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Abstract 

In order to study tensor fields of type ( )2,0  on manifolds and fibrations 

we introduce a new formalism that we called s-space. The s-spaces 
induced a one to one correspondence between the ( )2,0  tensor fields and 

some differential matricial applications. Using this relationship, we 
generalized the concept of natural tensor without making use of the theory 
of natural operators and differential invariants. 

1. Introduction 

In [9], Kowalski and Sekizawa defined and characterized the natural tensor 
fields on the tangent bundle TM of a manifold M. They called a tensor g~  of type 

( )2,0  on TM natural if it cames from a second order natural operator of a metric g 

on M. They showed that there exist natural F-metrics 21, ξξ  and 3ξ  (i.e. a bundle 

morphism of the form R×→⊕⊕ξ MTMTMTM:  linear in the second and in 
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the third argument) derived from g, such that gvghgsg ,
3

,
2

,
1

~ ξ+ξ+ξ=  with 1ξ  and 

3ξ  symmetric, where ghgs ,
2

,
1 , ξξ  and gv,

3ξ  are the classical Sasaki, horizontal and 

vertical lift of 21, ξξ  and ,3ξ  respectively. Also, Kowalski and Sekizawa [10] study 

the natural tensor fields on the linear frame bundles of a manifold endowed with a 
linear connection. 

In [2], Calvo and Keilhauer showed that any ( )2,0  tensor field on TM over a 

Riemannian manifold ( )gM ,  admits a global matrix representation. Using this one 

to one relationship, they defined and characterized what they called natural tensor. 
In the symmetric case, this concept coincides with the one of Kowalski and 
Sekizawa. Keilhauer [7] defined and characterized the tensor fields of type ( )2,0  on 

the linear frame bundle of a Riemannian manifold LM endowed with a linear 

connection. The natural tensors on the tangent and cotangent bundle MT ∗  of a 
semi Riemannian manifold was characterized by Araujo and Keilhauer in [1]. The 
main idea of [1], [2] and [7] is to use a suitable fiber bundle P in order to see the 

tensor fields on TM, MT ∗  and LM as matricial functions from P to .mm×R  The 
principal difference between [9] and [10], [1, 2] and [7] is that these last works do 
not make use of the theory of differential invariant developed by Krupka [11] (see 
[8, 12]). 

The aim of this work is generalized the notion of natural tensor fields in the 
sense of [1], [2] and [7] to manifolds and fibrations. With this purpose we introduce 
the concept of s-space. In Section 2, we define and give some examples of s-spaces. 
We see general properties of s-spaces, for example, that there exists a one to one 
relationship between the tensor fields of type ( )2,0  and some types of matricial 

maps. This relationship allows us to study the tensor fields in the sense of [2]. We 
characterize the s-spaces which its group acts without fixed point. We study some 
general statement of morphisms of s-spaces and tensor fields on manifolds in 
Section 3. In Section 4, we define connections on s-spaces, that coincides with the 
well known notion of connection when the s-space is also a principal fiber bundle. 
We give a condition that a s-space endowed with a connection has to be satisfied in 
order to has a parallelizable space manifold. Also, using a connection we show a 
useful way of lift metrics to the space manifold of the s-space. The concept of               
s-space gives several notions of naturality. The λ-natural and λ-natural tensors with 
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respect to a fibration are defined in Section 5. We give examples and see that these 
notions extend the idea of naturality of [1], [2] and [7]. In Section 7, we define the 
notion of atlas of s-spaces and use them to generalize the λ-naturality. In Section 8, 
we consider some s-spaces over a Lie group and characterized the natural tensors 
fields on it. Finally, we study the bundle metrics on a principal fiber bundle endowed 
with a linear connection. 

2. s-spaces 

Definition 2.1. Let M be a manifold of dimension n. Then a collection =λ  
( { })ieRON ,,,, ψ  is called a s-space over M if: 

(a) N is a manifold. 

(b) MN →ψ :  is a submersion. 

(c) O is a Lie group and R is a right action of the group O over N which is 
transitive in each fibers. The action also must satisfied that ψ=ψ aRD  for all 

.Oa ∈  

(d) ,: TMNei →  with ,1 ni ≤≤  are differential functions such that 

( ) ( ){ }zeze n...,,1  is a basis of ( )zMψ  for all .Nz ∈  

If ( ) ,pz =ψ  then ( ) ( ){ }zeze n...,,1  and ( ) ( ){ }azeaze n ....,,.1  are bases of .pM  

Therefore there exists an invertible matrix ( )azL ,  such that ( ){ } ( ){ }.. zeaze ii =  

( ),, azL  (i.e. ( ) ( ) ( )∑ =
= n

j
l
i

l
i azLzeaze 1 ,.  for .)1 ni ≤≤  If the matrix L only 

depends of the parameter of the Lie group O, we have a differentiable map →OL :  
( )nGL  such that 

{ } { } ( ).aLeRe iai ⋅=D  

We called this map the base change morphism of the s-space λ. It easy to see 
that L is a group morphism. In this case, we define that λ have a rigid base change. 
From now on, we will consider only this class of s-spaces. 

In the sequel, unless otherwise stated, ,dim nM =  kO =dim  and we will 

denote the Lie algebra of O by .o  Also, we assume that all tensor are of type ( ).2,0  
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Example 2.2. The linear frame bundle of M induces a s-space ( ,, π=λ LM  

( ) ( ) { })inGL π⋅ ,,  over M, where π is the projection of the bundle, ( )⋅  is the canonical 

action of the general linear group over LM and ( ) ., ii uup =π  The base change 

morphism is given by ( ) aaL =  for all ( ).nGLa ∈  This example shows that every 

manifolds admits a s-space. For simplicity of notation, let us denote this s-space with 
LM. If we consider a Riemannian metric on M or an orientation, then the bundle of 
orthonormal frames and the bundle of orientated bases induced similar s-spaces over 
M. 

Example 2.3. Let ( )⋅π=α ,,, GP  be a principal fiber bundle over M, and ω be 

a connection on α. Let { }( ),,,,, ieRON ψ=λ  where 

(a) {( ) uPpwupN ,:,, ∈=  and w are a bases of ( )pMπ  and ,g  }.lyrespective  

(b) ( ) .,, pwup =ψ  

(c) ( ) ( )kGLnGLO ×=  and ( )( ) ( ).,,,,, bwaupwupR ba ⋅⋅=  

(d) For ni ≤≤1  and ( )wupekj i ,,,1 ≤≤  is the horizontal lift with respect 

to ω of iu  at p and ( )wupe jn ,,+  is the only vertical vector on pP  such that 

( ) ( ( )) .,, jjn wwupep =ω +  

λ is a s-space over P and its base change morphism is given by ( ) =baL ,  

.
0

0
⎟
⎠
⎞

⎜
⎝
⎛

b
a  

Example 2.4. This example can be found in [7]. Let M be a manifold and ∇  be 
a linear connection on it. Let TMTTMK →:  be the connection function induced 
by ∇  ( i.e., K is the unique function that for pMv ∈  satisfies that →| vTM TMK v :  

pM  is a surjective linear map and for any vector field Y on M such that ( ) ,vpY =  

( ( )) ).YwYK wp ∇=∗  For ,,1 nji ≤≤  consider the 1-forms iθ  and i
jω  defined by 

( ) ( ) ( ) ( )∑
=

∗ θ=π
n

i
i

i ubupbup
1

,,  and (( )
( )

( )) ( ) ( )∑
=

∗ ω=π
n

i
i

i
jj ubupbK

up
1

.,
,

 Let =λ  

( ( ) ( ) { }),,,,,, i
ji VHRnGLnGLLM ψ×  where ( ) ( ),,,, bupbup ⋅=ψ  the action is 
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( ) ( )baaupbupRa
1,,,, −⋅=  and { }iji VH ,  is dual to { }., i

j
i ωθ  λ is a s-space over 

the frame bundle of M with base change morphism ( ) .nnIdaL ×≡  

The importance of the s-spaces for the study of the tensor fields is given by the 
following proposition. 

Proposition 2.5. Let { }( )ieRON ,,,, ψ=λ  be a s-space over M with base 

change morphism L. There is a one to one correspondence between tensor fields of 

type ( )2,0  on M and the differentiable maps nnNT ×λ → R:  that satisfy the 

invariance property 

( ( )) ( ).aLTaLRT t
a ⋅⋅= λλ D  

Proof. Let T be a tensor on M. Consider the matrix function nnNT ×λ → R:  

defined by [ ( )] ( )( ) ( ( ) ( ))., zezezTzT ji
i
j ψ=λ  For ,Oa ∈  we have that the ( )ji,  

entry of the matrix ( )azT ⋅λ  is [ ( )] ( )( ) ( ( ) ( )) =⋅⋅⋅ψ=⋅λ azeazeazTazT ji
i
j ,  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑ ∑ =
λ

= =
⋅⋅=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ψ n

sr
s
j

r
s

r
i

n

r

n

s

s
js

r
ir aLzTaLaLzeaLzezT 1,

1 1
,,  hence Tλ  

satisfies the invariance property. Let nnNF ×→ R:  be a differentiable function that 
satisfies the invariance property. If X is a vector field on M, then it induces a map 

( ) n
n NxxX R→=λ :...,,1  such that ( )( ) ( ) ( )∑

=
=ψ

n

i
ii zezxzX

1
.  It is easy to check 

that [ ( ) ] .1−λλ ⋅= t
a aLXRX D  Then, we define ( )( ) ( ) ( ) ( ( )) ,, tzYzFzXYXpT λλ ⋅⋅=  

where ( ) .pz =ψ  Consider z and z  such that ( ) ( ) .pzz =ψ=ψ  Since O acts 

transitively on the fibers of N, there exists Oa ∈  that satisfies .azz ⋅=  Therefore, 

( ) ( ) ( ( )) ( ) ( ( ) ) ( ) ( ) ( ) ( )( ) ( ( ))tttt zYaLaLzFaLaLzXzYzFzX λ−λ−λλλ ⋅⋅⋅⋅⋅=⋅⋅ 11  

( ) ( ) ( ( )) ,tzYzFzX λλ ⋅⋅=  what it proves that T it is well defined. Given X and Y 

vector fields on M, ( ) R→MYXT :,  is a differentiable function because 

( ) ψDYXT ,  is differentiable and ψ is a submersion. Since T is ( )MF -bilinear, we 

conclude that T is a tensor of type ( )2,0  on M. Finally, it is clear that .FT =λ  ~ 

Theorem 2.6. Let { }( )ieRON ,,,, ψ=λ  be a s-space over M, such that O acts 

without fixed point. Then ( )RON ,,, ψ  is a principal fiber bundle over M. 
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Let us denote by zz ′~  the equivalence relation induced by the action of the 
group O on the manifold N. To prove the previous Theorem we will need the 
following next two lemmas. 

Lemma 2.7. Let { }( )ieRON ,,,, ψ=λ  be a s-space over M. Then ON  has 

differentiable manifold structure and ONN →π :  is a submersion. 

Proof. Consider the map MMNN ×→×ρ :  defined by ( ) ( ( ),, zzz ψ=′ρ  

( )) ρ⋅′ψ z  is a submersion since ψ it is. Let the set ( ){ }zzzz ′′=Δ ~:,  and Δ be 

the diagonal submanifold of .NN ×  Since zz ′~  if and only if ( ) ( ),zz ′ψ=ψ  we 

have that ( ).1 Δρ=Δ −  Therefore Δ  is a closed submanifold of .NN ×  It is well 

known that if a group O acts on a manifold ONN ,  has a structure of differentiable 

manifold such that the canonical projection π is a submersion if and only if Δ  is a 
closed submanifold of .NN ×  In this case, the differentiable structure of ON  is 

unique. ~ 

Lemma 2.8. Under the hypotheses of the previous lemma: 

 (i) ON  is diffeomorphic to M. 

(ii) .kerker ∗∗ ψ=π  

Proof. Let MONf →:  defined by [ ]( ) ( ).zzf ψ=  By definition ,ψ=πDf  

then f is differentiable function and .kerker ∗∗ ψ⊆π  On the other hand, let Mg :  

ON→  be the function defined by ( ) ( )zpg π=  where Nz ∈  satisfies that ( )zψ  

.p=  Since O acts transitively on the fibers of gN ,  is well defined. As ψ=π Dg  

we have that g is a differentiable function and that .kerker ∗∗ π⊆ψ  An easy 

verification shows that ONIdfg =D  and .MIdgf =D  ~ 

Remark 2.9. If { }( )ieRON ,,,, ψ=λ  is a s-space over M, then ( )RON ,,, ψ  

is a principal fiber bundle over .ON  

Proof of Theorem 2.6. It remains to prove that ( )RON ,,, ψ  satisfies the local 

triviality property, (i.e. all Mp ∈  has an open neighbourhood U on M, and a 

diffeomorphism ( ) OUU ×→ψτ −1:  such that ( ),, φψ=τ  where ( ) ( ) azaz ⋅φ=⋅φ  
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for all .)Oa ∈  Let ,Mp ∈  take [ ] ONz ∈0  such that [ ]( ) .0 pzf =  As ( )RON ,,, ψ  

is a principal fiber bundle over .ON  Then there exist an open neighbourhood V of 

[ ]0z  and a diffeomorphism ( ( ) ( ))zz φπ=τ ,  such that satisfy the local triviality 

property. ( )VfU =  is an open neighbourhood of p on M, since f is a diffeomorphism, 

and it satisfies that ( ) ( ).11 VU −− π=ψ  Finally, if we define ( ) OUU ×→ψτ −1:  

by ( )zτ  ( ( ) ( )),, zz φψ=  U and τ satisfy the local triviality property on p. ~ 

Remark 2.10. Note that there exist s-spaces that are not principal fiber bundles. 

For example, let ( ( { }) ( ) { })i
nn eRnGLpr ,,,,0 1−×=λ RR  over ,nR  where 

( ) ,,1 pqppr =  ( ) ( )aqpqpRa ⋅= ,,  and ( )
pi

i uqpe
∂
∂=,  is the basis of n

pR  

induced by the canonical coordinate system of .nR  

We say that a s-space { }( )ieRON ,,,, ψ=λ  over M is a principal fiber bundle 

if ( )RON ,,, ψ  is a principal fiber bundle over M. 

We denote by { }zazOaSz =⋅∈= :  the stabilizer’s group of the action R at 

z. It is well known that if for a point Nz ∈  the orbit Oz ⋅  is locally closed (i.e. if 
,Ozw ⋅∈  there exists an open neighbourhood V of w on N, such that OzV ⋅∩  is a 

closed set of V), then Oz ⋅  is a submanifold of N and [ ]( ) azafz ⋅=  is a 

diffeomorphism between zSO  and ..Oz  

Proposition 2.11. Let { }( )ieRON ,,,, ψ=λ  be a s-space over M. Then: 

 (i) There exists 0N∈s  such that sSz =dim  for all .Nz ∈  

(ii) .dimdimdim sOMN −+=  

Proof. Let Nz ∈  and ( ) .pz =ψ  Since f is a submersion we have that Ndim  

Mz dimkerdim +ψ= ∗  and ( ).dimkerdim 1 pz
−

∗ ψ=ψ  Note that ( ),1 pOz −ψ=⋅  

since O acts transitively on the fibers. As ( )p1−ψ  is locally closed, it follows that 

( ).dimdim 1 pSO z
−ψ=  Therefore, zSOMN dimdimdimdim −+=  for all z, 

so zS  is of constant dimension. ~ 
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Given a s-space λ over M, it will be important to know which are the tensors on 

M that satisfy that Tλ  is a constant matrix. It is clear that not for every matrix 
nnA ×∈ R  there exists a tensor T on M such that .AT =λ  A necessary and 

sufficient conditions for this holds is that ( ) ( ) AaLAaL t =⋅⋅  for all .Oa ∈  In that 

case, we said that λ admits matrix representations of type A. To finish the section 
we will state some conditions in order to guarantee that a s-space admits matrix 
representations of certain class of diagonal matrices. 

For ,1...,,1,0 −=ν n  we denote by νI  the following matrix of nn×R  

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ν−

−

ν
−

=ν

1

1

1

1

n

I

%

%

 if 1≥ν  and nnIdI ×=0 . 

With νO  we denote the orthonormal group of index ν. If ,0=ν  then ( ).0 nOO =  

Proposition 2.12. Let { }( )ieRON ,,,, ψ=λ  be a s-space over M with base 

change morphism L. If ,10 −≤ν≤ n  the following conditions are equivalent: 

  (i) ( ) .ν⊆ OLImg  

 (ii) λ admits matrix representations of type .νI  

(iii) There is a semi-Riemannian metric on M of signature ν such that 
{ ( ) ( )}zeze n...,,1  is an orthonormal basis of ( )zMψ  for all .Nz ∈  

(iv) There exists a tensor T on M that satisfies ( ) ν
λ = IzT  for all ( )0

1 pz −ψ∈  

and for a .0 Mp ∈  

Proof. (i) ⇒ (ii) Consider the constant map .ν≡ IF  Since F satisfies the 

invariance property, it follows from the Proposition 2.5 the existence of a tensor 

such that .ν
λ = IT  (ii) ⇒ (iii) If ,ν

λ = IT  then T is a semi-Riemannian metric of 
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index ν and ( )( ) ( ( ) ( )) [ ] ., i
jji IzezezT ν=ψ  (iii) ⇒ (iv) Is immediately. (iv) ⇒ (i) 

Let Oa ∈  and 0z  such that ( ) .00 pz =ψ  Then ( ) ( ) ( )aLIaLazII t ⋅⋅== ννν .0  for 

all .Oa ∈  ~ 

The next Proposition is a consequence of the fact that ( ) { ∈=ν DOmO ∩  

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

B
A

DmO
0

0
:  with ( )ν∈ OA  and ( )}.ν−∈ mOB  

Proposition 2.13. Let { }( )ieRON ,,,, ψ=λ  be a s-space over M with base 

change morphism L and λ−≤ν≤ .11 n  admits matrix representations of type 0I  

and νI  if and only if there exist differentiable functions ( )ν→ OOL :1  and OL :2  

( )ν−→ n  such that 

( )
( )

( )
.

0
0

2

1 ⎟
⎠
⎞

⎜
⎝
⎛=

aL
aL

aL  

Proposition 2.14. Let { }( )ieRON ,,,, ψ=λ  be a s-space over M with O 

connected. λ admits matrix representations of type νI  for all 10 −≤ν≤ n  if and 

only if λ admits matrix representations of type A for all constant matrix .nnA ×∈ R  

Proof. If λ admits matrix representations of type ,...,,, 10 νIII  from the 

proposition above we have that ( )

( )⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

±

ν±

=

al

aL
1

1
%

 with ( ) ∈al  

( ).ν−nO  Since L is differentiable and ( ) ( ) ( ),. bLaLabL =  we see that ( ) =aL  

( )
.

0
0

⎟
⎠
⎞

⎜
⎝
⎛ ν×ν

af
Id

 If ,n=ν  then nnIL ×≡  and the proposition it follows. ~ 

3. Morphisms of s-spaces 

Definition 3.1. Let { }( )ieRON ,,,, ψ=λ  and { }( )ieRON ′′′ψ′′=λ′ ,,,,  be 

s-spaces over M. We call a pair ( )τ,f  a morphism of s-spaces between λ and λ′  if 

(a) NNf ′→:  is a differentiable function. 
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(b) OO ′→τ :  is a morphism of Lie groups. 

(c)  .ψ=ψ′ fD  

(d) ( ) ( ) ( )azfazf τ⋅=⋅  for all Nz ∈  and .Oa ∈  

Note that if λ and λ′  are principal fiber bundles, ( )τ,f  is a principal bundle 

morphism. 

Example 3.2. Let { }( )ieRON ,,,, ψ=λ  be a s-space over M and let LM          

be the s-space induced by the linear frame bundle of M. Consider the pair 
( ) ,:, LML →λΓ  where ( ) ( ) ( ) ( )( )zezezz n...,,, 1ψ=Γ  and L is the base change 

morphism of λ, then ( )L,Γ  is a morphism of s-spaces. 

Remark 3.3. Let λ and λ′  be s-spaces over M and let ( ) λ′→λτ :,f  be a 

morphism between them. If λ′  is a principal fiber bundle and τ is injective, then λ is 
a principal fiber bundle. 

Remark 3.4 It is easy to see that if τ is surjective then f is also surjective. If O′  
acts without fixed point, then we have that τ is surjective if and only if f is surjective; 
the injectivity of τ implies that of f; and if τ is bijective then so is f. If O and O′  act 
without fixed point, then f is injective if and only if τ is it. 

Let ( ) λ′→λτ :,f  be a morphism of s-spaces. As ( )( ) ( )zzf ψ=ψ′ ,  we have 

that ( )( ){ }zfei′  and ( ){ }zei  are bases of ( ).zMψ  Therefore, there exists ( ) ( )nGLzC ∈  

that satisfies ( )( ){ } ( ){ } ( ).zCzezfe ii ⋅=′  We called the function ( )nGLNC →:  

the linking map of ( )., τf  For example, the linking map of the morphism given in 

Example 3.2 is ( ) .nnIdzC ×=  Let λ be a s-space over M with base change 

morphism L and let .0 Oa ∈  Consider ( ) λ→λτ :,f  defined by ( ) 0aRzf =  and 

( ) ( ) ( ),1
0 baAdb −=τ  then ( ) ( ).0aLzC =  

The linking map of a morphism ( )τ,f  satisfies that ( ) ( )( ) ( ).. 1 zCaLazC ⋅= −  

( )( ),aL τ′  where L and L′  are the base change morphism of λ and ,λ′  respectively. 

The relationship between two linking maps is given by ( )( ) ( )( )zCzC fg τγ = ,,  

( )( ),zaL′⋅  where ONa →:  is a differentiable function. 
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Let { }( )ieRON ,,,, ψ=λ  be a s-space over M and consider a function 

.: nnNF ×→ R  We say that F comes from a tensor if there exists a tensor T on M 

such that .FT =λ  In this case, we say that F is the matrix representation (or the 
induced matrix function by) of T with respect to λ. 

Proposition 3.5. Let { }( )ieRON ,,,, ψ=λ  and { }( )ieRON ′′′ψ′′=λ′ ,,,,  be 

two s-spaces over M with base change morphism L and L′  respectively, and let 

( ) λ′→λτ :,f  be a morphism. If Tλ′  is the matrix representation of T with respect 

to ,λ′  then fT Dλ′  comes from a tensor if and only if 

( )( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( )aLzfTaLaLzfTaL tt τ′⋅⋅τ′=⋅ λ′λ′ DD .  

for all Nz ∈  and .Oa ∈  

Proof. If fT Dλ′  comes from a tensor, then it satisfies ( )( ) =⋅λ′ azfT D  

( )( ) ( )( ) ( ).aLzfTaL t ⋅⋅ λ′ D  Therefore, ( )( ) ( )( ) ( )( ) ( )( ).aLzfTaLazfT t τ′⋅⋅τ′=⋅ λ′λ′  

The other implication follows by a verification of the invariance property. ~ 

Remark 3.6. Let T be a tensor on M. From the above Proposition it follows that 
until the kth iteration of T by ( )τ,f  comes from a tensor on M if and only if 

( ) ( ) ( ) ( )τ′⋅⋅⋅⋅τ′=⋅⋅⋅⋅ λλ DD LCTCLLCTCL jjttjjtt  for all .1 kj ≤≤  

Corollary 3.7. The following sentences are equivalent: 

 (i) For all tensor T on ( )fTM Dλ′,  comes from a tensor on M. 

(ii) .LL ±=τ′ D  

Proposition 3.8. Let ( ) λ′→λτ :,f  be a morphism of s-spaces and let T be a 

tensor on M. Then 

( ) ( ) ( )( ) ( ) ( ),zCzTzCzfT t ⋅⋅= λλ′ D  

where C is the linking map of ( )., τf  

Proof. 

[( ) ( )] ( )( )( )( ) ( ( )( ) ( )( ))zfezfezfTzfT ji
i
j ′′ψ′=λ′ ,D  
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( )( ) ( )( ) ( ) ( )( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ψ= ∑ ∑

= =

m

r

m

s
s

s
jr

r
i zezCzezCzT

1 1

,  

( )( )[ ( )] ( )( )∑
=

λ ⋅=
m

sr

s
j

r
s zCzTzC

1,

.  ~ 

Definition 3.9. Let ( ) λ′→λτ :,f  be a morphism of s-spaces and T be a 

tensor on M. We say that T is invariant by ( )τ,f  if .TfT λλ′ =D  Let us denote 

with ( )τ,fI  the subspace of the invariant tensors of ( )., τf  

Let λ be a s-space over M. If ( ) LMf →λτ :,  is the morphism given in the 

Example 3.2, then all the tensors are invariant. Given a s-space =λ  
{ }( )ieRON ,,,, ψ  and ,0≠T  then there exists ( )nGLa ∈  and Nz ∈  such that 

( ) ( ).zTazTat ≠⋅⋅  Therefore, if we consider the s-space { }( ),,,,, ieRON ′ψ=λ′  

where { } { } ,aee ii ⋅=′  T is not an invariant tensor by the morphism ( )., ON IdId  

Proposition 3.10. Let ( ) λ′→λτ :,f  be a morphism and T be a tensor on M. 

If there exists N∈k  such that the kth iteration by ( )τ,f  of T is an invariant 

tensor, then T is an invariant tensor. 

Proof. Let us denoted by jTλ  and jTλ′  the matrix representation of the jth 

iteration of T with respect to λ and ,λ′  respectively. ,CTCfTT ktkk ⋅⋅== λλ′λ D  

since the kth iteration is an invariant tensor. On the other hand, ( )fTT kk D1−λ′λ =  

( ) ( ) ( ) ,1122221 −λ−−λ−λ′−λ
⋅⋅=⋅⋅=⋅⋅== kktktktkt CTCCTCCfTCCTC D  

hence .CTCT t ⋅⋅= λλ  ~ 

Let T be a tensor on M and { }( )ieRON ,,,, ψ=λ  be a s-space over M.          

For each ,Nz ∈  consider the Lie subgroup of ( )nGL  defined by ( ) =λ zGT  

{ ( ) ( ) ( )}.: zTDzTDnGLD t λλ =⋅⋅∈  We call it the group of invariance of T at z. 

For simplicity of notation we write ( )zGT  instead of ( ).zGT
λ  A tensor T is invariant 

by ( )τ,f  if and only if ( ) ( )zGzC T=  for all .Nz ∈  
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If ( ) ( ),zz ′ψ=ψ  then we have that ( ) ( ).zGzG TT ′≃  This is because ( )zGTa ′ϕ :  

( ),zGT→  defined by ( ) ( ) ( ) ( )( ) ( )DaLAdaLDaLDa =⋅⋅=ϕ −1  for Oa ∈  such 

that ,azz ⋅=′  is a homomorphism of Lie groups. We called the subset =TF  

{( ) Nzgz ∈:,  and ( )}zGg T∈  of ( )nGLN ×  the invariance set of T. If there is a 

tensor T on M that admits a matrix representation of the type nnId ×⋅α  with ,0≠a  

then ( ).nONFT ×=  Let λ be the s-space of Example 2.4. If T is the tensor on             

LM such that ⎟
⎠

⎞
⎜
⎝

⎛
−

=
×

×λ
0

0

mm

mm
Id

Id
T  with .2

2nnm +=  Then ( )nGLLMFT ×=  

,mS×  where mS  denotes the symplectic group of .22 mm×R  In general, TF  does 

not has a manifold structure. The invariant tensor by a morphism ( ) λ′→λτ :,f  

are those that satisfy that ( )( ) TFzCz ∈,  for any z in N. 

Remark 3.11. Let ( ) λ′→λτ :,f  be a morphism with linking map C. If 

( )τ∈ ,fIT  and T is non-degenerated, then ( )( ) 1det ±=zC  for any z in N. 

4. Connections on s-spaces 

Given { }( )ieON ,,,, Rψ=λ  a s-space over M, for Nz ∈  let us denote by zV  

the vertical subspace at z induced by the projection ψ ( ).ker.e.i zzV ∗ψ=  Note that 

,dim skVz −=  where s is the dimension of the stabilizer zS  and .dim Ok =  We 

adapt the concept of connection in fibrations (see [13]) to s-spaces as follows: 

Definition 4.1. A connection on a s-space λ over M is ( )1,1  tensor φ on N that 

satisfies: 

(1) zzz VN →φ :  is a linear map. 

(2) φφ=φ ,2  is a projection to the vertical subspace. 

(3) (( ) ( )) ( ) ( )( ).. bRbR
zz aaaz φ=φ ∗∗  

Note that (3) has sense because ( ) ( ) .azza VVR
z ⋅∗ =  

We called to zzH φ= ker  the horizontal subspace at z. It is clear that 
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.zzz VHN ⊕=  Since (( ) ( ) ( )( )) ( ) ( ) ( )( ) ( ) ( ) ,00 ==φ=φφ ∗∗∗ zzz aaaza RbzRbzR  

( ) ( ) .azza HHR
z ⋅∗ =  As in the case of connections in principal fiber bundles we 

have that: There is a connection φ on λ if and only if there exists a differentiable 
distribution on ( )zHzN →  such that zzz VHN ⊕=  and ( ) ( ).zaaz HRH

z∗⋅ =  If 

we have a distribution with these properties, we define ( ) ( ) ,vbbz =φ  where =b  

.vh bb +  

Definition 4.2. Let { }( )ieRON ,,,, ψ=λ  be a s-space over M endowed with a 

connection φ. Let pMv ∈  and ( ).1 pz −ψ∈  We called horizontal lift of v at z to the 

unique vector z
h
z Nv ∈  such that ( ) vvh

zz =ψ∗  and .z
h
z Hv ∈  

Given a vector field X on N, let ( )XH  and ( )XV  the vector fields that satisfy 

that ( ) ( ) ( ) ( ) zz VzXVHzXH ∈∈ ,  and ( ) ( ) ( ) ( ) ( )zXVzXHzX +=  for all .Nz ∈  

We called ( )XH  and ( )XV  the horizontal and the vertical projections of X. Is easy 

to see that ( )XH  and ( )XV  are smooth vector fields if X is a smooth vector field. 

Proposition 4.3. Let X be a vector field on M. Then there exists a unique vector 

field hX  on N such that ( ) z
h HzX ∈  and ( ( )) ( )( )zXzX h

z ψ=ψ∗  for all .Nz ∈  

Proof. Let Mp ∈0  and Nz ∈0  such that ( ) .00 pz =ψ  As ψ is a submersion, 

there exist two charts ( )xU ,  and ( )yV ,  centered at 0p  and 0z  respectively that 

satisfy ( ) VU ⊆ψ  and ( ) ( )....,,...,,,...,, 111
1

nmnn aaaaaaxy =ψ +
−DD  If ( )pX  

( )∑ = ∂
∂ρ=

n
i pi

i
yp1  for ,Up ∈  let the vector field on V defined by ( ) =zXU

~  

( ) ( )∑ = ∂
∂ψρn

i zi

i
xz1 ,D  then we have that ( ) .~

ψ=ψ∗ DXX  For this reason, we       

can take an open covering { } IiiU ∈  of N such that for each iU  we have a field 

( )ii UX χ∈
~  that satisfies the previous property. Let { } Iii ∈ζ  be a unit partition 

subordinate to the covering { } .IiiU ∈  Consider the vector field ( )NX χ∈
~  given by 

∑∈
⋅ζ= Ii ii XX .~~  X~  satisfies that ( ( )) ( )( )zXzXz ψ=ψ∗

~  for all .Nz ∈  Finally, 
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( )XH ~  is the vector fields that we looked for. The uniqueness follows from the fact 

that ( )zzH MHzz ψ∗ →|ψ :  is an isomorphism. ~ 

Remark 4.4. The horizontal distribution zHz →  is trivial since { ( ) =zeh
i  

( )( ) }n
i

h
zi ze 1=  is a base of zH  for all Nz ∈  and { }n

i
h
ie 1=  are smooth vector fields. 

For any z in N let the function NOz →σ :  given by ( ) .azaz ⋅=σ  If ,o∈X  

let ( )( ) ( ) ( ) ,zz VXzXV
e

∈σ= ∗  where e is the unit element of O. If the group O acts 

effectively and 0≠X  is easy to see that V is not the null vector field. If O acts 
without fixed point, then ( ) ( ) 0≠zXV  for all Nz ∈  and .0≠X  Anyway if 

{ }kXX ...,,1  is a base of ,o  then ( ) ( ) ( ) ( ){ }zXVzXV k...,,1  spanned .zV  It is not 

difficult to see that ( ) .ker zez ST
e
=σ ∗  The 1-forms iθ  on N defined by  ( ) =ψ∗ bz  

( ) ( ) ( )∑ =
θ

n
i i

i zebz1  are a basis of the null space of the vertical subspace. 

Straightforward calculations show that the 1-forms iθ  satisfy that 

( )

( ) (( ) ( ))

( ) (( ) ( ))

( ) ( )

( ) ( )⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

θ

θ

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

θ

θ

∗

∗

bz

bz

bRaz

bRaz

aL
n

a
n

a

z

z

##

11

.

.

.  for all Nz ∈  and .Oa ∈  

Proposition 4.5. Let λ be a s-space over M such that exists a subspace V~  of o  

that satisfies ( )zSsskV dim~dim =−=  and { }0~
=zeSTV ∩  for all .Nz ∈  If λ 

admits a connection, then the tangent bundle of N is trivial. 

Proof. Let { }skXX −...,,1  be a base of ,~V  then the vertical vector fields ( )zVi  

( ) ( )iz X
e∗

σ=  with ski −= ...,,1  are a base of zV  for all .Nz ∈  Therefore the 

frame { }sk
h
n

h VVee −...,,,...,, 11  trivializes the tangent bundle of N. ~ 

Remark 4.6. With the same hypothesis of the Proposition above is easy to see 

that { ( ) ( ) ( ) ( )},...,,,...,, 11 zWzWzz skn −θθ  where iW  are the 1-forms defined by 

( ) ( ) ( ) ( )∑ −
=

=φ sk
i i

i
z zVbzWb 1 ,  is a basis of .∗zN  Note that it is the dual base of 

{ ( ) ( ) ( ) ( )}....,,,...,, 11 zVzVzeze sk
h
n

h
−  
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Remark 4.7. Let { }( )ieRON ,,,, ψ=λ  be a s-space over M that is also a 

principal fiber bundle. It is well known that every principal fiber bundle admits a 
smooth distribution that is transversal to the vertical distribution and is invariant by 
the action of the group O, see [4], so there exists a connection on λ. On the other 
hand, the group O acts on N without fixed point and the hypothesis of the 
Proposition 4.5 are satisfied. Therefore, the tangent bundle of N is trivial. 

Remark 4.8. Let G be a metric on N such that the maps aR  are isometries for 

any a in O. If O is compact and N is a closed manifold, then N admits a metric with 
this property (see [4]). Let zH  be the subspace of zN  orthogonal to .zV  It is easy to 

see that zHz →  induces a connection on λ. 

Remark 4.9. In the situation of Proposition 4.5, we can lift a metric G on M to a 

metric G~  on N in a natural way as follows: 

( ) ∑
−

=

∗ ⊗+ψ=
sk

i

ii WWGG
1

.~  

The projection ( ) ( )GMGN ,~,: →ψ  is a Riemannian submersion. The metric 

G~  can be very useful because using the fundamental equations of a Riemannian 
submersion [16] we can relate the curvature tensors of both metrics. If we chose 
appropriately the s-space over M, the calculation of the curvature tensor of ( )GM ,  

can be simplified. For example, In [6] (see also [5]), the curvature tensor of the 
tangent bundle of a Riemannian manifold endowed with certain class of metrics is 
computed using this technique. 

Remark 4.10. Let λ be a s-space over M and let ∇  be a linear connection on M 

with connection function K. Consider TMTNK i →:  defined by 

( ) (( ) ( ))beKbK
zi

i
z ∗=  

and let { ( ) }....,,1for0: nibKNbH i
zzz ==∈=  This smooth distribution is 

invariant by the group action but it is not necessary complementary to .zV  If zz NF :  

( ) ( ) ( )
��� ���� �


"
timesn

zzz MMM ψψψ ×××→  is given by ( ) ( ( ) ( ) ( )),...,,, 1 bKbKbbF n
zzz z∗ψ=  it 

is not difficult to see that the following facts are equivalent: 
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 (i) zF  is injective and ( ( ) ) .00 zz FImgM ∈×××ψ "  

(ii) .zzz VHN ⊕=  

So if λ satisfies (i) and (ii) we have that the distribution zHz →  induces a 

connection on λ. If G is a metric on M let the ( )2,0  symmetric tensor on N given by 

( ) ( ) ( ( ) ( )) ( ) ( ( ) ( ))∑
=

∗∗ +ψψ=
n

i

ii
i BKAKGzlBAGzcBAG zz

1
,,,,~  

where ilc,  are positive differentiable functions. If F is injective, G~  is a Riemannian 

metric. If λ is the s-space LM, 1=c  and 1=il  for ,...,,1 ni =  then G~  is the well 

know Sasaki-Mok metric (see [3] and [15]). 

5. Natural Tensor Fields 

5.1. Natural tensor fields on fibrations 

In this section, we will study certain class of tensors on a manifolds and 
fibrations. With a tensor T on a fibration we want to mean that T is a tensor on the 
space manifold of the fibration. If ( )F,, π=α P  is a fibration we will consider a 

particular class of s-spaces over P in order to take into account the structure of the 
fibration for the study of the tensors on it. 

Definition 5.1. Let ( )F,, π=α P  be a fibration on M and { }( )ieRON ,,,, ψ=λ  

be a s-space over P. Then we say that λ is a trivial s-space over α if .F×′= NN  

Example 5.2. The s-space ( ( ) ( ) { })i
ji VHRnGLnGLLM ,,,,, ψ×=λ  given in 

the Example 2.4 is a trivial s-space over the linear frame bundle of M. 

Definition 5.3. Let ( )F,, π=α P  be a fibration and { }( )ieRON ,,,, ψ×=λ F  

be a trivial s-space over α. Then we say that a tensor T on P is λ-natural with 

respect to α if ( ) ( )wTwzT λλ =,  (i.e. its matrix representation depends only of the 

parameter w of the fiber .)F  

Remark 5.4. Let M be a manifold endowed with a linear connection ∇  and a 
Riemannian metric g. If we consider the s-spaces ( ( ) ( ) ,,,, RnGLnGLLM ψ×=λ  
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{ })i
ji VH ,  (Example 2.4) and ( ( ) ( ) ( ) { }) ,,,,,, i

ji VHRnOnGLMO ψ×=λ′  where 

( )MO  is the manifold of orthonormal bases of ( ),, gM  the action of the 

orthonormal group and the projection are similar to that ones of λ. The λ-naturality 
and λ′ -naturality with respect to ( )( )nGLLM ,, π  agree with the concept of natural 

tensor with respect to the connection ∇  and with respect to the metric g given in [7]. 

Remark 5.5. There exist s-spaces such that the concept of λ-natural with 
respect to the fibration agree with the known cases of naturality. So, our definition 
also generalizes the notion of natural tensor on the tangent and the cotangent bundle 
of a Riemannian (see [2] and Example 6.2) and semi-Riemannian manifold (see [1]). 

5.2. Natural tensor fields on manifolds 

In view of the definition of λ-natural with respect to a fibration, it seems 
interesting to ask what it means to be λ-natural with respect to a manifold? A 
manifold M can be viewed as a trivial fibration { } { }( ).,, 1 apraMM ×=α  

Therefore, there is a one to one correspondence between the s-spaces over λ and the 
trivial s-spaces over α. A s-space { }( )ieRON ,,,, ψ=λ  over M induced the =λ′  

{ } { }( )ieROaN ,,,, ψ×  over α. A tensor T on M induce a tensor T ′  on { }.aM ×  

Then T ′  is λ′ -natural with respect to a α if and only if ( ) ( ),, aTazT ′=′ λ′λ′  hence 

T ′  is λ′ -natural with respect to a α if and only if Tλ  is a constant map. This 
suggests the following definition: 

Definition 5.6. Let λ be a s-space over M and T a tensor on M. Then we say that 

T is λ-natural if Tλ  is a constant map. 

Example 5.7. Let ( )gM ,  be a Riemannian manifold and let ( ( ) ,, π=λ MO  

( ) { })inO π⋅,,  be the s-space over M induced by the orthonormal frame bundles of 

M. Since ( ) aaL =  for all ( ),nOa ∈  T is λ-natural if and only if nnIdkT ×
λ = .  (T 

is a scalar multiple of the metric g). 

Example 5.8. Suppose that the map F of the Remark 4.10 is bijective. Let =β  

( { } ( ) { ( )( ) ( ( )) ( )})iv
zj

h
iN zezeidN ,,,1,, ⋅  be the s-space over the space manifold of λ, 

where { }1  is the trivial group, ( )⋅  is the trivial action, ( )( )hi ze  is the horizontal lift 
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of ( )zei  at z and ( ( )) ( )iv
zj ze  satisfies that (( ( )) ( ) ) ( ).zezeK j

iv
zj

i =  If G is a metric 

on M and G~  is the generalizes Sasaki-Mok metric on N then 

( )

[ ]

[ ]

[ ]

,

0

000

000

00

~

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

λ

λ

λ

β

G

G

G

zG

""

%

"

 

so G~  is β natural if and only if G is λ-natural. 

Remark 5.9. Let ( )F,, π=α p  be a fibration on M and λ a trivial s-space over 

λα.  is also a s-space over P. If a tensor T on P is λ-natural then T is λ-natural with 

respect to α. The converse implication not necessarily holds. Let ( ( ) ×=λ MO  

( ) ( ) { })i
ji VHRnOnGL ,,,,, ψ  over LM. There are more λ-natural tensors with 

respect to LM than constant maps, see [7]. 

Remark 5.10. Consider the s-space LM and let T be a LM-natural tensor on M. 

Let nnRA ×∈  such that .ATLM ≡  Since the base change morphism of LM is the 

identity of ( ) aAaAnGL t ⋅⋅=,  for all ( ),nGLa ∈  hence T must be the null tensor. 

Therefore, for a manifold M the null tensor is the only one that is λ-natural for all the 
s-spaces over M. 

Remark 5.11. If T is λ-natural, we have that ( ) ,Im TFLN ⊆×  where =TF  

GN ×  with G a subgroup of ( ).nGL  

Let { }( )ieRON ,,,, ψ=λ  be a s-space over M. Note that if T is λ-natural and 

( ) λ→λτ :,f  is a morphism of s-spaces then ( )., τ∈ fIT  On the other hand, if 

( )τ∈ ,fIT  for all ( )τ,f  automorphism of λ, then Tλ  is constant in each fiber of 

N. A necessary and sufficient condition for a tensor T to have a constant matrix 
representation in each fiber is that ( )aafIT τ∈ ,  for all ,Oa ∈  where ( )aaf τ,  is 

the morphism defined by ( ) ( )zRzf aa =  and ( ) .1 ababa ⋅=τ −  

Let us see some facts about the relationship between the natural tensors and the 
morphisms of s-spaces. The next two proposition follow from Proposition 3.8. 
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Proposition 5.12. Let λ and λ′  be two s-spaces over M and ( ) λ′→λτ :,f  be 

a morphism with linking map C. If T is a λ′ -natural tensor with ,nnAT ×λ′ ∈= R  

then T is λ-natural if and only if ( ( ) ) ( ) 11 −− ⋅⋅ zCAzC t  is a constant map. 

Proposition 5.13. Let ( ) λ′→λτ :,f  be a morphism of s-spaces with linking 

map C and T a tensor on M that is λ and λ′  natural. Let A and nnRB ×∈  such that 

AT =λ  and ,BT =λ′  then ( ) ( ) BzCAzC t =⋅⋅  for all .Nz ∈  

In particular, if ,λ′=λ  the image of the linking map of any automorphism has 

to be included in the group of invariance of all the λ-natural tensors. For example, if 

( ( ) ( ) { })i
ji VHRnGLnGLLM ,,,,, ψ×=λ  and ( )τ,f  is an automorphism of λ 

with linking map C, then ( ) ( ) ( )22 nnnn
IdzC

+×+
=  for all ( ).nGLLMz ×∈  

Proposition 5.14. Let { }( )ieRON ,,,, ψ=λ  and { }( )ieRON ′′′ψ′′=λ′ ,,,,  

be two s-spaces over ( ) λ′→λτ :,, fM  be a morphism of s-space, T a λ′ -natural 

tensor and let nnRA ×∈  such that .AT =λ′  Then fT Dλ′  comes from a tensor on 

M if and only if ( )( ) ( ) AaLAaL t =⋅⋅  for any a in O. 

Proof. Since T is λ′ -natural, ( )( ) ( ) AaLAaL t =′′⋅⋅′′  for all ,Oa ′∈′  then the 

Proposition follows from Proposition 3.5. ~ 

Remark 5.15. There are tensors on M that are not λ-natural for any s-space over 
M. Let T be a not null tensor on M, then there exists Mp ∈  such that ( ) pMpT :  

R→× pM  is not the null bilinear form. Let f be a differentiable function on M that 

satisfies ( ) 1=pf  and ( ) 0=qf  for .pq ≠  Consider the tensor T~  defined by 

( ) ( ) ( ).~
ξ⋅ξ=ξ TfT  If T~  is λ-natural, then AT ≡λ ~  and since ( ) ,0~

=qT  A must be 

the zero matrix. For ( ),1 pz −ψ∈′  we have that ( ) [ ( ) ( ( ) ( ))] =′′=′λ zezeqTzT ji ,~~  

( )[ ( ) ( ( ) ( ))] ,0≠′⋅′ zezepTpf ji  hence T is not λ-natural. 

Proposition 5.16. Let T be a symmetric tensor on M with index and constant 
rank. Then there is a s-space λ over M such that T is λ-natural. 

Proof. If ( ) ,0=Trank  then T is the null tensor and T is λ-natural for all λ. 
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Suppose that rank ( ) 1≥= rT  and index ( ) .srT −=  For every Mp ∈  there is a 

basis { }nrrss vvvvvv ...,,,...,,,...,, 111 ++  of pM  that diagonalizes the matrix of 

( ),pT  i.e. 

[ ( ) ( )] ( ) ( ) .

000

00

00

, srsrsr

ss

ji IId

Id

vvpT =

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−= −×−

×

 

Let { }( ),,,,, iON π⋅π=λ  where {( ) [ ( ) ( )] },,:, srji IvvpTLMvqN =∈=  

( )

( )

( )

;

00

00

00

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−=

rnGL

srO

sO

O  the action, the projection and the maps iπ  are 

similar to those of LM. Then .srIT =λ  ~ 

6. Subs-spaces 

Let { }( )ieRON ,,,, ψ=λ  and { }( )ieRON ′′′ψ′′=λ′ ,,,,  be s-spaces over M 

and N respectively and MMh ′→:  be a differentiable function. Let NNf ′→:  

be a differentiable function and OO ′→τ :  a group morphism. 

Definition 6.1. We said that ( )τ,f  is a morphism of s-spaces over h if ( )azf ⋅  

( ) ( )azf τ⋅=  for all Nz ∈  and Oa ∈  and .ψ=ψ′ DD hf  

This definition generalizes the concept of morphism of s-spaces. If λ and λ′  are 
s-spaces over M and ( ) λ′→λτ :,f  is a morphism of s-spaces, then ( )τ,f  is a 

morphism over .MId  

Example 6.2. Let ( )gM ,  be a Riemannian manifold and let ( ( ) ,nMO R×=λ  

( ) { })ieRnO ,,,ψ  be the s-space over TM where the projection is defined by 

( ) ,,,, 1 ⎟
⎠
⎞

⎜
⎝
⎛ ξ=ξψ ∑ =

n
i

i
iupup  ( )nO  acts on ( ) nMO R×  by ( ) ( ).,,, aaupupRa ⋅ξ⋅=  

For ,1 ni ≤≤  let ( ) ( ( ) ( ) ) ( )0,,, 1
,,,, iupi uKupe up

−
ξψ∗ ×π=ξ

ξψ
 and ( ) =ξ+ ,, upe in  

( ( ) ( ) ) ( ),,01
,,,, iup uKup

−
ξψ∗ ×π

ξψ
 where K is the connection map induced by the 
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Levi-Civita connection of g. Before we see an example of subs-space, let us make a 
brief comment. The tensors on TM that are λ naturals with respect to TM agree with 
the ones of Calvo-Keilhauer [2]. The Sasaki metric SG  and the Cheeger-Gromoll 

metric cgG  are λ-naturals with respect to TM. The matrix representation of the 

Sasaki metric and the Cheeger-Gromoll metric are ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ξ

×

×λ

nn

nn
S Id

Id
upG

0

0
,,  

and ( ) ( ( ) ) ,
1

10

0
,,

2 ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ξ⋅ξ+
ξ+

=ξ
×

×
λ t

nn

nn

cg Id

Id
upG  respectively. 

Consider the s-space ( ( ) ( ) { })ieRnOMO ′′−ψ′=λ′ ,,1,,  over the unitary 

tangent bundle MT1  of M, where ( ) ( )nupup ,, =ψ′  and the action of ( )1−nO  on 

( )MO  is given by ( ) .,...,,,, 1
1

1
1 11 ⎟

⎠
⎞

⎜
⎝
⎛=′ ∑ ∑−

=
−
= −

n
i

n
i n

i
ni

i
ia uauaupupR  The maps 

{ }ie′  are defined by ( ) ( ( ) ( ) ) ( )0,, 1
,, iupi uKupe up

−
ψ∗ ×π=′

ψ
 if ni ≤≤1  and by 

( ) ( ( ) ( ) ) ( )iupin uKupe up ,0, 1
,,

−
ψ∗+ ×π=′

ψ
 if .11 −≤≤ ni  Let ( ) ( )MOMOf →:  

nR×  and ( ) ( )nOnO →−τ 1:  defined by ( ) ( ),,,, vupupf =  where v is the nth 

vector of the canonic base of ,nR  and ( ) .
10
0
⎟
⎠
⎞

⎜
⎝
⎛=τ
a

a  Then ( ) λ′→λτ :,f  is a 

morphism of s-spaces over the inclusion map of MT1  in TM. 

Let M and M ′  be two manifolds of dimension n and n′  respectively. Let =λ  
{ }( )ieRON ,,,, ψ  and { }( )ieRON ′′′ψ′′=λ′ ,,,,  be two s-spaces over M and M ′  

and ( ) λ′→λτ :,f  a morphism of s-space over an inmersion .: MMh ′→  For 

every ,Nz ∈  ( ) ( ( ) )zMh z ψ∗ψ  is a subspace of dimension n of ( )( )zfMψ′  and it is 

generated by { ( ) ( )( ) ( ) ( )( )}....,,1 zehzeh nzz ψψ ∗∗  As ( )( ){ }zfei′  is a base of ( )( ),zfMψ′′  

for every Nz ∈  there exists a matrix ( ) nnzA ′×′∈ R  with rank ( )( ) nzA =  that 

satisfies 

{ ( ) ( )( ) ( ) ( )( ) } { ( )( ) ( )( )} ( )....,,0...,,0,...,, 11 zAzfezfezehzeh n

nn

nzz ⋅′′= ′

−′

∗∗ ψψ

��
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In the previous example, ( )
( ) ( )

.
00

0
,

1212
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−×− nnId
upA  If MM ′=  and h is 

the identity map then ( )τ,f  is a morphism of s-spaces and ( ) ( )zCzA 1−=  is C is 

the linking map of ( )., τf  In this situation, we have the following definition: 

Definition 6.3. λ is a subs-space of λ′  if there exists a morphism of s-spaces 
( )τ,f  over an injective inmersion MMh ′→:  such that f is an inmersion and the 

map A induced by ( )τ,f  is constant. In this case, we said that λ is a subs-space of 

λ′  with morphism ( )τ,f  over h. A s-space { }( )ieRON ,,,, ψ=λ  is included in 

{ }( )ieRON ′′′ψ′′=λ′ ,,,,  if .NN ′⊆  

Example 6.4. Let M be a parallelizable manifold, V a vectorial space and V ′  a 
subspace of V. Let ( )VGL  be the group of linear isomorphisms of V and let 

( )VVGL ′,  be the subgroup of linear isomorphisms of V with the property that 

( ) .VVT ′=′  Consider the s-space ( ( ) { })if eRVGLprVM ,,,, 1×=λ  over M, where 

the action is defined by ( ) ( )( )zfpzpR f ,, =  for ( ) VMzp ×∈,  and ( ),VGLf ∈  

and ,1pree ii D=  where { }nee ...,,1  are the vector fields that trivialized the tangent 

bundle of M. If ( ( ) { }),,,,,, 1 if eRVVGLprVM ′′×=λ′  then λ′  is a subs-space of 

λ. 

Proposition 6.5. Let { }( )ieRON ,,,, ψ=λ  and { }( )ieRON ′′′ψ′′=λ′ ,,,,  be 

two s-spaces over M such that λ is a subs-space of λ′  with morphism ( )τ,f  over 

the identity map of M. If a tensor T on M is λ′ -natural then T is λ-natural. 

Proof.  

[ ( )] ( )( ) ( ( ) ( ))zezezTzT jiij ,ψ=λ  

( )( )( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ′′ψ′= ∑ ∑= =

n

l

n

s
s
js

l
il AzeAzezfT

1 1
,  

[ ]∑ λ′=
n

ls ij
s
j

l
i TAA ,.  

then Tλ  is a constant map. ~ 
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Remark 6.6. The converse statement does not holds in general. Let ( )gM ,  be 

a Riemannian manifold and ( )MO  be the s-space induced by the principal bundle of 

orthonormal frames. If ( ) ( ) LMMOi MO →:  and ( ) ( ) ( )nGLnOi nO →:  are the 

respective inclusion functions, then ( )MO  is a subs-space of LM with morphism 

( ( ) ( ) )nOMO ii ,  over the identity map of M. We known that there are ( )MO -natural 

tensors that are not LM-natural. 

Let T be a tensor on M and let nnLM RLMT ×→:  be the matrix map induced 
by the s-space LM. Given a s-space { }( )ieRON ,,,, ψ=λ  over M we have a 

morphism ( ) LML →λΓ :,  (see Example 3.2). It is clear that ,Γ=λ DTT LM  thus if 

T is λ-natural then there exists a matrix nnA ×∈R  such that ( ) ( ).1 ATImg LM −⊆Γ  

Proposition 6.7. Let T be a tensor on M. There exists λ a s-space over M such 

that T is λ-natural if and only if there exist a matrix nnRA ×∈  and a subs-space of 

LM included in ( ) ( ).1 ATLM −  

Proof. Suppose that T is λ-natural { }( )( )ieRON ,,,, ψ=λ  and let nnRA ×∈  

such that .AT =λ  Let ( ( ) ( ) { }),,,,, iROLN π′πΓ=λ′  where R′π,  and { }iπ  are 

induced by LM. The map ( ) MN →Γπ :  is a submersion. Since ( )( ) ( )NN ψ=Γπ  

,M=  π is surjective. Let Mp ∈  and ( ).1 pz −ψ∈  Then ( )( ) .pz =Γπ  Given 

pMv ∈  there exists zNw ∈  such that ( ) .vwz =ψ∗  Let α be a curve on N that 

satisfies ( ) z=α 0  and ( ) .0 w=α�  Then for ( ) ( )( )tt αΓ=β  we have that ( ) ( )zΓ=β 0  

and ( ) ( ( )) ( )( )( ) ( ) ,0 0 vwtD zz =ψ=βπ|=βπ ∗∗Γ
�  so ( ) ( ) pz MNz →π Γ∗Γ :  is surjective. 

On the other hand, it is clear that ( )OL  acts transitively on ( ),NΓ  so λ′  is a s-space 

and it is a subs-space of LM with morphism ( ( ) ( ) )OLN ii ,Γ  over the identity map of 

M. 

Conversely, suppose that there exists { }( )ieRON ,,, ψ=λ  a s-space over M 

that is also a subs-space of LM with morphism ( )τ,f  over the identity map,                

and suppose that ( ) ( ) ( )ATNf LM 1−⊆  for a matrix .nnRA ×∈  Since ( ){ } =zei  

( )( ){ } Bzfi ⋅π  for ( ),nGLB ∈  this implies that [ ( )] [ ( )( ) ( ( ) ( ))] =ψ=λ zezezTzT ji ,  

[ ( )( ) ( ( )( ) ( ))( )] ., BABBzfzfzTB t
ji

t ⋅⋅=⋅ππψ⋅  ~ 
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7. Atlas of s-spaces 

Definition 7.1. Let M be a manifold and let { ( { })} Iiliiiii eRON ∈ψ=λ ,,,,:A  

be a collection of s-spaces over M. Then the collection A  is called an Atlas of                
s-spaces if for each pair ( ) IIji ×∈,  there is a morphism of s-spaces 

( ) jiijijf λ→λτ :,  such that jiij NNf →:  is a diffeomorphism. 

We said that the s-spaces λ and β are compatible if there exists a morphism 
( ) β→λτ βλλβ :, ,f  and ( ) λ→βτ λββλ :, ,f  such that λβf  and βλf  are 

diffeomorphisms. Hence, an atlas is a set of compatible s-spaces over M. We say that 
A  is a maximal atlas if BA ⊆  implies that .BA =  In other words, if A  is a      

s-space compatible with the s-spaces of A  then .A∈λ  If λ is a s-space over M let 
us notate with λ=A  the maximal atlas generated by λ. Let A  be a maximal 

atlas. Then it follows from the definition that λ=A  for every .A∈λ  Note that 

there are different maximal atlases over a manifold. Consider a metric on M, then 
LM  and ( )MO  are maximal s-spaces but they are different because LM and 

( )MO  are not compatible. 

Let λ be a s-space over M, then { }λ=A  is an atlas. Therefore, the concept of 

atlas is a generalization of the notion of s-space. 

Example 7.2. Let { }( )ieRON ,,,, ψ=λ  be a s-space over M and let NA :  

( )nGL→  be a differentiable function. Consider ( { }),,,,, A
lA eRON ψ=λ  where 

( ) ( ) ( )∑ =
=

n
i

i
li

A
l zAzeze 1 .  The collection { } ( )MAA FA ∈λ=  is an atlas of s-spaces. 

Example 7.3. Let M be a parallelizable manifold and { }n
iiH 1=  the vector fields 

that trivialize the tangent bundle of M. Let ( )gN ,  be a Riemannian manifold such 

that its isometry group ( )gNI ,  acts transitively on N. Let ( ) ( ,, 1, prNMgN ×=λ  

( ) { }),,, 1, prHRI ifgN D  where the action of ( )gNI ,  on NM ×  is given by 

( ) ( )( ).,, pfzpzR f =  If ( )gN ′′,  is isometric to ( ),, gN  then ( )gN ,λ  is compatible 

with ( )., gN ′′λ  If N ′  is not diffeomorphic to N, then ( )gN ,λ  and ( )gN ′′λ ,  are 

different atlases. 

Definition 7.4. Let A  and B  be two atlases of s-spaces over M and F a 
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collection of morphisms of s-spaces from a s-space of A  to a s-space of .B  Then F 
will be called a morphism between the atlas A  and B  if for every A∈λ  and 

B∈β  there exists ( ) Ff ∈τ,  such that ( ) .:, β→λτf  

Remark 7.5. Let A  and B  be two atlas over M, ,0 A∈λ  B∈β0  and 

( ) .:, 0000 β→λτf  Consider { } ,, ,00 0000 BA ∈β∈λλλββλλββ τττ= DDDD fffF  

where ( ) β→βτ ββββ 0:, 00f  and ( ) 0:, 00 λ→λτλλλλf  are the morphisms that 

show the compatibility between β and 0β  and between λ and 0λ  respectively. Then 

F is morphism of atlases between A  and .B  

Remark 7.6. If λ is a s-space over M we have a canonical morphism ( ) :, λλΓ L  

LM→λ  (see Example 3.2), hence for every s-space λ we have a morphism 
between the atlases λ  and .LM  But this property do not characterize .LM  In 

other words, if a s-space β satisfies that for every λ there exists a morphism 
( ) ββ→λτλλ ,:,f  is not necessarily compatible with LM. 

 

Consider a parallelizable Riemannian manifold ( )., gM  Let { }n
iiH 1=  be 

orthonormal fields that trivialized the tangent bundle of M. If { }( )ieRON ,,,, ψ=λ  

is a s-space over M, let ( ) ( )MOf →λτλλ :,  be a morphism defined by ( ) =zf  

( ) ( )( ) ( )( )( )zHzHz n ψψψ ...,,, 1  and ( ) .nnIda ×=τ  Therefore, for every maximal 

atlas A  there is a morphism between it and ( ),MO  but ( )MO  is not compatible 

with LM. 

 

There are more atlases with this property. If ( )gM ,  is an oriented manifold, the 

maximal atlas generated by the s-space induced by the principal fiber bundles of 
orthonormal oriented bases ( )MSL  have this property. The atlas ( { } ,,1,, 1RIdM M  

{ }) ,iH  where 1R  is the trivial action, is another example. 
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Definition 7.7. Let A  be an atlas of s-spaces over M. Then a tensor T on M will 
be called A -natural if T is λ-natural for all .A∈λ  

Note that the concept of A -naturality generalized the notion of λ-naturality. If 
we consider the atlas { },λ=A  then T is A -natural if and only if T is λ-natural. 

Example 7.8. Let λ be a s-space over M and consider the subatlas of the atlas 
given in the Example 7.2 defined by { } ( ).nGLAA ∈λ=A  T is A -natural if and only 

if T is λ-natural. Let T be a λ-natural tensor on M and { } ( )., TGNAA FA ∈λ=′  Then T 

is A′ -natural and it has the same matrix representation in all the s-spaces of the 
atlas. 

Remark 7.9. If A  is a maximal atlas then the unique A -natural tensor is the 
null tensor. Let { }( ) A∈ψ=λ ieRON ,,,,  and R→Nf :  be a differentiable 

function such that ( ) 0≠zf  for all Nz ∈  and 2f  is not constant. If ( ,, ψ=λ′ N  

{ }),,, iefRO ⋅  then we have that ,A∈λ′  but the null tensor is the only one that is           

λ-natural and λ′ -natural at the same time. 

Definition 7.10. Let A  be an atlas of s-spaces over M and T a tensor on M. 
Then T is called A -weak natural if there exists A∈λ  such that T is λ-natural. 

If { }λ=A  or A  is the atlas of Example 7.8, the concept of A -natural and 

A -weak natural coincide. 

For study the naturality of tensors on a fibration α it will be useful consider the 
atlases A  such that all its s-spaces are trivial over α. An atlas with this property will 
be called a trivial atlas over α. The following definition is a generalization of the 
concept of naturality with respect to a fibration: 

Definition 7.11. Let A  be a trivial atlas over a fibration ( )F,, π=α P  and T a 

tensor on P. Then T is A -natural with respect to α if T is λ-natural with respect to α 
for all .A∈λ  

Example 7.12. Let ( )⋅π=α ,,, GP  be a principal fiber bundle on ( )gM ,  

endowed with a connection ω. For every { }kWWW ...,,1=  basis of g  let =λW  

( { }),,,,, W
ieROM ψ  where {( ) uPpbupN ,:,, ∈=  is an orthonormal base of 
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( ) },, GbM p ∈π  ( ) ,,, bqbuq ⋅=ψ  ( ) GnOO ×=  and the action R is defined by 

( )( ) ( ).,,,, 1
, bauhqabuqR ah

−=  For ,1 ni ≤≤  ( )gupeW
i ,,  is the horizontal lift 

of iu  with respect to ω at gp.  and for ,1 kj ≤≤  ( )gupe jn ,,+  is the only one 

vertical vector on gpP .  such that ( ) ( ( )) .,, jjn Wgupep =ω +  { }
gLWW ∈λ=A  is a 

trivial atlas over α. An easy computation shows that the set of A -natural tensors 
with respect to α is the set of tensors T whose matrix representation with respect to 

some Wλ  is ( )
( )

( )
,

0

0.
,, ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

×λ

aB

Idaf
auqT

nn
W  where R→Gf :  and GB :  

kk×→ R  are differentiable functions. 

As above, if A  is a maximal trivial atlas over α the only A -natural tensor with 
respect to α is the null tensor. So we have a weak definition of naturality for this 
case too. We say that T is A -weak natural with respect to α if T is λ-natural with 
respect to α for some .A∈λ  

8. Examples 

We conclude showing some examples of s-spaces: 

8.1. Lie groups 

Let G be a Lie group of dimension k. We denote with e the unit element of G. If 

{ }nvvv ...,,1=  is a base of ,g  let v
iH  be the unique left invariant vector field on G 

such that ( ) .i
v
i veH =  

Example 8.1. Given v a basis of ,g  let ( { })v
i

v eRGN ,,,, ψ=λ  be the s-space 

over G defined by ,GGN ×=  ( ) ,., hghg =ψ  ( ) ( )haaghgRa ⋅= −1,.,  and 

( ) ( )hgHhge v
i

v
i ⋅=,  for .1 ki ≤≤  Since ( ) ( ),,, hgehgRe v

ia
v
i =D  the base 

change morphism vL  is equal to the identity matrix of .kkR ×  Therefore, if T is a 
tensor on G, then it satisfies that 

.TRT
vv

a
λλ =D  

For this reason, all constant matricial maps come from a tensor and the vλ -natural 

tensors are in a one to one relation with the matrices of .kk×R  



A New Formalism for the Study of Natural Tensor … 175 

Suppose that T
vλ  depends only of one parameter, for example ( ) =λ hgT

v
,  

( ).hT
vλ  Since [ ( )] [ ( )] ( ) ( ( ),,, 1 hgHhgThhhgThgT v

iijij
vv

′′=′′′=′′ −λλ  ( )) =′hgH v
j  

[ ( )] [ ( )] ,,, ijij hgThgT
vv λλ =′  T is vλ -natural. Therefore, T is vλ -natural if and only 

if T is T
vλ  depends of one parameter. The left invariant metrics are tensors of this 

type. 

Let v′  be another basis of g  and consider .v′λ  If ( )kGLa vv ∈′  is the matrix 

that satisfies ,vav vv ′=′  then we have that ( ) ( ) vv
v
i

v
i ahgehge ′
′ ⋅= ,,  and =

′λ T
v

 

( ) vv
t

vv aTa
v

′
λ

′ ⋅⋅  for a tensor T on M. Thus the set of vλ -natural tensors is 

independent of the choice of the basis v. We can observe that ( )GGG IdId ,×  is a 

morphism of s-spaces with linking map equals ,vva ′  so ( )GGG IdIdIT ,×
∈  if and 

only if ( )., hgGa Tvv ∈′  

Example 8.2. Let { }{ }ieRON ,,,, ψ=λ  be the s-space over G defined by 

{( ) GgvgLGN ∈=×= :,g  and v is a basis of },g  ( ) ,...,,, 1 gvvg n =ψ  =O  

( ),nGL  ( ) ( )avgvgR ⋅=ξ ,,  and ( ) ( )., gHvge v
ii =  Since { } { } ,ξ⋅=ξ ii eRe D  

ξ⋅⋅ξ= λ
ξ

λ TRT tD  for all ( ).kGL∈ξ  Therefore, the null vector is only one that 

is λ-natural. 

The left invariant metrics on G are not λ-natural but for a metric T on G we have 

that T is a left invariant metric if and only if ( ) ( )., vTvgT λλ =  If T is a left invariant 

metric, then 

[ ( )] ( ) (( ) ( ) ( ) ( ))jgigij vLvLgTvgT
ee ∗∗

λ = ,,  

( ) (( ) (( ) ( )) ( ) (( ) ( )))iggigg vLLvLLeT
egeg ∗∗−∗∗−= 11 ,  

( ) ( ) [ ( )] .,, ijji veTvveT λ==  

Suppose that the matrix representation induced by T depends only of the 
parameter of .g  Let Ghg ∈,  and ,, GTvw g∈  we have to see that ( ) ( )wvgT ,  
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( ) (( ) ( ) ( ) ( ))., wLvLhgT
gg hh ∗∗=  Let { }nuu ...,,1  be a basis of .g  If =v  

( ) ( )∑ = ∗
n
i igi uLv

e1  and ( ) ( )∑ = ∗=
n
i igi uLww

e1 .  Then ( ) ( ) ( ) ( )∑ = ∗∗ =
n
i ihgih uLvvL

eg 1  

and ( ) ( ) ( ) ( )∑ = ∗∗ =
n
i ihgih uLwwL

eg 1 .  Hence, 

( ) (( ) ( ) ( ) ( )) ( ) ( ) ( ) ( ).,,...,,,
1

1 wvgT

w

w

uhgTvvwLvLhgT

n

nhh gg
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅⋅= λ
∗∗ #  

Let T be a tensor such that ( )vgT ,λ  depends only of v. We know that 

( ) ( ) ( ) ξ⋅⋅ξ=ξ⋅ λλ veTvgT t ,,  for all ( ).kGL∈ξ  Fixed gLv ∈0  and let gLF :  

( )kGL→  defined by ( ).0 vFvv ⋅=  Then ( ) ( )( ) ( ) ( )vFveTvFvgT t ⋅⋅= λλ
0,,  for 

all ( ) ., gLGvg ×∈  Therefore, Tλ  depends only of the parameter of gL  if and 

only if there exists kkRA ×∈  and a differentiable function ( ),: kGLLF →g  that 

satisfies ( ) ( ) ,ξ⋅=ξ⋅ wFwF  such that ( ) ( )( ) ( )., wFAwFwgT t ⋅⋅=λ  

Example 8.3. Fixed gLv ∈  and consider ( ( ) ( ) { }),,,,, v
i

v eRkOkOG ψ×=λ  

where ( ) ,, gg =ξψ  ( ) ( ),,, aggRa ξ=ξ  ( ) ( ) λ⋅=ξ ξ gHge v
i

v
i

.,  is a s-space over 

G with base change morphism ( ).kOIdL =  If T is a tensor of M, then aRT Dλ  

.aTat ⋅⋅= λ  Therefore, T is λ-natural if and only if ( ) ( ) kkIdgfgT ×
λ ⋅=ξ,  with 

R→Gf :  a differentiable function. Is easy to see that ( )( ) ( )taagT ξ=⋅ξλ ,  

( ) ( ),, aIdgT ξ⋅⋅ λ  hence the matrix representation of T depends only of the 

parameter of ( )kO  if and only if ( ) ξ⋅⋅ξ=ξλ AgT t,  with .nnA ×∈ R  

8.2. Bundle metrics 

Let ( )⋅π=α ,,, GP  be a principal fiber bundle over a Riemannian manifold 

( )gM ,  endowed with a connection ω. Let us denote with ( )gadM  the set of 

metrics on g  that are invariant by the adjoint map ad. Consider the metric on P 

defined by 

( ) ( ) ( )( ) ( ( ) ( )) ( ) ( ) ( ) ( )( )YXplYXpgYXph pp ωωπ+πππ= ∗∗ ,,, D  (1) 

where ( ).: ad gM→Ml  If G is compact, ( ) ,ad ∅≠gM  and if g  is also a simple 
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algebra, then essentially there is only one conformal class of positive defined ad-
invariant metric [14]. If l is a constant function, h is called a bundle metric. It is easy 
to see that ( ) ( )gMhP ,,: →π  is a Riemannian submersion. 

Let 0l  be an ad-invariant metric on .g  In the following we are going to consider 

the s-space { }( )ieRON ,,,, ψ=λ  over P given by {( ) uPqgvuqN ,:,,, ∈=  is 

an orthonormal base of ( ) vM q ,π  is an orthonormal base of g  with respect to 0l  

and },Gg ∈  ( ) ( ) ( ) GkOnOOgqgvuq ××=⋅=ψ ,,,,  and the action is defined 

by ( )( ) ( ).,,,,,, 1
,, ghvbuaqhgvuqR hba

−=  For ,1 ni ≤≤  ( )gvuqei ,,,  is the 

horizontal lift with respect to ω of iu  at gq ⋅  and, for ( )gvuqekj jn ,,,,1 +≤≤  is 

the unique vertical vector on gpP ⋅  such that ( ) ( ( )) .,,, jjn vgvuqegq =⋅ω +  λ is a 

trivial s-space over α. 

Let G be a compact Lie group with g  a simple algebra and h a metric on P of 

the type of (1). Then we have the following proposition: 

Proposition 8.4. h is λ-natural with respect to α if and only if h is a bundle 
metric. 

Proof. ( )gvuqh ,,,λ  is the matrix of ( )gqh ⋅  with respect to the base 

{ ( ) ( )}.,,,,,,, gvuqegvuqe ini +  For ,,1 nji ≤≤  we have that: 

( ) ( ( ) ( )) ( ) .0,,,,,,,,. ijjiji uuggvuqegvuqegqh δ=+=  

For ni ≤≤1  and :1 kj ≤≤  

( ) ( ( ) ( ))gvuqegvuqeqgh jni ,,,,,,, +  

( ) ( ( ) ( ))gvuqegvuqeqgh ijn ,,,,,,,0 +==  

and for :,1 kji ≤≤  

( ) ( ( ) ( )) ( ) ( ) ( )( ) ,,,,,,,,, ijjijnin qfvvqglgvuqegvuqegqh δ⋅π=π=⋅ ++ D  

because g  has essentially one ad-invariant metric. Since 

( )
( )( )

,
.0

0
,,, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

π
=

×

×λ

kk

nn

Idqf

Id
gvuqh  

h is λ-natural with respect to α if and only if f is a constant map, that is to say that h 
is a bundle metric. ~ 
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Remark 8.5. If g  has different ad-invariant metrics and h is a metric of the 

type of (1), then ( ) ( )knknNh +×+λ → R:  only depends of the parameter of G if 

0ll ⋅δ=  with δ a constant. In general, the metrics of type (1) that are λ-natural with 

respect to α are the bundle metrics induced by the ad-invariant metric .0l  

Remark 8.6. The s-space λ depends of 0l  and ω. Let ω′  be another connection 

on α and consider the s-space λ′  induced by it. The difference between ωλ  and ω′λ  
are the maps TPNei →:  and .: TPNei →′  Let 

( )
( ) ( )

( ) ( )
( )knGL

gvupagvupa

gvupagvupa
gvupA +∈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

,,,,,,

,,,,,,
,,,

34

21
 

be the matricial map that satisfies { } { } ,.,, Aeeee jnijni ++ =′′  where ( )gvupa ,,,1  

,nn×∈ R  ( ) ,,,,2
kngvupa ×∈ R  ( ) kkgvupa ×∈ R,,,3  and ( ) .,,,4

nkgvupa ×∈ R  

Since ( ) ( ),,,,,,, gvupegvupe jnjn ++ ′=  we have that 02 ≡a  and .3 kkIda ×≡  

If T is a tensor, then 

( )
( ) ( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

×

λω′

kk

tt

Id

gvupagvupa
gvupT

0

,,,,,,
,,, 41  

 ( )
( )

( )
.

,,,

0,,,
,,,

4

1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅

×

λω

kkIdgvupa

gvupa
gvupT  

Suppose as in the proposition above that there is essentially one ad-invariant 
metric. Then if h is a metric of type (1) we have that 

( )gvuph ,,,
ω′λ  

( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )( ) ⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅ππ

⋅π+

⋅π

=

×kk

t

tt

Idpfgvupapf

gvupagvupapf

gvupapfgvupagvupa

,,,

,,,,,,

,,,,,,,,,

4

44

411

 

Therefore, if the connections satisfy that ( )nOa ∈1  and 4a  is a constant map, 

then h is λ-natural with respect to α if and only if h is λ′ -natural with respect to α. 
In this situation h is a bundle metric. 
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