis of Rj
Ilp

induced by the canonical coordinate system of R".

We say that a s-space A = (N, vy, O, R, {g;}) over M is a principal fiber bundle
if (N, v, O, R) is a principal fiber bundle over M.

We denote by S, ={a € O :z-a =z} the stabilizer’s group of the action R at
z. It is well known that if for a point z € N the orbit z - O is locally closed (i.e. if
w e z - O, there exists an open neighbourhood V of won N, suchthat VN z-0O isa
closed set of V), then z-O is a submanifold of N and f,([a])=z-a is a

diffeomorphism between O/S, and z.0.

Proposition 2.11. Let A = (N, v, O, R, {g;}) be a s-space over M. Then:

(i) There exists s € Ny such that dimS, =s forall z € N.

(i) dimN = dimM +dimO - s.

Proof. Let z € N and wy(z) = p. Since f is a submersion we have that dim N
= dimkery,, +dimM and dimkery, = dim v~ Y(p). Notethat z-0 =y~ }(p),

since O acts transitively on the fibers. As \u‘l(p) is locally closed, it follows that

dimO/S, = dim v Y(p). Therefore, dimN =dimM +dimO — dimS, for all z,

so S, is of constant dimension. O
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Given a s-space A over M, it will be important to know which are the tensors on
M that satisfy that “T is a constant matrix. It is clear that not for every matrix
A e R™™ there exists a tensor T on M such that *T = A A necessary and
sufficient conditions for this holds is that L(a)'- A-L(a)=A for all a € O. In that

case, we said that A admits matrix representations of type A. To finish the section
we will state some conditions in order to guarantee that a s-space admits matrix
representations of certain class of diagonal matrices.

For v=0,1 .. n-1 wedenote by I, the following matrix of R™"

-1

I, = if v>1and lg = ldpyp-

1
With O,, we denote the orthonormal group of index v. If v =0, then Oy = O(n).

Proposition 2.12. Let & = (N, vy, O, R, {g;}) be a s-space over M with base
change morphism L. If 0 < v < n -1, the following conditions are equivalent:

(i) Img(L) c O,.
(i) A admits matrix representations of type I,,.

(iii) There is a semi-Riemannian metric on M of signature v such that

{e1(2), ..., €4(2)} is an orthonormal basis of M () forall z € N.

(iv) There exists a tensor T on M that satisfies *T(z) = I, for all z € y(py)

and fora pg € M.

Proof. (i) = (ii) Consider the constant map F = 1,. Since F satisfies the
invariance property, it follows from the Proposition 2.5 the existence of a tensor

such that *T = I,. (i) = (iii) If M= I, then T is a semi-Riemannian metric of



A New Formalism for the Study of Natural Tensor ... 155
index v and T(y(z))(e(z), ej(z)) = [Iv]ij. (iii) = (iv) Is immediately. (iv) = (i)

Let a < O and z such that y(zg) = po. Then I, =1,(zp.a)=L(a) -1, -L(a) for
all aeO. O

The next Proposition is a consequence of the fact that O(m)N O, ={D e

A 0) .
O(m): D = (0 Bj with A € O(v) and B € O(m — v)}.

Proposition 2.13. Let & = (N, vy, O, R, {g;}) be a s-space over M with base
change morphism L and 1 < v < n -1. A admits matrix representations of type Ig
and 1, if and only if there exist differentiable functions Ly : O — O(v) and L, : O

— (n —v) such that

L(a) = (Ll(a) 0 j

0 Ly(a)

Proposition 2.14. Let A = (N, y, O, R, {¢;}) be a s-space over M with O

connected. A admits matrix representations of type 1, forall 0 <v <n-1 ifand

only if & admits matrix representations of type A for all constant matrix A € R™".

Proof. If A admits matrix representations of type |Ig, Iy, from the

o 1y,
+1
.V

proposition above we have that L(a)= with 1(a) e

+1

I(a)
O(n —v). Since L is differentiable and L(ab) = L(a).L(b), we see that L(a)=

(Idvxv 0

0 f(a))' If v =n, then L = I,,, and the proposition it follows. O

3. Morphisms of s-spaces

Definition 3.1. Let A = (N, vy, O, R, {g}) and A" = (N’, v/, O', R’, {e]}) be

s-spaces over M. We call a pair (f, t) a morphism of s-spaces between % and A’ if

(@ f : N — N’ isadifferentiable function.
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(b) T: O — O’ isamorphism of Lie groups.
© vef =y
(d) f(z-a)=f(z)-t(a) forall ze N and a € O.

Note that if A and A’ are principal fiber bundles, (f, 1) is a principal bundle

morphism.

Example 3.2. Let A = (N, y, O, R, {¢;}) be a s-space over M and let LM

be the s-space induced by the linear frame bundle of M. Consider the pair
(T, L): A — LM, where I'(z) = (w(z2), &(z), ..., e4(z)) and L is the base change

morphism of A, then (T, L) is a morphism of s-spaces.

Remark 3.3. Let » and A" be s-spaces over M and let (f, t): 2 —> A" be a

morphism between them. If A" is a principal fiber bundle and t is injective, then A is
a principal fiber bundle.

Remark 3.4 It is easy to see that if 1 is surjective then f is also surjective. If O’
acts without fixed point, then we have that t is surjective if and only if f is surjective;
the injectivity of t implies that of f; and if 1 is bijective then so is f. If O and O’ act
without fixed point, then f is injective if and only if < is it.

Let (f, t): 2 — A’ be a morphism of s-spaces. As y'(f, (z)) = y(z) we have
that {ef(f(z))} and {e;(z)} are bases of M,,(,). Therefore, there exists C(z) € GL(n)
that satisfies {e{(f(z))} = {&j(z)} - C(z). We called the function C : N — GL(n)
the linking map of (f, t). For example, the linking map of the morphism given in
Example 3.2 is C(z) = Id,,. Let A be a s-space over M with base change

morphism L and let ag € O. Consider (f, t):% — & defined by f(z) =Ry, and

1(b) = Ad(ag?)(b), then C(z) = L(ag).

The linking map of a morphism (f, 1) satisfies that C(z.a) = (L(a))™* - C(z).
L'(z(a)), where L and L' are the base change morphism of A and A', respectively.
The relationship between two linking maps is given by Cq ,y(z)=C(s 1)(2)

-L'(a(z)), where a: N — O is a differentiable function.
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Let A =(N, y, O, R, {g}) be a s-space over M and consider a function
F:N — R™". We say that F comes from a tensor if there exists a tensor T on M

such that *T = F. In this case, we say that F is the matrix representation (or the
induced matrix function by) of T with respect to A.

Proposition 3.5. Let A = (N, v, O, R, {g;}) and A" = (N', y', O', R’, {¢]}) be
two s-spaces over M with base change morphism L and L' respectively, and let

(f, 7): » > A' be a morphism. If MT s the matrix representation of T with respect

to \', then T o f comes from a tensor if and only if

(L@) - (*T o f)(2)L(a) = (L'(@) - (*T = £)(z2)- L'(x(a))
forall ze N and a € O.

Proof. If »T o f comes from a tensor, then it satisfies (wT of)(z-a)=

(L(@) - (T o £)(2)- L(a). Therefore, * T(f(z-a)) = L'(x(a))' - *T(f(2))-L'(x(a)).
The other implication follows by a verification of the invariance property. a

Remark 3.6. Let T be a tensor on M. From the above Proposition it follows that
until the kth iteration of T by (f, t) comes from a tensor on M if and only if

L.cHlMr.cl.L=(Len) () 2T.Cl(L'on) forall 1< j <k
Corollary 3.7. The following sentences are equivalent:
(i) For all tensor Ton M, ”(T o f) comes from a tensor on M.
(i) L' ot = +L.

Proposition 3.8. Let (f, t): A — A’ be a morphism of s-spaces and let T be a
tensor on M. Then

(*T o 1)(2) = (@) -"T(2)-C(2),
where C is the linking map of (f, 7).

Proof.

(T o D)@} = T (F@N(E( @), e5(f (@)
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=T(w(@)| D (C@)fer(2), D (C@)ies(2)
r=1 s=1

= > COITEL €@ O

r,s=1

Definition 3.9. Let (f, t): A — A’ be a morphism of s-spaces and T be a

tensor on M. We say that T is invariant by (f, 1) if MT o f =M. Let us denote

with I ) the subspace of the invariant tensors of (f, 1).

Let A be a s-space over M. If (f,7):A— LM is the morphism given in the
Example 3.2, then all the tensors are invariant. Given a s-space A =
(N, w, O, R, {&}) and T = 0, then there exists a € GL(n) and z € N such that

a' -T(z)-a = T(z). Therefore, if we consider the s-space &' = (N, y, O, R, {e/}),

where {e{} = {g;} - a, T is not an invariant tensor by the morphism (Idy, 1dg).

Proposition 3.10. Let (f, t): A — A’ be a morphism and T be a tensor on M.
If there exists k e N such that the kth iteration by (f, t) of T is an invariant

tensor, then T is an invariant tensor.

Proof. Let us denoted by AT and MT1 the matrix representation of the jth

iteration of T with respect to A and A, respectively. A AR L A Y LIS i -C,

since the kth iteration is an invariant tensor. On the other hand, *T = (XTk‘1 o f)
)\4 ’

— Ct Tk—lC — Ct .(ka—Z ° f)’C — (CI)Z .)\. Tk—2 .CZ — (Ct)k—l .7\. T ’Ck_l,

hence *T =C!.*T .C. 0

Let T be a tensor on M and A = (N, y, O, R, {¢;}) be a s-space over M.
For each z € N, consider the Lie subgroup of GL(n) defined by G%(z)=
{D € GL(n): D' -*T(z)- D =T(z)}. We call it the group of invariance of T at z.

For simplicity of notation we write Gy (z) instead of G (z). A tensor T is invariant
by (f, ) ifand only if C(z) = Gy (z) forall z € N.
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If w(z) = w(z'), then we have that Gt (z) =~ Gy (z'). This is because ¢, : Gy (2)
— Gr(z), defined by @,(D)=L(a)-D-L(at) = Ad(L(a))(D) for a e O such
that z' = z-a, is a homomorphism of Lie groups. We called the subset F =
{(z,9):ze N and g € Gy(z)} of N xGL(n) the invariance set of T. If there is a
tensor T on M that admits a matrix representation of the type o - Id,,, with a =0,
then Fr = N xO(n). Let A be the s-space of Example 2.4. If T is the tensor on

0 Idmen
—1dxm 0

n+n?
2

LM such that *T =[ jwith m= .Then iy = LM x GL(n)

x Sy, Where Sp, denotes the symplectic group of R2™2M | general, Fr does
not has a manifold structure. The invariant tensor by a morphism (f, t): 1 — A/
are those that satisfy that (z, C(z)) € Fy forany zin N.

Remark 3.11. Let (f, t): X — A’ be a morphism with linking map C. If
T e I(t,7) and T is non-degenerated, then det(C(z)) = £1 forany zin N.

4. Connections on s-spaces

Given A = (N, O, v, R, {g}) as-space over M, for z € N let us denote by V,
the vertical subspace at z induced by the projection v (i.e.V, = ker\u*Z ). Note that

dimV, =k —s, where s is the dimension of the stabilizer S, and k = dimO. We

adapt the concept of connection in fibrations (see [13]) to s-spaces as follows:

Definition 4.1. A connection on a s-space A over M is (1, 1) tensor ¢ on N that

satisfies:

(1) ¢, : N, -V, isalinear map.

2 ¢2 = ¢, ¢ is a projection to the vertical subspace.
(3) d2a((Ra)., (b)) = (Ra),, (4(b).

Note that (3) has sense because (R, )*Z V;)=V;.a.

We called to H, = ker¢, the horizontal subspace at z. It is clear that
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N, =H, ®V,. Since ¢za((Ra)*Z(¢(Z)(b))) = (Ra)*z (8(2) (b)) = (Ra)*z 0)=0,
(Ra)*Z(HZ) = H,.5. As in the case of connections in principal fiber bundles we

have that: There is a connection ¢ on A if and only if there exists a differentiable
distribution on N(z — H,) such that N, = H, ®V, and H,, = (Ra)*Z(HZ). If

we have a distribution with these properties, we define ¢(z)(b) = b", where b =
b" + bV
Definition 4.2. Let & = (N, y, O, R, {g;}) be a s-space over M endowed with a

connection ¢. Let ve M, and z € v~ Y(p). We called horizontal lift of v at z to the

unique vector vi' e N, such that w*z(v?) =vand v!' e H,.

Given a vector field X on N, let H(X) and V(X)) the vector fields that satisfy
that H(X)(z) e H,,V(X)(z) eV, and X(z)=H(X)(z)+V(X)(z) forall z € N.
We called H(X) and V(X) the horizontal and the vertical projections of X. Is easy

to see that H(X) and V(X)) are smooth vector fields if X is a smooth vector field.

Proposition 4.3. Let X be a vector field on M. Then there exists a unique vector
field X" on N such that X"(z) e H, and \,;*Z(xh(z)) = X(y(z)) forall z e N.

Proof. Let pp e M and z; e N such that w(zg) = pg. As v is a submersion,

there exist two charts (U, x) and (V, y) centered at pg and z, respectively that
satisfy w(U) =V and y oy o X Y(ay, ..., &y, @niq, - Am) = (31, .y @y ). If X(p)

= Z?zlpi(p)%‘ for peU, let the vector field on V defined by X (z) =
ilp

Zin_l(pi o\y)(z)ﬁ%‘ , then we have that y,(X)= X o . For this reason, we
- F,

can take an open covering {U;};_, of N such that for each U; we have a field

X; e x(U;) that satisfies the previous property. Let {Z;}. , be a unit partition

iel
subordinate to the covering {U;};_,. Consider the vector field X e x(N) given by

X = Ziel G - )Zi. X satisfies that W*Z()Z(z)) = X(wy(z)) for all z e N. Finally,
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H()Z) is the vector fields that we looked for. The uniqueness follows from the fact

that v, [n,: H; = My,(z) is an isomorphism. O
Remark 4.4. The horizontal distribution z — H, is trivial since {e(z) =

(ei(z))rz‘}{‘:1 is a base of H, forall ze N and {eih}{‘zl are smooth vector fields.
For any z in N let the function 5, : O — N given by o,(a)=z-a. If X e,

let V(X )(z) = (cz)*e(x) € V,, where e is the unit element of O. If the group O acts

effectively and X # 0 is easy to see that V is not the null vector field. If O acts
without fixed point, then V(X)(z)= 0 for all ze N and X # 0. Anyway if

{X1, ..., Xk} is a base of o, then {V(X1)(2), ..., V(Xy)(2)} spanned V,. Itis not
difficult to see that ker(cz)*e =TeS;. The 1-forms 6; on N defined by . (b) =

Zin:lei(z)(b)ei(z) are a basis of the null space of the vertical subspace.

Straightforward calculations show that the 1-forms 6; satisfy that

0'(za)((Ra),, (0)) ] (6'(2)(b)

L(a) forall ze N and a € O.

0"(za)((Ra),,(0))) | 0"(2)(b)

Proposition 4.5. Let A be a s-space over M such that exists a subspace V of o
that satisfies dimV =k — s (s=dimS,) and v NTS, ={0} forall ze N. If &

admits a connection, then the tangent bundle of N is trivial.

Proof. Let {Xy, ..., Xx_s} be a base of V, then the vertical vector fields V;(z)
=(o0;), (Xj) with i =1, .., k —s are a base of V, for all z e N. Therefore the
e

frame {el', ..., e, Vi, ..., Vi_q} trivializes the tangent bundle of N. O

Remark 4.6. With the same hypothesis of the Proposition above is easy to see

that {0%(z), ..., 0"(2), Wi(2), ..., WK=3(2)}, where W; are the 1-forms defined by
b, (b) = Z::lswi(z)(b)vi(z), is a basis of NJ. Note that it is the dual base of

el (2), o en(2), Va(2), s Vi (2D}
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Remark 4.7. Let A = (N, v, O, R, {gj}) be a s-space over M that is also a
principal fiber bundle. It is well known that every principal fiber bundle admits a
smooth distribution that is transversal to the vertical distribution and is invariant by
the action of the group O, see [4], so there exists a connection on A. On the other
hand, the group O acts on N without fixed point and the hypothesis of the
Proposition 4.5 are satisfied. Therefore, the tangent bundle of N is trivial.

Remark 4.8. Let G be a metric on N such that the maps R, are isometries for

any a in O. If O is compact and N is a closed manifold, then N admits a metric with
this property (see [4]). Let H, be the subspace of N, orthogonal to V,. Itis easy to

see that z —» H, induces a connection on A.

Remark 4.9. In the situation of Proposition 4.5, we can lift a metric G on M to a
metric G on N in a natural way as follows:
-~ k_s - -
G =y"(G)+ Zw' W',
i=1

The projection v : (N, G~) — (M, G) is a Riemannian submersion. The metric

G can be very useful because using the fundamental equations of a Riemannian
submersion [16] we can relate the curvature tensors of both metrics. If we chose
appropriately the s-space over M, the calculation of the curvature tensor of (M, G)

can be simplified. For example, In [6] (see also [5]), the curvature tensor of the
tangent bundle of a Riemannian manifold endowed with certain class of metrics is
computed using this technique.

Remark 4.10. Let A be a s-space over M and let V be a linear connection on M

with connection function K. Consider K' : TN — TM defined by
K3(b) = K((ei),, (b))

and let H, ={beN,: K;(b) =0fori=1 .. n}. This smooth distribution is
invariant by the group action but it is not necessary complementary toV,. If F, : N,

ntimes

= My(2) % My(z) X+ x My () is given by F,(b) = (v, (b), K3(b), ... K} (b)), it

is not difficult to see that the following facts are equivalent:
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(i) F; isinjective and (M,;) x 0x---x 0) € Img F;.
(i) N, =H, @V,.

So if A satisfies (i) and (ii) we have that the distribution z — H, induces a

connection on A. If G is a metric on M let the (0, 2) symmetric tensor on N given by
-~ n - .
G(A, B) = c(2)G(w+, (A), ., (B)) + Zli(Z)G(KI(A)l K'(B)),
i=1

where c, I; are positive differentiable functions. If F is injective, G is a Riemannian

metric. If A is the s-space LM, c =1 and I; =1 for i =1, ..., n, then G is the well
know Sasaki-Mok metric (see [3] and [15]).

5. Natural Tensor Fields

5.1. Natural tensor fields on fibrations

In this section, we will study certain class of tensors on a manifolds and
fibrations. With a tensor T on a fibration we want to mean that T is a tensor on the
space manifold of the fibration. If o = (P, &, IF) is a fibration we will consider a

particular class of s-spaces over P in order to take into account the structure of the
fibration for the study of the tensors on it.

Definition 5.1. Let a = (P, =, F) be a fibrationon Mand A =(N, y, O, R, {&})

be a s-space over P. Then we say that A is a trivial s-space over a if N = N’ x F.

Example 5.2. The s-space A = (LM x GL(n), y, GL(n), R, {H;, Vji}) given in
the Example 2.4 is a trivial s-space over the linear frame bundle of M.

Definition 5.3. Let o = (P, =, F) be a fibration and L =(N xF, v, O, R, {¢;})
be a trivial s-space over a. Then we say that a tensor T on P is A-natural with

respect to o, if XT(z, w) =M T(w) (i.e. its matrix representation depends only of the

parameter w of the fiber ).

Remark 5.4. Let M be a manifold endowed with a linear connection V and a
Riemannian metric g. If we consider the s-spaces A = (LM x GL(n), v, GL(n), R,
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{H;, V1)) (Example 2.4) and 1" = (O(M)x GL(n), w, O(n), R, {H;, V}}), where
O(M) is the manifold of orthonormal bases of (M, g), the action of the

orthonormal group and the projection are similar to that ones of A. The A-naturality
and A’ -naturality with respect to (LM, =, GL(n)) agree with the concept of natural

tensor with respect to the connection V and with respect to the metric g given in [7].
Remark 5.5. There exist s-spaces such that the concept of A-natural with
respect to the fibration agree with the known cases of naturality. So, our definition

also generalizes the notion of natural tensor on the tangent and the cotangent bundle
of a Riemannian (see [2] and Example 6.2) and semi-Riemannian manifold (see [1]).

5.2. Natural tensor fields on manifolds

In view of the definition of A-natural with respect to a fibration, it seems
interesting to ask what it means to be A-natural with respect to a manifold? A
manifold M can be viewed as a trivial fibration o) = (M x{a}, pn, {a}).

Therefore, there is a one to one correspondence between the s-spaces over A and the
trivial s-spaces over a. A s-space A = (N, v, O, R, {g;}) over M induced the A" =

(N x {a}, v, O, R, {g;}) over a. A tensor T on M induce a tensor T' on M x {a}.
Then T' is A’ -natural with respect to a o if and only if x'T’(z, a) =N T'(a), hence

T’ is A" -natural with respect to a o if and only if “T is a constant map. This
suggests the following definition;

Definition 5.6. Let A be a s-space over M and T a tensor on M. Then we say that

T is A-natural if *T is a constant map.

Example 5.7. Let (M, g) be a Riemannian manifold and let A = (O(M), =,

O(n), -, {m;}) be the s-space over M induced by the orthonormal frame bundles of

M. Since L(a) = a forall a € O(n), T is A-natural if and only if *T = k.Id,, (T

is a scalar multiple of the metric g).
Example 5.8. Suppose that the map F of the Remark 4.10 is bijective. Let B =
(N, idy, @, (), {&@)", (ej (z))‘é(i)}) be the s-space over the space manifold of A,

where {1} is the trivial group, (-) is the trivial action, (ei(z))h is the horizontal lift



A New Formalism for the Study of Natural Tensor ... 165

of e(z) at z and (ej(z))‘z’(i) satisfies that Ki((ej(z))‘z’(i)) =ej(2). If G is a metric

onMand G is the generalizes Sasaki-Mok metric on N then

[*¢] 0 -+ 0
A
BG(2) - 0 [*6] 0 o0 |
0 0 . 0
0 e [6]

s0 G is B natural if and only if G is A-natural.

Remark 5.9. Let o = (p, =, F) be a fibration on M and A a trivial s-space over
o. A is also a s-space over P. If a tensor T on P is A-natural then T is A-natural with
respect to . The converse implication not necessarily holds. Let A = (O(M)x
GL(n), y, O(n), R, {Hi,Vji}) over LM. There are more A-natural tensors with
respect to LM than constant maps, see [7].

Remark 5.10. Consider the s-space LM and let T be a LM-natural tensor on M.
Let A e R™" such that "M T = A. Since the base change morphism of LM is the
identity of GL(n), A=a'-A-a forall a € GL(n), hence T must be the null tensor.

Therefore, for a manifold M the null tensor is the only one that is A-natural for all the
s-spaces over M.

Remark 5.11. If T is A-natural, we have that N x Im(L) = Fy, where Fy =
N x G with G a subgroup of GL(n).

Let A =(N, O, v, R, {g;}) be a s-space over M. Note that if T is A-natural and

(f, 7): A —> & is a morphism of s-spaces then T e I(f,). On the other hand, if

T eIt forall (f, t) automorphism of 2, then AT is constant in each fiber of

N. A necessary and sufficient condition for a tensor T to have a constant matrix
representation in each fiber is that T e Iy, . ) for all a € O, where (fa, Tq) is

the morphism defined by f,(z) = Ry(z) and t,(b)=a b - a.

Let us see some facts about the relationship between the natural tensors and the
morphisms of s-spaces. The next two proposition follow from Proposition 3.8.
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Proposition 5.12. Let A and A" be two s-spaces over M and (f, t): X — A" be
a morphism with linking map C. If T is a A’ -natural tensor with YT = Ae R™M,
then T is A-natural if and only if (C(z)™})!- A-C(z)! is a constant map.

Proposition 5.13. Let (f, t): A — A’ be a morphism of s-spaces with linking
map C and T a tensor on M that is . and A’ natural. Let Aand B € R™" such that
M = Aand T =B, then C(z)'-A-C(z)=B forall z e N.

In particular, if A = A/, the image of the linking map of any automorphism has
to be included in the group of invariance of all the A-natural tensors. For example, if
% = (LM xGL(n), y, GL(n), R, {H;, V}}) and (f, t) is an automorphism of A

with linking map C, then C(z) = Id( forall z e LM x GL(n).

n+n2)x(n+n2)
Proposition 5.14. Let A = (N, y, O, R, {¢;}) and 1" =(N', ', O', R’, {¢}})
be two s-spaces over M, (f, t): X — A’ be a morphism of s-space, T a A’ -natural
tensor and let A e R™" such that T = A Then *T o f comes from a tensor on
M if and only if (L(a))!- A-L(a)=A for any ain O.
Proof. Since T is A’ -natural, (L'(a'))'-A-L'(a")=A for all a’ € O, then the
Proposition follows from Proposition 3.5. O

Remark 5.15. There are tensors on M that are not A-natural for any s-space over
M. Let T be a not null tensor on M, then there exists p € M such that T(p): M

x M, — R is not the null bilinear form. Let f be a differentiable function on M that
satisfies f(p)=1 and f(q)=0 for g = p. Consider the tensor T defined by
'F(a) = f(&)-T(E). If T is A-natural, then *T = A and since f(q) =0, A must be
the zero matrix. For z' e y™Y(p), we have that *T(z') = [T (q)(e; (2), ej(z))] =
f(p)[T(p)(ei(z') - ej(z"))] # O, hence T is not A-natural.

Proposition 5.16. Let T be a symmetric tensor on M with index and constant
rank. Then there is a s-space A over M such that T is A-natural.

Proof. If rank(T) =0, then T is the null tensor and T is A-natural for all A.
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Suppose that rank(T) =r >1 and index(T) =r —s. For every p e M there is a

basis {Vi, ..., Vs, Vsi1s o Vs Vpya, - Vo OF M, that diagonalizes the matrix of

T(p), i.e.

ldgys 0 0
TPV, vi)l=| 0 —ld(_s)(r—s) O|=lg-

0 0 0

Let . =(N, = O, {m}), where N ={(q,Vv)eLM:[T(p)(vi, Vvj)]=Ils}
o(s) O 0
O=| 0 Ofr-s) 0 ; the action, the projection and the maps =; are
0 0 GL(n-r)

similar to those of LM. Then *T = lgr. O

6. Subs-spaces

Let A =(N, v, O, R, {g}) and 1" = (N', w', O, R’, {¢{}) be s-spaces over M
and N respectively and h: M — M’ be a differentiable function. Let f : N — N’

be a differentiable function and t : O — O’ a group morphism.

Definition 6.1. We said that (f, 1) is a morphism of s-spaces over h if f(z-a)

= f(z)-t(a) forall ze N and ae€ O and y'o f =hoy.

This definition generalizes the concept of morphism of s-spaces. If A and A" are
s-spaces over M and (f, t): A — A" is a morphism of s-spaces, then (f, 1) is a

morphism over Idy, .

Example 6.2. Let (M, g) be a Riemannian manifold and let A = (O(M)x R",
v, O(n), R, {gj}) be the s-space over TM where the projection is defined by

y(p,u, &):(p, Z?luiai} O(n) acts on O(M)xR" by Ry(p,u)=(p,u-a,&-a).

Forl1<i<n, lete(p,u, &)= (n*w(p,u,a) X K\V(p,u’g))’l(ui, 0) and ep,i(p, u, &) =

(s x Kw(p,u’;;))‘l(O, uj), where K is the connection map induced by the

y(p,u,&)
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Levi-Civita connection of g. Before we see an example of subs-space, let us make a
brief comment. The tensors on TM that are A naturals with respect to TM agree with
the ones of Calvo-Keilhauer [2]. The Sasaki metric Gg and the Cheeger-Gromoll

metric Gy are A-naturals with respect to TM. The matrix representation of the
N Y ldnn O
Sasaki metric and the Cheeger-Gromoll metric are “*Gg(p, U, &) = 0 I
nxn

Iann 0
and “Ggy(p, u, &) =| %('dnxn 4+ (e)t-g) | respectively.

1+|¢&
Consider the s-space A' = (O(M), v, O(n —1), R', {e{}) over the unitary
tangent bundle T;M of M, where y'(p, u) = (p, u,) and the action of O(n —1) on

n-1 _j

O(M) is given by R;(p, u):(p, Z|n=_11 uial, .., i Yidn_1, un]. The maps
{e{} are defined by €j(p, u) = (n*w(p'u) x Kw(p,u))_l(ui, 0) if 1<i<n and by
ehi(P ) = (e ) ¥ Ky(p.u)) (0, uj) if 1<i<n—1. Let f:O(M)—O(M)
xR" and t:0(n—1) - O(n) defined by f(p, u) = (p, u, v), where v is the nth
vector of the canonic base of R", and t(a) = (Z (D Then (f,t): A > A isa

morphism of s-spaces over the inclusion map of TIM in TM.

Let M and M’ be two manifolds of dimension n and n’ respectively. Let A =
(N, v, O, R, {g}) and 1" = (N’, v, O, R’, {e]}) be two s-spaces over M and M’
and (f, t): A — A" a morphism of s-space over an inmersion h: M — M'. For

every z e N, h*\,,(z)(Mw(Z)) is a subspace of dimension n of M{,(¢(,) and it is
generated by {h*w(z)(el(z)), h*w(z)(en(z))}. As {e{(f(2))} is abase of M, (¢(z)),

for every z e N there exists a matrix A(z) e R™" with rank(A(z)) = n that

satisfies

n'—
—

{0y @1, o Py @2, O,y O = fei(F(2D) o e (F(2)) - ACD)
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1d(2n-1)x(2n-1) O

In the previous example, A(p, u) = (
0 0

J. If M =M'"and his

the identity map then (f, 1) is a morphism of s-spaces and A(z) = C(z) is C is

the linking map of (f, 1). In this situation, we have the following definition:

Definition 6.3. A is a subs-space of A’ if there exists a morphism of s-spaces
(f, t) over an injective inmersion h: M — M’ such that f is an inmersion and the

map A induced by (f, t) is constant. In this case, we said that X is a subs-space of
A" with morphism (f, t) over h. A s-space A = (N, v, O, R, {g}) is included in
A =(N, vy, O, R, {e}) if N = N

Example 6.4. Let M be a parallelizable manifold, V a vectorial space and V' a
subspace of V. Let GL(V) be the group of linear isomorphisms of V and let

GL(V, V') be the subgroup of linear isomorphisms of V with the property that
T(V') =V Consider the s-space A = (M xV, pr, GL(V), R¢, {e;}) over M, where
the action is defined by R¢ (p, z) = (p, f(z)) for (p, z) e M xV and f e GL(V),

and e =& o pr, where {g, ..., §,} are the vector fields that trivialized the tangent
bundle of M. If ' = (M xV', pr, GL(V, V'), R¢, {g;}), then A’ is a subs-space of
A

Proposition 6.5. Let A = (N, vy, O, R, {¢;}) and " = (N', ', O', R’, {e]}) be
two s-spaces over M such that A is a subs-space of A" with morphism (f, t) over

the identity map of M. If a tensor T on M is A’ -natural then T is A-natural.

Proof.

T @) = T(w(2)(e(2), €j(2))

-T2 4 @A Y e@AT]

Nl ASTA
- ISA,-.Aj[ Tl

then *T is a constant map. O
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Remark 6.6. The converse statement does not holds in general. Let (M, g) be
a Riemannian manifold and O(M) be the s-space induced by the principal bundle of
orthonormal frames. If iggy) : O(M) — LM and i) : O(n) — GL(n) are the
respective inclusion functions, then O(M) is a subs-space of LM with morphism
(io(m)» io(n)) over the identity map of M. We known that there are O(M ) -natural

tensors that are not LM-natural.

Let T be a tensor on M and let "M T : LM — R™" Dbe the matrix map induced
by the s-space LM. Given a s-space L = (N, y, O, R, {¢;}) over M we have a

morphism (T, L): % — LM (see Example 3.2). Itis clear that *T ="MT o T, thus if
T is A-natural then there exists a matrix A R™" such that ImgT < ("MT)7(A).

Proposition 6.7. Let T be a tensor on M. There exists A a s-space over M such

that T is A-natural if and only if there exist a matrix A € R™"

LM included in (“MT)7}(A).

and a subs-space of

Proof. Suppose that T is A-natural (A = (N, v, O, R, {g;})) and let A e R™"
such that *T = A Let A’ = (I(N), =, L(O), R, {x;}), where =, R’ and {m;} are
induced by LM. The map = : T(N) — M is a submersion. Since n(T'(N)) = w(N)
=M, = is surjective. Let pe M and z ey X(p). Then n(I(z)) = p. Given
ve M, there exists w e N, such that v, (w)=v. Let o be a curve on N that
satisfies a(0) = z and &(0) = w. Then for B(t) = ['(a(t)) we have that B(0) = I'(z)
and “*r(z)(B(O» =Dlg (n(B())) = W, (W) =V, s0 Tary) Nr(z) = M is surjective.
On the other hand, it is clear that L(O) acts transitively on T(N), so A is a s-space
and it is a subs-space of LM with morphism (iF(N)! iL(o)) over the identity map of
M.

Conversely, suppose that there exists L = (N, v, O, R{e;}) a s-space over M
that is also a subs-space of LM with morphism (f, t) over the identity map,

and suppose that f(N) < ("MT)™(A) for a matrix A e R™". Since {g;(z)} =
{mi(f(2))} - B for B e GL(n), this implies that [ *T(2)] = [T (y(2))(e;(2), &;(2))] =

B" - [T(w(2))(ni(f(2)) nj(f(2))]- B =B A-B. O
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7. Atlas of s-spaces

Definition 7.1. Let M be a manifold and let A : {A; = (N;, vj, O;, Rj, {& )i

be a collection of s-spaces over M. Then the collection A is called an Atlas of
s-spaces if for each pair (i, j)el x| there is a morphism of s-spaces

(fij, tjj) : Ay = Aj suchthat f;; : Nj — Nj is a diffeomorphism.
We said that the s-spaces A and B are compatible if there exists a morphism
(f)\B’ TK,B) A B and (fB;L, TBJ\) : B — A such that fkﬁ and ka are

diffeomorphisms. Hence, an atlas is a set of compatible s-spaces over M. We say that
A is a maximal atlas if A < B implies that A = B. In other words, if A is a

s-space compatible with the s-spaces of A then A € A. If A is a s-space over M let
us notate with .A = (L) the maximal atlas generated by A. Let .4 be a maximal

atlas. Then it follows from the definition that A = (1) for every A € A. Note that

there are different maximal atlases over a manifold. Consider a metric on M, then
(LM) and (O(M)) are maximal s-spaces but they are different because LM and

O(M) are not compatible.

Let A be a s-space over M, then A = {A} is an atlas. Therefore, the concept of
atlas is a generalization of the notion of s-space.

Example 7.2. Let A = (N, y, O, R, {;}) be a s-space over M and let A: N

—> GL(n) be a differentiable function. Consider %, = (N, v, O, R, {e{*}), where

el(z) = zinzlei(z)Af(z). The collection A = {XA}Aef(M) is an atlas of s-spaces.

Example 7.3. Let M be a parallelizable manifold and {H;}"; the vector fields
that trivialize the tangent bundle of M. Let (N, g) be a Riemannian manifold such

that its isometry group Iy, g) acts transitively on N. Let Ay, g) = (M x N, pr,
I(N,g) Re, {Hj o pri}), where the action of I g) on M xN s given by
Rt (z, p)=(z, f(p)). If (N, g') is isometric to (N, g), then Ay ¢) is compatible
with AN’ g)- If N’ is not diffeomorphic to N, then (A(y,¢)) and (A(n',q)) are
different atlases.

Definition 7.4. Let A and B be two atlases of s-spaces over M and F a
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collection of morphisms of s-spaces from a s-space of .4 to a s-space of B. Then F
will be called a morphism between the atlas .4 and B if for every A € A and
B e B thereexists (f, t) e F suchthat (f, 7): A — B.

Remark 7.5. Let A and B be two atlas over M, Ag € A, By e B and
(fo, t0) : Ao = Bo- Consider F = {fg g0 fgo fy;, 188 © 70 © s, }xeA,Ber
where (fgp, Tg,p) 1 Bo = B and (fuy,. Tan,) 1A — Ao are the morphisms that
show the compatibility between § and By and between A and Ay respectively. Then

F is morphism of atlases between A and 5.

Remark 7.6. If & is a s-space over M we have a canonical morphism (I, L, ) :

A — LM (see Example 3.2), hence for every s-space A we have a morphism
between the atlases (1) and (LM ). But this property do not characterize (LM). In
other words, if a s-space B satisfies that for every A there exists a morphism
(f5, 1) 1 A = B, B is not necessarily compatible with LM.

A

[ISWEY (fasma)
(Tg,Lg)

IMZT =B
(frLaTom)

Consider a parallelizable Riemannian manifold (M, g). Let {H;}, be
orthonormal fields that trivialized the tangent bundle of M. If & = (N, y, O, R, {g;})
is a s-space over M, let (f,, t)): X2 — O(M) be a morphism defined by f(z) =
(w(2), Hi(w(2)), .., Hy(w(z))) and t(a) = Id.,. Therefore, for every maximal
atlas A there is a morphism between it and O(M), but O(M) is not compatible

with LM.
A

FaLm Fa,0(m)
Fo(ay,Lm

< LM > <O(M) >

Fram,00M)
There are more atlases with this property. If (M, g) is an oriented manifold, the

maximal atlas generated by the s-space induced by the principal fiber bundles of
orthonormal oriented bases SL(M ) have this property. The atlas (M, Idy, {1}, Ry,

{Hi})), where Ry is the trivial action, is another example.
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Definition 7.7. Let A be an atlas of s-spaces over M. Then a tensor T on M will
be called A -natural if T is A-natural for all A € A.

Note that the concept of A -naturality generalized the notion of A-naturality. If
we consider the atlas A = {A}, then T is .4 -natural if and only if T is A-natural.

Example 7.8. Let A be a s-space over M and consider the subatlas of the atlas
given in the Example 7.2 defined by A = {}\‘A}AEGL(n)' Tis A -natural if and only

if T is A-natural. Let T be a A-natural tensor on M and A’ = {kA}Ae]-'(N,GT)' ThenT

is A’ -natural and it has the same matrix representation in all the s-spaces of the
atlas.

Remark 7.9. If A is a maximal atlas then the unique A -natural tensor is the
null tensor. Let & = (N, y, O, R, {gj}) e A and f : N — R be a differentiable
function such that f(z) =0 forall ze N and f2 is not constant. If A’ = (N, v,
O, R, {f - &}), then we have that " e A, but the null tensor is the only one that is

A-natural and A’ -natural at the same time.

Definition 7.10. Let A be an atlas of s-spaces over M and T a tensor on M.
Then T is called A -weak natural if there exists A € A such that T is A-natural.

If A={A} or A is the atlas of Example 7.8, the concept of A -natural and

A -weak natural coincide.

For study the naturality of tensors on a fibration o it will be useful consider the
atlases A such that all its s-spaces are trivial over a.. An atlas with this property will
be called a trivial atlas over o. The following definition is a generalization of the
concept of naturality with respect to a fibration:

Definition 7.11. Let A be a trivial atlas over a fibration o = (P, =, F) and T a

tensor on P. Then T is A -natural with respect to o if T is A-natural with respect to o
forall A e A.

Example 7.12. Let o = (P, =, G, -) be a principal fiber bundle on (M, g)

endowed with a connection . For every W = (W, ..., W} basis of g let Ay =

(M, v, O, R, {&"}), where N ={(p,u, b): peP,u is an orthonormal base of
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Mz(p), b € G}, w(g,u,b)=q-b, O=0(n)xG and the action R is defined by
R(h,a)(a, u, b) = (qa, uh, a). For 1<i<n, &¥(p, u, g) is the horizontal lift
of u; with respect to o at p.g and for 1< j <k, ey, j(p, u, g) is the only one

vertical vector on P, o such that o(p)(en,j(p, U, 9)) =Wj. A = {hy }WeLg is a

trivial atlas over a.. An easy computation shows that the set of A -natural tensors
with respect to o is the set of tensors T whose matrix representation with respect to
f(a)ldyy, O

some y is MWT(q, u, a) =
0 B(a)

), where f:G —> R and B: G

— R¥*K are differentiable functions.

As above, if A is a maximal trivial atlas over o the only A -natural tensor with
respect to o is the null tensor. So we have a weak definition of naturality for this
case too. We say that T is .4 -weak natural with respect to o if T is A-natural with
respect to o for some A € A.

8. Examples

We conclude showing some examples of s-spaces:
8.1. Lie groups

Let G be a Lie group of dimension k. We denote with e the unit element of G. If

V=1{v, .. V,} isabaseof g, let H be the unique left invariant vector field on G
such that H}’(e) = v;.

Example 8.1. Given v a basis of g, let A’ = (N, y, G, R, {¢/'}) be the s-space
over G defined by N =GxG, (g, h)=gh, Ry(g, h)=(ga a>-h) and
e/(g, h)=Hy(g-h) for 1<i<k. Since &' oRy(g, h)=¢'(g, h), the base

change morphism L' is equal to the identity matrix of Rk Therefore, if T is a
tensor on G, then it satisfies that

MToR, =M.

For this reason, all constant matricial maps come from a tensor and the A" -natural

tensors are in a one to one relation with the matrices of R¥*K,
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Suppose that kVT depends only of one parameter, for example va(g, h) =
T (h). since [*T(g', M) = [*T(ghh™%, W) = T(gh)(HY(gh), HY(gh)) =
[kVT(g’, hlj = [kVT(g, h)]j, Tis A’ -natural. Therefore, T is 2" -natural if and only
if Tis XVT depends of one parameter. The left invariant metrics are tensors of this
type.

Let v/ be another basis of g and consider 2. If a,, € GL(k) is the matrix
that satisfies v’ = a,,v, then we have that e’ (g, h)=e'(g, h)-a,, and .

\
(a\,\,/)t M T-a, for a tensor T on M. Thus the set of A'-natural tensors is
independent of the choice of the basis v. We can observe that (ldg.c, ldg) is a

morphism of s-spaces with linking map equals a,,, so T e (g, 1dg) if and
only if a, € Gy (g, h).

Example 8.2. Let A ={N, y, O, R, {g;}} be the s-space over G defined by
N=GxLg={(g,v):geG and v is a basis of g}, w(g, v, ...,v,)=¢, O=
GL(n), Re(g,v)=(g,v-a) and e(g, v)=H{(g). Since {ej}oR; ={e;} &,
Mo Re = gt M ¢ forall & e GL(k). Therefore, the null vector is only one that
is A-natural.

The left invariant metrics on G are not A-natural but for a metric T on G we have
that T is a left invariant metric if and only if *T(g, v) =*T(v). If T is a left invariant

metric, then
(TG0 Wl = T(O)((Lg), (), (L), (V)
= T() (g1 ((Lg Doy ). (Lg-a)s, ((Lg),, (%))
=T v) = [*T(e ).

Suppose that the matrix representation induced by T depends only of the
parameter of g. Let g, heG and w, v e TyG, we have to see that T(g)(v, w)
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=T(hg)((Lh)*g(v), (Lh)*g(w)). Let {uy, .., u,} be a basis of g If v=
Z?lei (Lg).,(uj) and w= Zin:lWi (Lg )., (ui). Then (Ly), (v)= Zin:lVi (Lig )., (Ui)

and (Ly ), (W) = 21 Wi(Lng ), (uj). Hence,
Wy

T(hg) (Ln)ay (V). (L )uy W) = (3, e Vi) - *T(hg, )| 1 [=T(Q)(v, ).
Wn

Let T be a tensor such that 7‘T(g, v) depends only of v. We know that
"T(g,v-8)= (&) *T(e v)-& forall &eGL(k). Fixed vg e L, and let F: L,
— GL(k) defined by v = vy - F(v). Then *T(g, v) = (F(v))' *T(e, vp)- F(v) for
all (g,v) e GxLg. Therefore, AT depends only of the parameter of Ly if and
only if there exists A e R¥*¥ and a differentiable function F : Ly — GL(k), that
satisfies F(w- &) = F(w)- &, such that *T(g, w) = (F(w))' - A- F(w).

Example 8.3. Fixed v e L, and consider A’ = (G x O(k), y, O(k), R, {g{'}),
where (g, £) = 9, Ra(9, £) = (9, £), (g, &) = H!"¥(g)- % is a s-space over
G with base change morphism L = Idg). If T is a tensor of M, then Mo Ra
=a' - .a Therefore, T is A-natural if and only if )‘T(g, £)= f(g)- Idg,, with
f :G — R a differentiable function. Is easy to see that *T((g, &) a) = (ta)"
M (g, 1d)-(£a), hence the matrix representation of T depends only of the
parameter of O(k) if and only if *T(g, &) = &' - A- & with A e R™".

8.2. Bundle metrics

Let a = (P, n, G, -) be a principal fiber bundle over a Riemannian manifold
(M, g) endowed with a connection ®. Let us denote with M_,q4(g) the set of
metrics on g that are invariant by the adjoint map ad. Consider the metric on P
defined by

h(p)(X, Y) = g(n(p)) (ms ) (X), ma (V) + (1o ) (P) (X)), (Y)) (1)

where | : M — M,q(g). If G is compact, Mq(g) # &, and if g is also a simple
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algebra, then essentially there is only one conformal class of positive defined ad-
invariant metric [14]. If | is a constant function, h is called a bundle metric. It is easy
tosee that = : (P, h) —» (M, g) is a Riemannian submersion.

Let Iy be an ad-invariant metric on g. In the following we are going to consider
the s-space A = (N, y, O, R, {e;}) over P givenby N ={(q,u,v, g):qe P, u is
an orthonormal base of Mz(q), v is an orthonormal base of g with respect to I

and g € G}, w(g,u,v,g)=0-g,0=0(n)xO(k)x G and the action is defined
by Ra,b,n)(d U, v, ) = (ah, ua, vb, h‘lg). For 1<i<n, e(q,u,v,g) is the
horizontal lift with respect to ® of u; at q-g and, for 1< j <k, e, (q, u, v, g) is
the unique vertical vector on Py, such that o(q - g)(en.j(d, u, v, 9)) =vj. Lisa
trivial s-space over a.

Let G be a compact Lie group with g a simple algebra and h a metric on P of
the type of (1). Then we have the following proposition:

Proposition 8.4. h is A-natural with respect to o if and only if h is a bundle
metric.

Proof. “h(g, u, v, g) is the matrix of h(q-g) with respect to the base

{&i(g, u, v, 9), enti(g, U, v, g)}. For 1<, j <n, we have that:
h(a.9)(ei(a, u, v, ), ej(a, u, v, 9)) = g(uj, uj) + 0 = 3.
Forl1<i<nandl1< j<k:
h(qg)(ei(a, u, v, 9), e+ j(a, U, v, 9))
=0 =h(ag)(enj(a, u, v, 9), &(a, u, v, 9))
andfor1<i, j<k:
h(a - g)(ensi(a U, v, 9), enyj(a, u, v, 9)) = o m(ag)(vj, vj) = f(m(q))- 3,

because g has essentially one ad-invariant metric. Since

*h(g, u, v g)=(ldnxn ° ]
Y 0 f(r(@))ldi )

h is A-natural with respect to a if and only if f is a constant map, that is to say that h
is a bundle metric. 0
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Remark 8.5. If g has different ad-invariant metrics and h is a metric of the

type of (1), then *h: N — RMK*(+K) on1y depends of the parameter of G if
I =31y with § a constant. In general, the metrics of type (1) that are A-natural with

respect to a are the bundle metrics induced by the ad-invariant metric 1.

Remark 8.6. The s-space A depends of |y and . Let @' be another connection
on o and consider the s-space A’ induced by it. The difference between A® and A
arethemaps g : N > TP and ¢f : N — TP. Let
a(p, u, v, 9) a(p,u, v, g)

Nﬂuﬁh®=[
as(p, u, v, g) ag(p,u, v, 9)

]eGL(n+k)

be the matricial map that satisfies {ef, ey, j} = {ej, e, j}-A, where a;(p, u, v, g)

e R™ ay(p,u, v, g) e R™ a3(p, u, v, g) e R  and ay(p, u, v, g) e R,
Since en,.j(p, u, v, g) = en,j(p, u, v, g), we have that a, =0 and ag = Id.

If T is a tensor, then

wa(p,u’V,g)::(a{(p,u,v,g) aﬁ(p,u,v,g)J

0 Idyk

- g)_[a1<p, uv,g) 0 ]

as(p, u, v, g) ldg

Suppose as in the proposition above that there is essentially one ad-invariant
metric. Then if h is a metric of type (1) we have that

“h(p, u, v, 9)

ai(p,u,v, 9)ay(p,u,v, 9) f(n(p))-as(p,u,v, 9)
= +f(n(p)ai(p,u,v, 9)-a4(p,u,v, 9)

f(n(p))ag(p.u,v.9) f(m(p))- 1k

Therefore, if the connections satisfy that a; € O(n) and a4 is a constant map,

then h is A-natural with respect to o if and only if h is A’ -natural with respect to o.
In this situation h is a bundle metric.
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