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Abstract

The 195,747,435 vertex graph studied here is the point-line collinearity
graph of a geometry for the second largest Fischer group Fi23. In this
paper and [7] a detailed description of this graph is obtained.

1 Introduction

It is the aim of this paper and [6] to lay bare the bones of G, the point-line
collinearity graph of Γ where Γ is a geometry associated with the second
largest Fischer group Fi23. The geometry Γ has rank 4 and is closely related
to the transpositions of Fi23. Diagrammatically we may describe Γ as follows.
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The groups listed at the top are the stabilizers in Fi23 of the various objects
in Γ – we have also given a description of each type of object in “transposition
language” (see [1;page 177] for more on this). The geometric names above

1

The groups listed at the top are the stabilizers in Fi23 of the various
objects in Γ – we have also given a description of each type of object
in “transposition language” (see [1; p. 177] for more on this). The
geometric names above are those we will use and are just meant to be
names with no projective geometry connotations whatsoever.

Our anatomical description of G is given in terms of the geometry
Γ. Consequently the residue of a point – intimately connected with the
Steiner system S(23, 7, 4) – is to the forefront in all that follows. Also
very much in evidence is the residue of a hyperplane – we rely upon
[5] for information about this geometry. A detailed discussion of Γ as
it relates to G will be given in Section 2 though we remark here that
Fi23 acts flag transitively on Γ and so, in particular, is a subgroup of
AutG acting transitively on the 195,747,435 vertices of G. Also we note
that G may be viewed as the graph where vertices are the bases (23
pair-wise commuting transpositions) with two vertices joined whenever
they intersect in a heptad (of transpositions).

We now state our main results on the structure of G. Our first theo-
rem is a broad-brush description of G. This also appears in [4; 2.21(iv)]
and was obtained using extensive machine calculations. The results
given in the present paper and [6] do not rely upon any machine calcu-
lations and moreover, Theorems 2-16 paint a much more detailed picture
of the structure of G. This detailed data on the point distribution of line
orbits is deployed in the study [7] of the point-line collinearity graph of
the maximal 2-local geometry for Fi′24, the largest simple Fischer group.
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From now on we put G = Fi23.

Theorem 1. Let a be a fixed point of G. Then Ga has 16 orbits
∆i

j(a) upon the points of G whose sizes and collapsed adjacencies are
given in Table 1 and Figure 1.

∆i
j(a) |∆i

j(a)|
∆1(a) 2.11.23
∆1

2(a) 24.7.11.23
∆2

2(a) 26.7.11.23
∆1

3(a) 29.11.23
∆2

3(a) 28.3.5.11.23

∆i
j(a) |∆i

j(a)|
∆3

3(a) 210.7.11.23
∆4

3(a) 210.23
∆5

3(a) 212.3.7.11.23
∆6

3(a) 29.5.7.11.23
∆1

4(a) 213.3.5.11.23

∆i
j(a) |∆i

j(a)|
∆2

4(a) 212.11.23
∆3

4(a) 212.5.7.11.23
∆4

4(a) 216.3.7.23
∆5

4(a) 215.11.23
∆6

4(a) 215.7.11.23

Table 1.

The finer structure of G, from which the information in Theorem 1 is
derived, is the subject of Theorems 2-16. In each of these results a is a
fixed point of G and for x ∈ ∆i

j(a) we give the point distribution for each
representative line l in a Gax-orbit on Γ1(x). That is we state in which
Ga-orbit each of the three points incident with l belong. So, for example,
in Theorem 4 of the three points incident with l ∈ α1,1(x, x+b, X(x, a))
one is in ∆2

2(a), one is in ∆3
3(a) and one is in ∆2

3(a) while for l ∈
α3,1(x, x + b, X(x, a)) one point is in ∆2

2(a) and the other two in ∆3
3(a).

The notation and conventions relating to the descriptions of Gax-
orbits on Γ1(x), as well as definitions of the ∆i

j(a), are to be found in
Section 2.

Theorem 2. Let x ∈ ∆1(a). Then Gax ∼ 21024A7(with G∗x
ax ∼

24A7) has 3 orbits on Γ1(x) with point distribution as follows:

ORBIT SIZE POINT DISTRIBUTION
{x + a} 1 {a}2∆1

α1(x, x + a) 112 ∆12∆2
2

α3(x, x + a) 140 ∆12∆1
2
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Figure 1.

Theorem 3. Let x ∈ ∆1
2(a). Then Gax ∼ 2724S53 (with G∗x

ax ∼
24S53) has 4 orbits on Γ1(x) with point distribution as follows:

ORBIT SIZE POINT DISTRIBUTION
α3(x, T (x, a)) 5 ∆12∆1

2

α2(x, T (x, a)) 48 ∆2
12∆1

3

α0(x, T (x, a)) 80 ∆1
22∆6

3

α1(x, T (x, a)) 120 ∆1
22∆2

3

For x in either of the Ga-orbits ∆2
2(a), ∆2

3(a), ∆3
3(a), ∆4

3(a) there is
a unique hyperplane which is incident with both a and x. We denote
this unique hyperplane by X(a, x) (when viewed as being in Γa) and
X(x, a) (when viewed as being in Γx) – note that X(a, x) and X(x, a)
both denote the same hyperplane of Γ.
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Theorem 4. Let x ∈ ∆2
2(a). Then Gax ∼ 2524A6 (with G∗x

ax ∼
24A6) has 5 orbits on Γ1(x) with point distribution as follows:

ORBIT SIZE POINT DISTRIBUTION
{x + b} 1 ∆12∆2

2

α1,1(x, x + b, X(x, a)) 16 ∆2
2∆

3
3∆

4
3

α3,1(x, x + b, X(x, a)) 60 ∆2
22∆2

3

α3,0(x, x + b, X(x, a)) 80 ∆2
22∆6

3

α1,0(x, x + b, X(x, a)) 96 ∆2
22∆5

3

Theorem 5. Let x ∈ ∆1
3(a). Then Gax ∼ 22L3(4)2 (with G∗x

ax ∼
L3(4)2) has 3 orbits on Γ1(x) with point distribution as follows:

ORBIT SIZE POINT DISTRIBUTION
α2(x, D(x, a)) 21 ∆1

22∆1
3

α1(x,D(x, a)) 112 ∆1
32∆3

3

α0(x,D(x, a)) 120 ∆1
32∆1

4

Theorem 6. Let x ∈ ∆2
3(a). Then Gax ∼ [27]L3(2) (with G∗x

ax ∼
23L3(2)) has 6 orbits on Γ1(x) with point distribution as follows:

ORBIT SIZE POINT DISTRIBUTION
α0,1(x, O(x, a), X(x, a)) 7 ∆1

22∆2
3

α0,0(x, O(x, a), X(x, a)) 8 ∆2
32∆2

4

α4,1(x, O(x, a), X(x, a)) 14 ∆2
22∆2

3

α2,1(x, O(x, a), X(x, a)) 56 ∆2
32∆3

3

α4,0(x, O(x, a), X(x, a)) 56 ∆2
32∆3

4

α2,0(x, O(x, a), X(x, a)) 112 ∆2
32∆1

4

Theorem 7. Let x ∈ ∆3
3(a). Then Gax ∼ 224A6 (with G∗x

ax ∼ 24A6)
has 5 orbits on Γ1(x) with point distribution as follows:
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ORBIT SIZE POINT DISTRIBUTION
{x + b} 1 ∆2

2∆
3
3∆

4
3

α1,1(x, x + b, X(x, a)) 16 ∆1
32∆3

3

α3,1(x, x + b, X(x, a)) 60 ∆2
32∆3

3

α3,0(x, x + b, X(x, a)) 80 ∆3
32∆6

4

α1,0(x, x + b, X(x, a)) 96 ∆3
32∆4

4

Theorem 8. Let x ∈ ∆4
3(a). Then Gax ∼ 2M22 (with G∗x

ax ∼ M22)
has 2 orbits on Γ1(x) with point distribution as follows:

ORBIT SIZE POINT DISTRIBUTION
α1(x,X(x, a)) 77 ∆2

2∆
3
3∆

4
3

α0(x,X(x, a)) 176 ∆4
32∆5

4

Theorem 9. Let x ∈ ∆5
3(a). Then Gax ∼ 24A5 (with G∗x

ax ∼ 24A5)
has 6 orbits on Γ1(x) with point distribution as follows:

ORBIT SIZE POINT DISTRIBUTION
{x + b} 1 ∆2

22∆5
3

α1(x, x + b, +) 16 ∆5
3∆

4
4∆

5
4

α
(1)
3 (x, x + b,−) 40 ∆5

32∆3
4

α
(2)
3 (x, x + b,−) 40 ∆5

3∆
5
4∆

6
4

α3(x, x + b, +) 60 ∆5
3∆

1
4∆

3
4

α1(x, x + b,−) 96 2∆5
3∆

6
4

Theorem 10. Let x ∈ ∆6
3(a). Then Gax ∼ [29]32 (with G∗x

ax ∼
[27]32) has 7 orbits on Γ1(x) with point distribution as follows:
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ORBIT SIZE POINT DISTRIBUTION
{x + b} 1 ∆1

22∆6
3

α3,3(x, x + b, TRI) 4 ∆2
22∆6

3

α3,0(x, x + b, TRI) 16 ∆6
3∆

2
4∆

3
4

α1,1(x, x + b, TRI) 48 ∆6
32∆3

4

α3,2(x, x + b, TRI) 48 ∆6
32∆1

4

α1,0(x, x + b, TRI) 64 ∆6
3∆

5
4∆

6
4

α3,1(x, x + b, TRI) 72 ∆6
32∆1

4

Theorem 11. Let x ∈ ∆1
4(a). Then Gax ∼ 2L3(2)2 (with G∗x

ax ∼
L3(2)2) has 8 orbits on Γ1(x) with point distribution as follows:

ORBIT SIZE POINT DISTRIBUTION
{x + b} 1 ∆1

32∆1
4

α3,2(x, x + b,DUAD) 7 ∆2
32∆1

4

α1,2(x, x + b,DUAD) 14 ∆6
32∆1

4

αL
3,0(x, x + b,DUAD) 21 ∆6

32∆1
4

α1,1(x, x + b,DUAD) 42 ∆5
3∆

1
4∆

3
4

α1,0(x, x + b,DUAD) 56 ∆1
42∆6

4

αLc

3,0(x, x + b,DUAD) 56 ∆1
4∆

4
4∆

6
4

α3,1(x, x + b,DUAD) 56 ∆1
42∆4

4

Theorem 12. Let x ∈ ∆2
4(a). Then Gax

∼= A8 (with G∗x
ax

∼= A8)
has 3 orbits on Γ1(x) with point distribution as follows:

ORBIT SIZE POINT DISTRIBUTION
α0(x,O(x, a)) 15 ∆2

32∆2
4

α4(x,O(x, a)) 70 ∆6
3∆

2
4∆

3
4

α2(x,O(x, a)) 168 ∆2
42∆4

4

Theorem 13. Let x ∈ ∆3
4(a). Then Gax ∼ [26]32 (with G∗x

ax ∼
[26]32) has 8 orbits on Γ1(x) with point distribution as follows:
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ORBIT SIZE POINT DISTRIBUTION
α3,4|0(x, TRI, OCT ) 2 ∆6

3∆
2
4∆

3
4

α3,0(x, TRI, OCT ) 3 ∆2
32∆3

4

α1,0(x, TRI, OCT ) 12 ∆6
32∆3

4

α0,3|1(x, TRI, OCT ) 32 2∆3
4∆

5
4

α1,2|2(x, TRI, OCT ) 36 ∆5
3∆

1
4∆

3
4

α0,1|1(x, TRI, OCT ) 48 ∆5
32∆3

4

α2,1|1(x, TRI, OCT ) 48 ∆3
4∆

4
4∆

6
4

α1,2|0(x, TRI, OCT ) 72 ∆3
42∆6

4

Theorem 14. Let x ∈ ∆4
4(a). Then Gax

∼= L2(11) (with G∗x
ax

∼=
L2(11)) has 6 orbits on Γ1(x) with point distribution as follows:

ORBIT SIZE POINT DISTRIBUTION
α1(x,END,+) 11 ∆2

42∆4
4

α1(x,END,−) 11 ∆3
32∆4

4

α5(x,END,+) 11 ∆5
3∆

4
4∆

5
4

α3(x,END,+) 55 ∆1
4∆

4
4∆

6
4

α5(x,END,−) 55 ∆3
4∆

4
4∆

6
4

α3(x,END,−) 110 ∆1
42∆4

4

Theorem 15. Let x ∈ ∆5
4(a). Then Gax

∼= A7 (with G∗x
ax

∼= A7)
has 5 orbits on Γ1(x) with point distribution as follows:

ORBIT SIZE POINT DISTRIBUTION
{x + b} 1 ∆4

32∆5
4

α3(x, x + b, +) 35 ∆6
3∆

5
4∆

6
4

α1(x, x + b, +) 42 ∆5
3∆

4
4∆

5
4

α1(x, x + b,−) 70 2∆3
4∆

5
4

α3(x, x + b,−) 105 ∆5
3∆

5
4∆

6
4
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Theorem 16. Let x ∈ ∆6
4(a). Then Gax ∼ (3× A5)2 (with G∗x

ax ∼
(3×A5)2), G∗x

ax being the normalizer in G∗x
x of a group of order 3) has

8 orbits on Γ1(x) with point distribution as follows.

ORBIT SIZE POINT DISTRIBUTION
α0,4(x, TRI, FIX) 5 ∆3

32∆6
4

α3,1(x, TRI, FIX) 5 ∆6
3∆

5
4∆

6
4

α0,0(x, TRI, FIX) 15 ∆5
3∆

5
4∆

6
4

α2,0(x, TRI, FIX) 18 2∆5
3∆

6
4

α1,3(x, TRI, FIX) 30 ∆1
4∆

4
4∆

6
4

α2,2(x, TRI, FIX) 30 ∆3
4∆

4
4∆

6
4

α0,2(x, TRI, FIX) 60 ∆1
42∆6

4

α1,1(x, TRI, FIX) 90 ∆3
42∆6

4

In the present paper we explore G as far as the third disc ∆3(a),
where a is a fixed point of G. The analysis of ∆3(a) is completed in
[6] where we also carry out the dissection of ∆4(a). We now discuss
the contents of this paper and highlight some important features of the
proofs of Theorems 1-16.

Section 2 begins with a quick reminder of some standard geometric
notation before giving the promised further details on Γ. Then follows a
long list of orbits on Γ1(x) (x ∈ Γ0) for a variety of subgroups of G∗x

x
∼=

M23. These orbits, and particularly their combinatorial description, lie
at the heart of many of our later arguments.

The peeling back of the flesh of G gets underway in Section 3 where
we examine the first two discs ∆1(a) and ∆2(a). We soon learn that
∆2(a) is the union of two Ga-orbits, ∆1

2(a) and ∆2
2(a). The former of

these Ga-orbits furnishes us with a useful configuration which we call
a diamond. These are discussed after Lemma 3.9 with some of their
properties stated in Lemmas 3.10 and 3.11. Diamonds are often used in
the following way. We begin with a point, say x of G and two lines x+y
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and x + z (in Γ1(x)) with x + z ∈ α3(x, x + y). (For an explanation of
x+ y, x+ z and α3(x, x+ y), see Section 2.) Usually, from the choice of
x+y and x+ z we will know to which Ga-orbit x, y and z belong. Then
shifting our view to other points of the diamond we seek to identify to
which Ga-orbit they belong and as a consequence further increase our
knowledge of G. This type of strategy is frequently employed in [6] – for
an inkling of what is in store see Lemma 4.5(iii). Also in Section 3 we
meet τ(x). Lemma 3.2 gives a property of τ(x) that we use time and
again.

In Section 4 we start to look at ∆3(a) – this set breaks up into six
Ga-orbits. For four of these orbits (∆i

3(a), i = 1, 2, 3, 4) we see that
Γ3(a, x) 6= ∅ (where x ∈ ∆i

3(a), i ∈ {1, 2, 3, 4}). So, particularly in the
light of Lemma 4.3, this is why hyperplane residues are important. For
subsequent work in [6] on ∆4(a) we single out for mention the summary
results Lemmas 4.8 and 4.11 and Theorem 4.13.

At certain points in this paper and [6] we will draw pictures depicting
portions of G. Rather than drawing

r r
r

�
�

�

@
@

@

a c

b

a, b, c points of G; so {a, b, c} = Γ0(l)) for some line lof Γ by Lemma 3.4)
we usually draw r r r

((((((
a b

c

This is to simplify our pictures – usually we will have begun with
collinear points a and c (adjacent points of G) and later b comes in
for attention. So, for example, the situation in Lemma 3.10 (using the
notation there) is drawn thus

q q q
(((((((((

q q q
(((((((((

@@ @@ @@
x

b
c

b′ c′
y′

We will follow the ATLAS [1] in our description of group structures
and our group theoretic notation is standard as given in either [3] or [8].
Also, if H and K are groups, H ∼ K means that H and K have the
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same shape. Finally, we recommend the reader to also look on Figure 1
as a useful navigational aid for keeping track of our whereabouts in the
graph.

2. Notation and Line Orbits

First we review some standard geometric notation and begin by
recalling the definition of a geometry. A geometry Γ is, strictly, a triple
(Γ, t, ∗) where Γ is a set, t is the type map (t : Γ → {0, 1, . . . , n − 1})
and ∗ is a symmetric incidence relation on Γ with the property that
whenever x ∗ y (x, y ∈ Γ) then t(x) 6= t(y). If t is onto, then Γ is said to
have rank n.

Let i ∈ {0, 1, ..., n− 1}, x ∈ Γ and Σ ⊆ Γ. Then

Γi := {y ∈ Γ|τ(y) = i} (the objects of Γ of type i);

Γx := {y ∈ Γ|x ∗ y} (the residue geometry of x);

Γ(Σ) := {y ∈ Γ|x ∗ y for all x ∈ Σ}; and

Γi(Σ) := Γi ∩ Γ(Σ).

If Σ = {x1, . . . , xk}, then we write Γ(x1, . . . , xk) and Γi(x1, . . . , xk)
instead of Γ({x1, . . . , xk}) and Γi({x1, . . . , xk}). Note that Γi(x) = Γx∩
Γi. If G is a subgroup of Aut Γ, then GΣ or Gx1...,xk

denotes the subgroup
of G fixing every object in Σ = {x1, . . . , xk}. For g ∈ G and x ∈ Γ, xg

is the image of x under g. Also we define

Q(x) := {g ∈ Gx | g fixes every object in Γx}.

So Q(x) is a normal subgroup of Gx. For H ≤ Gx we denote HQ(x)/Q(x)
by H∗x.

From now on Γ will be the rank 4 geometry introduced in Sec-
tion 1 upon which G = Fi23 acts flag transitively and G the point-line
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collinearity graph of Γ. The graph distance metric in G will be denoted
by d(, ), and for x ∈ Γ0

∆i(x) = {y ∈ Γ0 | d(y, x) = i} (the ith disc of x).

For x, y ∈ Γ0, we put {x, y}⊥ = ∆1(x) ∩∆1(y).

Next we survey the properties of Γ that will be used in our analysis
of G. First we recall that Γ is a string geometry (meaning that for
0 ≤ i < j < k ≤ 3 and ar ∈ Γr, r ∈ {i, j, k}, ai ∗ aj and aj ∗ ak implies
that ai ∗ ak ). Not surprisingly, in examining G the most important
subgeometry of Γ is Γx, the residue geometry of a point x. Here we
have Gx/Q(x) ∼= M23 with Q(x) being the 11-dimensional irreducible
GF (2)M23 Todd-module. Γx and the induced action of Gx/Q(x) is best
viewed by taking a 23-element set, denoted by Ωx endowed with the
Steiner system S(23, 7, 4). (Note the use of the word element so as to
distinguish them from the points of Γ.) Then Γx := ∆ = ∆0 ∪∆1 ∪∆2

is a rank 3 geometry where ∆0 consists of the heptads of the S(23, 7, 4)
on Ωx, ∆1 of all 3-element subsets of Ωx and ∆2 = Ωx, with incidence
given by (symmetrized) containment. The lines of Γ in Γx correspond
to ∆0 and the hyperplanes of Γ in Γx correspond to ∆2.

For X a hyperplane of Γ, we have GX/Q(X) ∼= Fi22 (the small-
est Fischer group) with |Q(X)| = 2. We observe that if two points
(bases) are both incident with the same hyperplane (transvection), and
are collinear in Γ, then they are also collinear in ΓX . The only other in-
formation about ΓX pertinent here is the structure of the graph given in
[5; Appendix 1] which is the induced subgraph Γ0∩ΓX of G. (Though [5]
deals with the minimal parabolic geometries of Fi22, note that Lemma
4.4 and discussion following in [5] show that it is the induced subgraph
Γ0 ∩ ΓX .)

Throughout this work, we adopt the following convention in order to
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avoid rampant notation. A line l and hyperplane X of Γ when viewed in
the residue of some point x of Γ will metamorphose into (respectively)
a heptad and an element of Ωx. Equally, without further mention we
shall regard heptads and elements of Ωx as lines and hyperplanes of Γx.

Concerning the set Ωx (x ∈ Γ0), for concrete calculations we regard
Ωx as a subset of the MOG thus

(the top left-most element being removed). And of course we carry out
these calculations in S(23,7,4) with the aid of Curtis’s MOG [2].

As is observed in Lemma 3.3 two collinear points x and y of Γ0

determine a unique line of Γ1 – frequently we shall denote this line by
x+ y (respectively y +x) to alert us to the fact that we are viewing the
line in Γx (respectively Γy).

Fix x ∈ Γ0 and let H be a subgroup of L := Gx/Q(x) (∼= M23).
Before dealing with specific subgroups of H of M23 and their orbits on
Γ1(x), we say a few words about their taxonomy. Frequently H may
be specified as the subgroup of M23 stabilizing two particular subsets
of Ωx. Then, usually, the orbits of H upon Γ1(x) are determined by
the intersections of the heptads (lines of Γx) with these subsets of Ωx.
Accordingly, the notation for an H-orbit on Γ1(x) is often of the form

αi,j(x, R, S).

The first entry x tells us we are working in the residue Γx, and R and
S are subsets of Ωx. So l ∈ αi,j(x,R, S) means that l is a heptad of Ωx

with |l ∩ R| = i and |l ∩ S| = j. In some instances the orbits may be
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described just using one subset of Ωx, so the following is used

αi(x,R).

Frequently we have the case |S| = 1, say S = {X}. Then we write
αi,j(x,R,X) instead of αi,j(x,R, {X}) – for l ∈ αi,j(x,R,X), j = 0
is, of course, equivalent to X /∈ l and j = 1 to X ∈ l. Still with the
case when |S| = 1, we shall see instances where there is no obvious
description of X. When this happens we use the following variant of
the αi,j(x,R,X) notation:

αi(x,R,+) or αi(x,R,−).

Here l ∈ αi(x,R,+) (respectively αi(x,R,−)) means l ∈ Γ1(x), |R∩l| =
i and X ∈ l (respectively X /∈ l). There are some minor variations to
the above scheme which we deal with as they arise.
In (2.1) - (2.14) we list data on the line orbits for various subgroups

of M23 (to aid reference to these results, we indicate the Ga-orbit(s)
where this information will be used). In the following statements, we
first define the relevant subsets of Ωx and then give the H-orbits, their
sizes as well as a representative line (as a heptad in Ωx) for each H-orbit.
When mentioned, x + b is some fixed line of Γ1(x) (so b ∈ ∆1(x)) and
will be taken to be the standard heptad

×
× ×
× ×
× ×

of Ωx.
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Remark. Let l ∈ α3,0(x, x + b, X(x, a)) where

l =

×
× ×
× ×
× ×

.

Then Hl, which has order 23.32, has a normal subgroup of order 3
generated by ξ where

ξ =

Further, ξ fixes 4 heptads in α1,1(x, x + b, X(x, a)), each of which
form a diamond with l (see Section 3 for the definition of a diamond).
Also Hl contains a subgroup isomorphic to 3×A4.

(2.4) (Δ1
3(a) orbit) H ∼ L3(4)2.

D = D(x, a) :=

◦

◦

α2(x, D) 21

× ××

×× ××

α0(x, D) 120

×
× ×

× ×
× ×

α1(x, D) 112

× ×× ×
×
×
×
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(2.4) ∆1
3(a) orbit) H ∼ L3(4)2.

D = D(x, a) :=

◦

◦

α2(x, D) 21

× ××

×× ××

α0(x, D) 120

×
× ×

× ×
× ×

α1(x, D) 112

× ×× ×
×
×
×

(2.5) (∆2
3(a) orbit) H ∼ 23L3(2).

O = O(x, a) :=

◦ ◦
◦ ◦
◦ ◦
◦ ◦

, X = X(x, a) :=

◦

α0,1(x, O,X) 7

×
××
××
××

α4,1(x, O,X) 14

× ××
×
×
×

α4,0(x, O,X) 56

× ××
×× ××

α0,0(x, O,X) 8

×
× ×
× ×
× ×

α2,1(x, O,X) 56

× × ×
× ×

×
×

α2,0(x, O,X) 112

×× ××
×
×
×

Remark. (i) For l ∈ α0,0(x, O(x, a), X(x, a)), we have Hl
∼= L3(2).

(ii) Assume that l ∈ α4,0(x, O(x, a), X(x, a)). Then Hl ∼ 23.3, Hl ∩
O2(H) = 1 and H0 := 〈Hl, O2(H)〉 contains no normal subgroup of
H0 of order 22.

12

Remark. (i) For l ∈ α0,0(x, O(x, a), X(x, a)), we have Hl
∼= L3(2).

(ii) Assume that l ∈ α4,0(x,O(x, a), X(x, a)). Then Hl ∼ 23.3, Hl ∩
O2(H) = 1 and H0 := 〈Hl, O2(H)〉 contains no normal subgroup
of H0 of order 22.

(2.6) (∆4
3(a) orbit) H ∼= M22.

X = X(x, a) :=

◦

α1(x,X) 77

×
× ×
× ×
× ×

α0(x,X) 176

×
× ×
× ×
× ×
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(2.7) (Δ5
3(a) orbit) H ∼ 24A5 ≤ 24A7 (the stabilizer of x + b) where the A5

has orbits of sizes 1 and 6 on the elements of x + b, the standard heptad.

X(x, a) :=

◦

{x + b} 1

α
(1)
3 (x, x + b,−) 40 See remark below

α
(2)
3 (x, x + b,−) 40 See remark below

α1(x, x + b,−) 96

× ××
× ×

×
×

α1(x, x + b, +) 16

× ×× ×
×
×
×

α3(x, x + b, +) 60

× ××
×× ××

Remark. (i) For l ∈ α1(x, x + b, +), Hl
∼= A5 and Hl has orbits of

length 1 and 6 upon the elements of the heptad x + b.

(ii) In (2.7) we have the exceptional degree 6 A5 permutation rep-
resentation making an appearance – since this not a 3-transitive
permutation representation, α3(x, x + b,−) splits into two orbits,
called α

(1)
3 (x, x+b,−) and α

(2)
3 (x, x+b,−). In order to give repre-

sentatives for each of these two orbits we need to specify H = 24A5

“concretely”. We will not do this since these two orbits will be
distinguished via certain configurations in G (see [6; Section 5]).

(2.8) (∆6
3(a) orbit) H ∼ [27]32 ≤ 24A7 (the stabilizer of x + b); H

is the stabilizer of a 3-set of x + b.

T = TRI :=
◦
◦
◦
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◦
◦

{x + b} 1

α3,0(x, x + b, T ) 16

×× ××
×
×
×

α3,2(x, x + b, T ) 48

××
×
×
× ××

α1,0(x, x + b, T ) 64

× ×× ×
×
×
×

α3,3(x, x + b, T ) 4

×
× ×
× ×
× ×

α3,2(x, x + b, T ) 48

××
×
×
× ××

α3,1(x, x + b, T ) 72

× ××
×× ××

(2.9) ∆1
4(a) orbit) H ∼ L3(2)2(≤ L3(4)2).

D = DUAD :=

◦ ◦

The 7 heptads in α3,2(x, x + b, DUAD) intersect the standard heptad in
seven 3-element subsets and these 3-elements are the lines of a projective
plane on the 7 elements of the standard heptad. Denote this collection
of 3-elements of the standard heptad by L. Now αL

3,0(x, x + b, DUAD)
consists of all heptads which, in addition to missing DUAD, intersect the
standard heptad in a 3-element subset of L, and αLc

3,0(x, x + b, DUAD) =
α3,0(x, x + b, DUAD)\αL

3,0(x, x + b, DUAD).

14

(2.9) ∆1
4(a) orbit) H ∼ L3(2)2(≤ L3(4)2).

D = DUAD :=

◦ ◦

The 7 heptads in α3,2(x, x + b, DUAD) intersect the standard hep-
tad in seven 3-element subsets and these 3-elements are the lines of
a projective plane on the 7 elements of the standard heptad. De-
note this collection of 3-elements of the standard heptad by L. Now
αL

3,0(x, x + b, DUAD) consists of all heptads which, in addition to miss-
ing DUAD, intersect the standard heptad in a 3-element subset of L,
and αLc

3,0(x, x+ b, DUAD) = α3,0(x, x+ b, DUAD)\αL
3,0(x, x+ b, DUAD).
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{x + b} 1

α1,2(x, x + b, D) 14

× ×× ×
×
×
×

α1,1(x, x + b, D) 42

× × ××
×
×
×

αLc

3,0(x, x + b, D) 56

×
× ×
× ×
× ×

α3,2(x, x + b, D) 7

×× ××
×
×
×

αL
3,0(x, x + b, D) 21 × ×× ××

×
×

α1,0(x, x + b, D) 56

× ×
×× ×

×
×

α3,1(x, x + b, D) 56

×
× ×
× ×
× ×

(2.10) (∆2
4(a) orbit) H ∼= A8.

O = O(x, a) :=

◦ ◦
◦ ◦
◦ ◦
◦ ◦

α0(x, O) 15

×
××
××
××

α2(x, O) 168

×× ××
×
×
×

α4(x, O) 70

×
× ×
× ×
× ×

Remark. (i) For l ∈ α4(x, O(x, a)), O2(Hl) ∼= 22.

(ii) If l ∈ α2(x, O(x, a)), then Hl ∼ A52.

(2.11) (∆3
4(a) orbit) H ∼ [26]32 (the stabilizer of OCT and the standard

sextet).

15
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(2.11) (∆3
4(a) orbit) H ∼ [26]32 (the stabilizer of OCT and the

standard sextet).

T = TRI :=
◦
◦
◦

O = OCT :=

⊗◦
⊗◦
⊗◦
⊗◦

The orbits of H on Γ1(x) are parameterized by intersections with TRI

and the partition of OCT into 4|4 indicated by the ⊗’s and ◦’s. The
subscript j|k below describes how the intersection of a heptad with OCT

splits with respect to this partition.

α3,4|0(x, T,O) 2

×
× ×
× ×
× ×

α1,0(x, T,O) 12

× × ×
× × × ×

α1,2|2(x, T,O) 36

× × ×
× × × ×

α2,1|1(x, T,O) 48

× ×
× × ×

×
×

α3,0(x, T,O) 3

×
× ×
× ×
× ×

α0,3|1(x, T,O) 32

× × × ×
×
×
×

α0,1|1(x, T,O) 48

× × × ×
×
×
×

α1,2|0(x, T,O) 72

× × ×
× ×

×
×

Remark. We note that TRI is the triad contained in all heptads in
α3,4|0(x, TRI, OCT ) and α3,0(x, TRI, OCT ) and that the partition of
the octad OCT is determined by the intersection with OCT of either
of the heptads in α3,4|0(x, TRI, OCT ).
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(2.12) (∆4
4(a) orbit) H ∼= L2(11).

END :=

◦ ◦
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

X :=

◦

(So END is an endecad of the MOG; see [1].)

α1(x,END,+) 11

× ×
× ×
× ×

×

α5(x,END,+) 11

× ×
×

× ×
× ×

α5(x,END,−) 55

× × × ×
×
×
×

α3(x,END,+) 55

×
× ×
× ×
× ×

α1(x,END,−) 11

×
× ×
× ×
× ×

α3(x,END,−) 110

×
× ×

× ×
× ×

(2.13) (∆5
4(a) orbit) H ∼= A7.

X :=

◦
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{x + b} 1

α1(x, x + b, +) 42

× × × ×
×
×
×

α3(x, x + b,−) 105

×
× ×
× ×
× ×

α3(x, x + b, +) 35

×
× ×
× ×
× ×

α1(x, x + b,−) 70

× × × ×
×
×
×

(2.14) (∆6
4(a) orbit) H ∼ (3 × A5)2 (= NL(T ) where T ≤ L has

order 3). Also recall that H is a subgroup of a triad stabilizer and that
T fixes exactly 5 elements of Ωx.

T = TRI :=
◦
◦
◦

F = FIX :=

◦ ◦ ◦ ◦ ◦

α0,4(x, T, F ) 5

× × × ×
×
×
×

α0,0(x, T, F ) 15
× × × × ×
×
×

α1,3(x, T, F ) 30

× × ×
× × × ×

α3,1(x, T, F ) 5

×
× ×
× ×
× ×

α2,0(x, T, F ) 18
×

× × ×
× × ×

α2,2(x, T, F ) 30

×
× × ×

×
×
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α0,2(x, T, F ) 60

× ×
× × ×

×
×

α1,1(x, T, F ) 90

×
× ×

× ×
× ×

Remark. The group T above is generated by

.

(2.15) Let a be a point of G. (The notation, T (c, a) and X(c, a),
for c ∈ ∆2(a) is introduced in Section 3 while, for d ∈ ∆3(a), X(d, a) is
given after Lemma 4.3 and O(d, a) is given in Theorem 4.13(iv).)

(i) ∆1
2(a) = {x ∈ Γ0| there exists b ∈ {a, x}⊥ such that b + x ∈

α3(b, b + a)}.

(ii) ∆2
2(a) = {x ∈ Γ0| there exists b ∈ {a, x}⊥ such that b + x ∈

α1(b, b + a)}.

(iii) ∆1
3(a) = {x ∈ Γ0| there exists c ∈ ∆1

2(a)∩∆1(x) such that c+x ∈
α2(c, T (c, a))}.

(iv) ∆2
3(a) = {x ∈ Γ0| there exists c ∈ ∆2

2(a)∩∆1(x) such that c+x ∈
α3,1(c, c + b, X(c, a)), where {b} = {a, c}⊥}.

(v) ∆3
3(a) = {x ∈ Γ0| there exists c ∈ ∆2

2(a)∩∆1(x) such that c+x ∈
α1,1(c, c + b, X(c, a)) (where {b} = {a, c}⊥) and c is the unique
point in Γ0(X(a, c)) lying in ∆2

2(a) ∩∆1(x)}.

(vi) ∆4
3(a) = {x ∈ Γ0| there exists c ∈ ∆2

2(a)∩∆1(x) such that c+x ∈
α1,1(c, c+b, X(c, a)) (where {b} = {a, c}⊥) and there are 77 points
in Γ0(X(a, c)) lying in ∆2

2(a) ∩∆1(x)}.

(vii) ∆5
3(a) = {x ∈ Γ0| there exists c ∈ ∆2

2(a)∩∆1(x) such that c+x ∈
α1,0(c, c + b, X(c, a)), where {b} = {a, c}⊥}.
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(viii) ∆6
3(a) = {x ∈ Γ0| there exists c ∈ ∆2

2(a)∩∆1(x) such that c+x ∈
α3,0(c, c + b, X(c, a)), where {b} = {a, c}⊥}.

(ix) ∆1
4(a) = {x ∈ Γ0| there exists d ∈ ∆1

3(a)∩∆1(x) such that d+x ∈
α0(d,D(d, a))}.

(x) ∆2
4(a) = {x ∈ Γ0| there exists d ∈ ∆2

3(a)∩∆1(x) such that d+x ∈
α0,0(d, O(d, a), X(d, a))}.

(xi) ∆3
4(a) = {x ∈ Γ0| there exists d ∈ ∆2

3(a)∩∆1(x) such that d+x ∈
α4,0(d, O(d, a), X(d, a))}.

(xii) ∆4
4(a) = {x ∈ Γ0| there exists d ∈ ∆3

3(a)∩∆1(x) such that d+x ∈
α1,0(d, d + b, X(d, a)) where {b} = ∆1(d) ∩∆2

2(a)}.

(xiii) ∆5
4(a) = {x ∈ Γ0| there exists d ∈ ∆4

3(a)∩∆1(x) such that d+x ∈
α0(d,X(d, a))}.

(xiv) ∆6
4(a) = {x ∈ Γ0| there exists d ∈ ∆3

3(a)∩∆1(x) such that d+x ∈
α3,0(d, d + b, X(d, a)) where {b} = ∆1(d) ∩∆2

2(a)}.

We remark that our notation has been chosen so as to mesh with
that of [5] – so here our ∆1(a),∆1

2(a),∆2
2(a),∆1

3(a),∆2
3(a),∆3

3(a),∆4
3(a)

when intersected with ΓX (for X ∈ Γ3(a)) gives precisely the ∆j
i (a) of

[5].

3. The First Two Discs and Diamonds

Lemma 3.1 (“Three points on a line”). For l ∈ Γ1, |Γ0(l)| = 3.

Proof . Let X ∈ Γ3(l). Then Γ being a string geometry implies that
Γ0(l) ⊆ Γ0(X), whence Lemma 3.1 follows from [5; Lemma 4.4].

Since, for X ∈ Γ3, GX
∼= 2Fi22 and |Z(GX)| = 2, let τ(X) ∈ GX

be such that 〈τ(X)〉 = Z(GX). (Of course τ(X) is just a transposition
of G = Fi23.) Note that, for x ∈ Γ0(X), we have τ(X) ∈ Q(x). Also,
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for l ∈ Γ1(X), Γ being a string geometry and τ(X) ∈ Q(X) means that
τ(X) fixes each of the points of Γ0(l).

Lemma 3.2. Suppose x ∈ Γ0, l ∈ Γ1(x) and X ∈ Γ3(x). Then
τ(X) interchanges Γ0(l)\{x} if and only if X /∈ l. (Recall our conven-
tion – in Γx, X is an element and l a heptad of Ωx.)

Proof . Since G∗x
xX

∼= M22, GxX has two orbits upon the 253 heptads
in Ωx – those containing X (77) and those not containing X (176). If
the result were false, then, since τ(X) ∈ Z(GxX), we infer that τ(X)
fixes the points in Γ0(l) for all l ∈ Γ1(x). Because Q(x) is an irreducible
GF (2)Gx-module, Q(x) then fixes the points in Γ0(l) for all l ∈ Γ1(x),
contradicting [5; Lemma 4.2(iii)].

Lemma 3.3. If x and y are collinear points of Γ, then |Γ1(x, y)| =
1.

Proof . Suppose we have l, k ∈ Γ1(x, y), and let X ∈ Γ3(l). Hence,
as Γ is a string geometry, X ∈ Γ3(x) ∩ Γ3(y). So, in particular, τ(X)
fixes y and thus, applying Lemma 3.2 in Γx, we get X ∈ k. That is
l, k ∈ Γ1(X), whence l = k by the structure of ΓX (see [5; Lemma
4.4]).

Lemma 3.4. If x, y and z form a triangle in G0 where x, y, z ∈ Γ0,
then {x, y, z} = Γ0(l) for some l ∈ Γ1.

Proof . Let {l} = Γ1(x, y), {m} = Γ1(y, z) and {k} = Γ1(z, x).
Choose X ∈ Γ3(l). So τ(X) ∈ Q(x) ∩ Q(y) and therefore zτ(X) ∈
Γ0(m) ∩ Γ0(k). If k /∈ ΓX , then zτ(X) 6= z by Lemma 3.2. Therefore,
using Lemma 3.3, m = z + zτ(X) = k, and then k = l, a contradiction.
Thus k ∈ ΓX , and so we get l, k, x, y, z ∈ ΓX , whence m ∈ ΓX and then
[5; Lemma 5.5] gives the lemma.

We now choose, and keep fixed, a point a ∈ Γ0; our next result is
about ∆1(a), the first disc of a.
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Lemma 3.5. (i) ∆1(a) is a Ga-orbit and, for x ∈ ∆1(a), Gax ∼
21024A7 with G∗x

ax ∼ 24A7 (the stabilizer in G∗x
x of the line x + a);

and

(ii) |∆1(a)| = 2.11.23.

Proof . Let x ∈ ∆1(a), and select X ∈ Ωa such that X /∈ Γ3(a + x).
Then τ(X) interchanges the two points in Γ0(a+x)\{a} by Lemma 3.2
and therefore, as Ga is transitive on Γ1(a), we obtain (i). Since Γ1(a)
has 253 = 11.23 lines, (ii) follows using Lemma 3.1.

From Lemmas 3.4 and 3.5, (2.1) and the definition of ∆1
2(a) and

∆2
2(a) we see that Theorem 2 holds. We now proceed to examine ∆2(a),

the second disc of a.

Lemma 3.6. Let X ∈ Γ3. If x, y ∈ Γ0(X), then {x, y}⊥ ⊆ Γ0(X).

Proof . Suppose we have b ∈ {x, y}⊥ with b /∈ Γ0(X). Then b+x 6=
b+y. In Ωx, x+b is a heptad not containing X. So bτ(X) 6= b by Lemma
3.2. Now τ(X) ∈ Q(x) ∩Q(y) and hence bτ(X) ∈ Γ0(x + b) ∩ Γ0(y + b).
But then, by Lemma 3.3, b + x = b + bτ(X) = b + y, a contradiction.

Lemma 3.7. Let x ∈ ∆1
2(a). Then

(i) |{a, x}⊥| = 5 and there are exactly 3 hyperplanes {X1, X2, X3} in
Γ3(a, x), and {a, x}⊥ ⊆ Γ0(Xi) for i = 1, 2, 3;

(ii) ∆1
2(a) is a Ga-orbit and Gax ∼ 2724S53 (with G∗x

ax ∼ 24S53); and

(iii) |∆1
2(a)| = 24.7.11.23.

Proof . Let b ∈ {a, x}⊥ be such that b+x ∈ α3(b, b+ a). So (in Ωb)
(b + a)∩ (b + x) = {X1, X2, X3}. Hence a, x ∈ Γ0(Xi) and consequently
{a, x}⊥ ⊆ Γ0(Xi) for i = 1, 2, 3 by Lemma 3.6. From [5; Lemma 5.7(ii)]
|{a, x}⊥| = 5, and we have (i).
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By Lemma 3.5(i) and (2.1) Gab is transitive on the heptads of Ωb

intersecting b+a in 3 elements. Also, by selecting a Y ∈ Γ3(b+a)\Γ3(b+
x) we get that τ(Y ) interchanges Γ0(b + x)\{b} by Lemma 3.2. Hence,
as Ga is transitive on ∆1(a), ∆1

2(a) is a Ga-orbit. Using |{a, x}⊥| = 5,
we may count thus

|∆1
2(a)| = 2.|∆1(a)|.140

5
= 24.7.11.23.

Now, by part (i), [Gax : Gax∩GX1 ] = 1 or 3 and then combining |∆1
2(a)|

with ∆1
2(a) being a Ga-orbit and |Gax ∩ GX1 | = 214.3.5 (see [5;Lemma

5.7(iii)]) yields [Gax : Gax ∩GX1 ] = 3. Appealing to [5; Lemma 5.7(iii)]
again gives the shape of Gax, and this completes the proof of Lemma
3.7.

Lemma 3.8. Let x ∈ ∆2
2(a). Then

(i) |{a, x}⊥| = 1 and there is a unique hyperplane X in Γ3(a, x), and
{a, x}⊥ ⊆ Γ0(X);

(ii) ∆2
2(a) is a Ga-orbit and Gax ∼ 2524A6 (with G∗x

ax ∼ 24A6); and

(iii) |∆2
2(a)| = 26.7.11.23.

Proof . This result may be proved in the same manner as Lemma
3.7, using [5; Lemma 5.10] in place of [5; Lemma 5.7(iii)].

Lemma 3.9. ∆2(a) = ∆1
2(a)∪̇∆2

2(a).

Proof . Clearly, by Lemmas 3.3 and 3.4, we have ∆2(a) = ∆1
2(a) ∪

∆2
2(a). So we only need to show that ∆1

2(a) ∩ ∆2
2(a) = ∅. Suppose

we have x ∈ ∆1
2(a) ∩ ∆2

2(a). Then there exist b, b′ ∈ {a, x}⊥ such that
|(b + a) ∩ (b + x)| = 1 and |(b′ + a) ∩ (b′ + x)| = 3. Employing Lemma
3.7 gives {b, b′} ⊆ Γ0(Xi) for i = 1, 2, 3 where {X1, X2, X3} = Γ3(a, x).
But this contradicts |(b + a) ∩ (b + x)| = 1.
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Let x, y ∈ Γ0 with y ∈ ∆1
2(x) (so x ∈ ∆1

2(y) also). By Lemma 3.7
{x, y}⊥ = {b1, b2, b3, b4, b5} and Γ3(x, y) = {X1, X2, X3}. So we have

x

b

yb

b

b

b

1

2

3

4

5

and we will call such a configuration in G a diamond. Note that for
i 6= j, bi ∈ ∆1

2(bj). We will employ the same positional aid notation as
for lines and denote {X1, X2, X3} by T (x, y) so as to signal that we are
viewing this as a subset of Ωx.

A crucial observation, used repeatedly in later arguments, is that
this set of hyperplanes {X1, X2, X3} manifests itself in the residue of
any point in the diamond. That is, T (bi, bj) = {X1, X2, X3} = T (y, x);
moreover T (bi, bj) = (bi + x)∩ (bj + y), T (x, y) = (x + bi)∩ (x + bj) and
T (y, x) = (y+bi)∩(y+bj) (1 ≤ i < j ≤ 5). Also {x+bi|i = 1, . . . , 5} are
precisely the 5 heptads which contain T (x, y) – with a similar statement
at other points in the diamond.

Lemma 3.10. Let y ∈ ∆1
2(x) and let {b, b′} ⊆ {x, y}⊥ with b 6= b′

(so we are considering part of a diamond). If Γ0(x + b) = {x, b, c} and
Γ0(y + b′) = {y, b′, c′}, then d(c, c′) = 1.

Proof . Since we may choose X ∈ Γ3(x, b′) with X /∈ x + b and
X /∈ b′ + y, bτ(X) = c and yτ(X) = c′ by Lemma 3.2. This proves the
lemma as d(b, y) = 1.

In the last result of this section which follows directly from Lemma
3.10 and the discussion preceding it, we assume the notation given in
the diamond above.
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Lemma 3.11. (i) Assume that Γ0(x + b1) = {x, b1, c} and, for
i = 1, . . . , 5, Γ0(y+bi) = {y, bi, ci}. Then {c, y}⊥ = {b1, c2, c3, c4, c5}.

(ii) If X ∈ Γ3(x), then X ∈ Γ3(x + bi) for some i ∈ {1, . . . , 5}.

Finally, in the situation of Lemma 3.8 we denote the unique hyper-
plane in Γ3(a, x) by X(a, x), (respectively X(x, a)) if it is viewed as an
element of Ωa (respectively Ωx).

4. Preliminaries on the Third Disc

In this section, in addition to establishing Theorems 3 and 4, we find
the Ga-orbits of ∆3(a), their sizes and determine the structure of Gax

for x in each of these orbits. This information, the salient points being
summarized in Theorem 4.13, together with the data on line orbits in
Section 2, serves as a launch pad for our investigations in [6].

For x ∈ ∆2
3(a) ∪ ∆3

3(a) ∪ ∆4
3(a) from the definitions (plus the fact

that Γ is a string geometry), X(a, c) ∈ Γ3(a, x), where c ∈ ∆2
2(a) ∩

∆1(x) is such that c + x ∈ αi,1(c, c + b, X(c, a)) (i = 1 or 3) and {b} =
{a, c}⊥ . While for x ∈ ∆1

3(a), two of the hyperplanes of T (a, c) are in
Γ3(a, x) (where c ∈ ∆1

2(a) ∩ ∆1(x) and c + x ∈ α2(c, T (c, a))). So it is
not surprising that properties of these sets are very much tied up with
the point-line collinearity graph of the Fi22-geometry ΓX (X ∈ Γ3).
Suppose X ∈ Γ3 and x, y ∈ Γ0(X). If, say, x and y are distance 3 apart
in the point-line collinearity graph of ΓX , then, by Lemma 3.6, we also
have d(x, y) = 3 (distance in G).

Diamonds make their debut in our next argument.

Lemma 4.1. Let X ∈ Γ3 and let w, z ∈ Γ0(X) with w 6= z. If
{w, x, y, z} is a path in G of length 3, then either x, y ∈ Γ0(X) or
d(w, z) = 1.

Proof . Suppose the result is false. If either x ∈ Γ0(X) or y ∈
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Γ0(X), then Lemma 3.6 would force x, y ∈ Γ0(X). Thus we have x, y /∈
Γ0(X). Hence xτ(X) 6= x and yτ(X) 6= y by Lemma 3.2. Also xτ(X) ∈
Γ0(w + x) and yτ(X) ∈ Γ0(z + y). So we have

r r r r r r�
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x y
xτ(x) yτ(x)

w z

If d(xτ(X), y) = 1, then Lemmas 3.3 and 3.4 force d(w, y) = 1,
whence y ∈ Γ0(X) by Lemma 3.6. So d(xτ(X), y) = 2. If x = yτ(X),
then using Lemma 3.6 again gives x ∈ Γ0(X). Hence x 6= yτ(X) and
therefore y ∈ ∆1

2(x
τ(X)) by Lemmas 3.8(i) and 3.9. (So we see part of

a diamond.) Now using Lemma 3.10 yields d(w, z) = 1, contrary to our
supposition. This completes the proof of the lemma.

Lemma 4.2.
⋃6

i=1 ∆i
3(a) ⊆ ∆3(a).

Proof . For x ∈ ∆i
3(a) (i = 1, 2, 3, 4) we have a, x ∈ Γ0(X) for some

X ∈ Γ3 with a and x distance 3 apart in the point-line collinearity graph
of ΓX . Therefore x ∈ ∆3(a).

Suppose that x ∈ ∆5
3(a). Then by (2.15) there exists c ∈ ∆2

2(a) such
that c+x ∈ α1,0(c, c+ b, X(c, a)) (where {b} = {a, c}⊥ ). If d(a, x) = 1,
then x ∈ {a, c}⊥ and so x = b, whereas c + x 6= c + b. So d(a, x) ≥ 2. If
d(a, x) = 2, then, by Lemmas 3.7(i) and 3.8(i), a, x ∈ Γ0(X) for some
X ∈ Γ3. Since {a, b, c, x} is a path of length 3 in G, Lemma 4.1 forces
b, c ∈ Γ0(X). But then X = X(a, c) and X(c, a) ∈ c + x, contradicting
c + x ∈ α1,0(c, c + b, X(c, a)). Consequently x ∈ ∆3(a). A similar
argument yields that ∆6

3(a) ⊆ ∆3(a), so proving the lemma.

Lemma 4.3. (i) Let x ∈
⋃4

i=1 ∆i
3(a), and suppose X ∈ Γ3(a, x).

Then the vertices of every length 3 path from a to x are in Γ0(X).

(ii) Let y ∈ ∆1
3(a) and x ∈

⋃4
i=2 ∆i

3(a). Then for every c ∈ ∆2
2(a) ∩

∆1(x), {X(a, c)} = Γ3(a, x) and for every d ∈ ∆1
2(a) ∩ ∆1(y),
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T (a, d) ∩ (d + y) = Γ3(a, y). In particular, |Γ3(a, x)| = 1 and
|Γ3(a, y)| = 2.

(iii) For i = 1, 2, 3, 4 and X ∈ Γ3(a), Γ0(X) ∩ ∆i
3(a) is equal to the

correspondingly named set in [5; Appendix 1].

Proof . Since d(a, x) = 3, (i) follows immediately from Lemma 4.1.
Note that one consequence of (i), using [5], is that for y ∈ ∆1

3(a) and
d ∈ ∆1

2(a)∩∆1(y), we must have d + y ∈ α2(d, T (d, a)). Now, parts (ii)
and (iii) are consequences of part (i).

Notation. For x ∈
⋃4

i=2 ∆i
3(a) we use X(a, x) (or X(x, a)) to denote

the unique hyperplane in Γ3(a, x) – by Lemma 4.3(ii) X(a, x) = X(a, c)
for any c ∈ ∆1

2(a) ∩ ∆1(x). While, for y ∈ ∆1
3(a) we use D(a, y) (or

D(y, a)) to denote Γ3(a, y). Again we are using our “positional conven-
tion” – note that D(a, y) (respectively D(y, a)) is a duad of Ωa (respec-
tively Ωy).

Lemma 4.4. For i = 1, 2, 3, 4, 5, 6, ∆i
3(a) is a Ga-orbit.

Proof . By Lemma 4.3(iii) and [5] Γ0(X) ∩ ∆i
3(a) (i = 1, 2, 3, 4,

and X ∈ Γ3(a)) are GaX -orbits. So, since Ga is transitive on Γ3(a),
the lemma holds for i = 1, 2, 3, 4. For x in ∆5

3(a) or ∆6
3(a) we have

c ∈ ∆2
2(a) ∩ ∆1(x) for which X(c, a) /∈ c + x. Hence Γ0(c + x)\{c} is

contained in a Ga-orbit by Lemma 3.2. Because ∆2
2(a) is a Ga-orbit

with G∗c
ac ∼ 24A6 , appealing to (2.3) we deduce that ∆5

3(a) and ∆6
3(a)

are Ga-orbits too.

Lemma 4.5. Let x ∈ ∆6
3(a) and let c1 ∈ ∆2

2(a) ∩ ∆1(x) be such
that c1 + x ∈ α3,0(c1, c1 + b, X(c1, a)), where {b} = {a, c1}⊥. Then

(i) |{b, x}⊥ ∩∆2
2(a)| = 4 and |{b, x}⊥ ∩∆1

2(a)| = 1;

(ii) suppose {c1, c2, c3, c4} = {b, x}⊥ ∩ ∆2
2(a) and {c} = {b, x}⊥ ∩

∆1
2(a). Then X(a, ci) 6= X(a, cj) for 1 ≤ i < j ≤ 4, and X(a, ci) /∈
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T (a, c) for i = 1, 2, 3, 4. Further, b + a = {X(a, ci)|i = 1, 2, 3, 4} ∪
T (a, c); and

(iii) set {a, c}⊥ = {b, b1, b2, b3, b4}.

Then we have

b
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with c ∈ ∆1
2(a), ci ∈ ∆2

2(a), b ∈ ∆1
2(x) and bi ∈ ∆2

2(x) (i = 1, 2, 3, 4).

Proof . First we observe that, because c1+x ∈ α3,0(c1, c1+b, X(c1, a))
and d(a, x) = 3, Γ3(a, x) = ∅ by Lemma 4.1. Now c1 +x ∈ α3(c1, c1 + b)
implies that |{b, x}⊥| = 5. Thus we have
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Since (b+a)∩T (b, x) ⊆ Γ3(a, x), (b+a)∩T (b, x) = ∅ (in Ωb). Therefore,
as {b + y|y ∈ {b, x}⊥} intersects in T (b, x) and their union is the whole
of Ωb, b + a must intersect one of these heptads in 3 elements and four
of these heptads in one element. This yields part (i).
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If X(a, ci) = X(a, cj) for i 6= j, then calling upon Lemma 3.6 gives
x ∈ Γ0(X(a, ci)) = Γ0(X(a, cj)), contrary to Γ3(a, x) = ∅. Similar
considerations yield that X(a, ci) /∈ T (a, c), and so (ii) holds. Noting
that a ∈ ∆6

3(x) we readily obtain (iii).

Our next result shows that looking out from a ∆1
2(a) point, say c,

“along” lines from α1(c, T (c, a)) or α0(c, T (c, a)) yields Ga-orbits already
known to us.

Lemma 4.6. (i) ∆2
3(a) = {x ∈ Γ0| there exists c ∈ ∆1

2(a) such
that c + x ∈ α1(c, T (c, a))}.

(ii) ∆6
3(a) = {x ∈ Γ0| there exists c ∈ ∆1

2(a) such that c + x ∈
α0(c, T (c, a))}.

Proof . Part (i) follows from Lemma 4.3(iii) and [5; Appendix 1].
Turning to part (ii), we claim that T := {x ∈ Γ0| there exists c ∈ ∆1

2(a)
such that c + x ∈ α0(c, T (c, a))} is a Ga-orbit. By Lemma 3.7(ii), for
c ∈ ∆1

2(a), G∗c
ac ∼ 24S53. Now using the fact that ∆1

2(a) is a Ga-orbit,
Lemma 3.2 and (2.2) gives the claim. Let x ∈ ∆6

3(a). From Lemma
4.5 there exists c ∈ ∆1

2(a) ∩∆1(x). Because Γ3(a, x) = ∅ we must have
(c + x) ∩ T (c, a) = ∅ and hence x ∈ T . Since ∆6

3(a) is also a Ga-orbit
we infer that T = ∆6

3(a), and (ii) holds.

We pause to remark that Lemma 4.6, together with (2.2), (2.3) and
Lemmas 3.7 and 3.8, establish Theorems 3 and 4.

Lemma 4.7.
⋃6

i=1 ∆i
3(a) = ∆3(a).

Proof . Combining Lemmas 3.7(ii), 3.8(ii), 4.2, 4.6 together with
(2.2), (2.3) and (2.15) yields the lemma.

Lemma 4.8. (i) |∆1
3(a)| = 29.11.23 and, for x ∈ ∆1

3(a), Gax ∼
22L3(4)2 with G∗x

ax ∼ L3(4)2.
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(ii) ∆2
3(a)| = 28.3.5.11.23 and, for x ∈ ∆2

3(a), Gax ∼ 27L3(2) with
G∗x

ax ∼ 23L3(2). Moreover, Q(a) ∩ Q(x) =< τ(X(a, x)) > with
Q(a)∗x ∼ 23 ∼ Q(x)∗a.

(iii) |∆3
3(a)| = 210.7.11.23 and, for x ∈ ∆3

3(a), Gax ∼ 25A6 with G∗x
ax ∼

24A6.

(iv) |∆4
3(a)| = 210.23 and, for x ∈ ∆3

3(a), Gax ∼ 2M22 with G∗x
ax

∼=
M22.

Proof . For parts (ii)-(iv), putting X = X(a, c), we have Gax =
GaxX and, using Lemma 4.3(ii), |∆i

3(a)| = 23|∆i
3(a) ∩ Γ0(X)| (i =

2, 3, 4). Consulting [5; Appendix 1 and Lemma 6.17(iii)] then gives
parts (ii)-(iv).

Let x ∈ ∆1
3(a). Again employing Lemma 4.3(ii), (iii) and [5; Appen-

dix 1], we have that

|∆1
3(a)| = 23|∆1

3(a) ∩ Γ0(X)|
2

= 29.11.23

(where X ∈ D(a, x) = Γ3(a, x)). Moreover, by Lemma 4.3 (ii), for
X ∈ Γ3(a, x), [Gax : Gax ∩ GX ] ≤ 2. Using |∆1

3(a)|, |Gax ∩ GX | and
the fact that ∆1

3(a) is a Ga-orbit we find that [Gax : Gax ∩ GX ] = 2,
whence by [5; Appendix 1] we obtain part (i). The proof of the lemma
is complete.

In Lemma 4.8 we have amassed a good deal of information about
∆i

3(a) for i = 1, 2, 3, 4. The next three results answer the corresponding
questions for ∆5

3(a) and ∆6
3(a).

Lemma 4.9. Let x ∈ ∆5
3(a) and let c ∈ ∆2

2(a)∩∆1(x) be such that
c + x ∈ α1,0(c, c + b, X(c, a)), where {b} = {a, c}⊥. Then

(i) ∆2
2(a) ∩∆1(x) = {c}; and

(ii) a ∈ ∆5
3(x).
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Proof . We first prove part (i). Assume there exists c1 ∈ ∆2
2(a) ∩

∆1(x) with c1 6= c. Let {a, c1}⊥ = {b1}, and put X = X(a, c) and
Y = X(a, c1). Note that b = b1 would imply, as c 6= c1, that x ∈ ∆1

2(b)
and hence c + x ∈ α3(c, c + b), which is not the case. So we have
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Suppose that b1 ∈ Γ0(X). By Lemma 4.1 we then get that either
x, c1 ∈ Γ0(X) or d(c, b1) = 1. The former possibility cannot occur as
Γ3(a, x) = ∅, while d(c, b1) = 1 implies (as b 6= b1) that c ∈ ∆1

2(a),
whereas c ∈ ∆2

2(a). Thus we conclude that b1 /∈ Γ0(X). So, by Lemma
3.2, xτ(X) 6= x and b

τ(X)
1 6= b1 and hence we have (setting τ = τ(X))rrr rr rrr
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Since τ ∈ Q(a), cτ
1 , bτ

1 ∈ Γ0(Y ). Now, because c1 6= cτ
1 (else by Lemmas

3.3 and 3.4 c1 = a), we may deploy Lemma 4.1 again to obtain either
xτ , x ∈ Γ0(Y ) or d(c1, c

τ
1) = 1. Hence, as Γ3(a, x) = ∅, d(c1, c

τ
1) = 1.

However, as cτ
1 6= b1 (because cτ

1 ∈ ∆2(a) and b1 ∈ ∆1(a)), c1 ∈ ∆1
2(b

τ
1),

which gives c1 ∈ ∆1
2(a). From this contradiction we infer that ∆2

2(a) ∩
∆1(x) = {c}.

Note that part (i) and Lemma 4.5(i) together show that ∆5
3(a) 6=

∆6
3(a).

Moving on to part (ii), part (i), Theorem 3 and Lemma 3.7(i) imply
that b ∈ ∆2

2(x). From the definition of ∆5
3(a), Γ3(a, x) = ∅ and so
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a ∈ ∆5
3(x) ∪ ∆6

3(x) by Lemma 4.7. Since b + c ∈ α1(b, b + a), the
definition of ∆5

3(x) gives a ∈ ∆5
3(x).

Lemma 4.10. For x ∈ ∆6
3(a), |∆1

2(a) ∩ ∆1(x)| = 1 and |∆2
2(a) ∩

∆1(x)| = 4. In particular, the configuration in Lemma 4.5(iii) shows
∆1(x) ∩∆2(a) and ∆1(a) ∩∆2(x).

Proof . Suppose the result is false. Thus, appealing to Lemma
4.5(i), we have

b xa

y z

where b ∈ ∆1
2(x)∩∆1(a), z ∈ (∆2(a)∩∆1(x))\{b, x}⊥ and y ∈ {a, z}⊥.

Evidently y 6= b. By Lemma 4.5(ii) there exists c ∈ {b, x}⊥ such that
Γ3(a, c, y) 6= ∅ and hence, using Lemma 4.1 and Γ3(a, x) = ∅, we deduce
that d(y, c) = 1. So y ∈ {a, c}⊥ and therefore, as y 6= b, c ∈ ∆1

2(a). But,
by Lemma 4.5(iii), y ∈ ∆2

2(x) which forces z = c, a contradiction.

Lemma 4.11. (i) |∆5
3(a)| = 212.3.7.11.23 and, for x ∈ ∆5

3(a),
24A5 ∼ Gax ≤ Gacb where {c} = ∆2

2(a)∩∆1(x) and {b} = {a, c}⊥.
Furthermore G∗x

ax ∼ 24A5 with the A5 having orbits of length 1 and
6 upon Γ3(x + c), the orbit of length 1 being {X(x, b)}.

(ii) |∆6
3(a)| = 29.5.7.11.23 and, for x ∈ ∆6

3(a), [29]32 ∼ Gax ≤ Gacx

where {c} = ∆1
2(a) ∩∆1(x).
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Proof . (i) Combining (2.3), Lemmas 3.8(iii) and 4.9(i) with the
definition of ∆5

3(a) ((2.15)) gives

|∆5
3(a)| = 26.7.11.23.2.96 = 212.3.7.11.23.

Therefore, by Lemma 4.4, |Gax| = 27.3.5. Since {a, b, c, x} is the
unique length 3 path from x to a, clearly Gax ≤ Gacb. Now,
from (2.3), G∗c

cc+x
∼= A5 and so we see that Gax ∼ 24A5 with

24 ∼= O2(Gax) = Gax ∩Q(c). Also from (2.3) we have that G∗c
cc+x

has orbits of length 1 and 6 upon the elements of the heptad c+x

(note that (c+ b)∩ (c+x) is the orbit of length 1). Since elements
of Ωc correspond to hyperplanes of Γ, this information translates
to Γx, so it remains to show that G∗x

ax ∼ 24A5. If this is not the
case, then, as O2(Gax) is a Gax-chief factor, O2(Gax) ≤ Q(x).
Because a ∈ ∆5

3(x) by Lemma 4.9(ii) we also get O2(Gax) ≤ Q(a).
But then 24 ∼= O2(Gax) ≤ Q(a) ∩Q(c), which is untenable by [5;
Lemma 5.10].

(ii) Putting together (2.3) and Lemmas 3.8(iii) and 4.10 yields

|∆6
3(a)| = 26.7.11.23.2.80

4
= 29.5.7.11.23.

Hence |Gax| = 2932 by Lemma 4.4,so proving (ii).

From our knowledge of the sizes of ∆i
3(a) (i ∈ {1, . . . , 6}) in Lemmas

4.8 and 4.11, together with Lemma 4.7, we deduce the following useful
fact.

Lemma 4.12. For i ∈ {1, . . . , 6}, if x ∈ ∆i
3(a), then a ∈ ∆i

3(x).

Theorem 17. (i) Let x ∈ ∆1
2(a). Then G∗x

xa (∼ 24S53) is the
stabilizer in G∗x

x of the triad T (x, a) in Ω and for all five points
b ∈ {a, x}⊥, x + b contains T (x, a).
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(ii) Let x ∈ ∆2
2(a). Then G∗x

xa (∼ 24A6) is the stabilizer in G∗x
x of the

heptad x + b and the element X(x, a) of Ωx where {b} = {a, x}⊥.

(iii) Let x ∈ ∆1
3(a). Then G∗x

xa (∼ L3(4)2) is the stabilizer in G∗x
x of the

duad D(x, a). Furthermore, for all 21 points c ∈ ∆1
2(a) ∩ ∆1(x),

the heptad x + c contains D(x, a) in Ωx and D(a, x) ⊆ T (a, c) in
Ωa.

(iv) Let x ∈ ∆2
3(a). Then G∗x

xa (∼ 23L3(2)) is the stabilizer in G∗x
x of

an octad O(x, a) and the element X(x, a) of Ωx where O(x, a) has
the following properties:–

(a) (x + c) ∩ O(x, a) = ∅ and X(x, a) ∈ x + c in Ωx for each of
the 7 points c ∈ ∆1

2(a) ∩∆1(x);

(b) |(x + c) ∩O(x, a)| = 4 and X(x, a) ∈ x + c in Ωx for each of
the 14 points c ∈ ∆2

2(a) ∩∆1(x);

(c) X(x, a) /∈ O(x, a) in Ωx; and

(d) T (x, b) ∩O(x, a) = ∅ in Ωx for each b ∈ ∆1(a) ∩∆1
2(x).

item Let x ∈ ∆3
3(a). Then G∗x

xa (∼ 24A6) is the stabilizer in G∗x
x

of the heptad x + c and the element X(x, a) of Ωx where {c} =
∆2

2(a) ∩∆1(x). Furthermore, Γ0(x + c)\{x, c} ⊆ ∆4
3(a).

(v) Let x ∈ ∆4
3(a). Then G∗x

xa (∼= M22) is the stabilizer in G∗x
x of the

element X(x, a) of Ωx and x + c contains X(x, a) for all the 77
points c ∈ ∆2

2(a) ∩∆1(x).

(vi) Let x ∈ ∆5
3(a). Then G∗x

xa (∼ 24A5) stabilizes the heptad x+ c and
the element X(x, b) of x+ c in Ωx where {c} = ∆2

2(a)∩∆1(x) and
{b} = ∆1(a) ∩∆2

2(x).

(vii) Let x ∈ ∆6
3(a). Then Gxa ∼ [29]32 stabilizes the triad T (x, b) and

the heptad x+c which contains T (x, b), where {b} = ∆1(a)∩∆1
2(x)

and {c} = ∆1
2(a) ∩∆1(x).
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Proof . For parts (i) and (ii) see Lemmas 3.7(i),(ii) and 3.8(i),(ii)
respectively. Parts (iii)-(vi) follow from Lemma 4.8 and [5; Lemmas
6.7, 6.16, 7.8 and Proposition 7.13]. Finally parts (vii) and (viii) can be
deduced from Lemmas 4.5, 4.9 and 4.11(i),(ii).

Lemma 4.13. Let x ∈ ∆3(a), with c ∈ ∆1
2(a) ∩ ∆1(x) and b ∈

{a, c}⊥ ∩∆1
2(x). Then,

(i) x ∈ ∆1
3(a) if and only if |T (b, x) ∩ T (c, a)| = 2 in Ωc; and

(ii) x ∈ ∆2
3(a) if and only if |T (b, x) ∩ T (c, a)| = 1 in Ωc; and

(iii) x ∈ ∆6
3(a) if and only if |T (b, x) ∩ T (c, a)| = 0 in Ωc.

Proof . If x ∈ ∆6
3(a), then Γ3(a, x) = ∅ implies that T (b, x) ∩

T (c, a) = ∅ in Ωc. Conversely, if T (b, x)∩ T (c, a) = ∅, then Γ3(a, x) = ∅
and hence x ∈ ∆6

3(a), which proves (iii).

Since ∆2
2(a)∩∆1(x) = ∅ for all x ∈ ∆1

3(a), we must have x ∈ ∆1
3(a)

if and only if |T (b, x) ∩ T (c, a)| = 2 in Ωc. So (i) is proved. Part (ii)
now follows using parts (i) and (iii) and (2.15).

Between them, the last two results of this section settle the question
of adjacency within ∆3(a), with the exception of edges between two
points which are either both in ∆5

3(a) or both in ∆6
3(a).

Lemma 4.14. Let 1 ≤ i < j ≤ 6 and suppose that x ∈ ∆i
3(a) and

y ∈ ∆j
3(a) with d(x, y) = 1. Then x, y ∈ ∆1

3(a)∪∆2
3(a)∪∆3

3(a)∪∆4
3(a).

Further, X(a, y) ∈ D(a, x) (when i = 1) and X(a, x) = X(a, y) (when
i 6= 1), and exactly one of the following three possibilities hold.

(i) i = 1, j = 3 with x + y ∈ α1(x,D(x, a)) and y + x ∈ α1,1(y, y +
b, X(y, a)) ({b} = ∆1(y)∩∆2

2(a)). Furthermore Γ0(y+x)\{x, y} ⊆
∆3

3(a).

(ii) i = 2, j = 3 with x + y ∈ α2,1(x,O(x, a), X(x, a)) and y + x ∈
α3,1(y, y + b, X(y, a)) ({b} = ∆1(y)∩∆2

2(a)). Furthermore Γ0(y +
x)\{x, y} ⊆ ∆3

3(a).
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(iii) i = 3, j = 4 with x + y = x + b (where {b} = ∆1(x) ∩∆2
2(a)) and

y + x ∈ α1(y, X(y, a)).

Proof . We begin by establishing that

(4.14.1) i ∈ {1, 2, 3, 4} and j ∈ {5, 6} cannot hold.

Suppose (4.15.1) is false. Then we have x ∈
⋃4

l=1 ∆l
3(a) and y ∈

∆5
3(a) ∪ ∆6

3(a) with d(x, y) = 1. By (2.15)(vii), (viii) we may choose
c ∈ ∆1(y) ∩ ∆2

2(a). Let {b} = {a, c}⊥ . From Lemma 3.8(i) we have
Γ3(a, c) = {X(a, c)} and, by Lemma 4.3(ii), Γ3(a, x) 6= ∅. Let X ∈
Γ3(a, x), and set X(a, c) = Y .

Since Γ3(a, y) = ∅, y /∈ Γ0(X) and consequently yτ(X) 6= y. Also we
have b /∈ Γ0(X), for otherwise an appeal to Lemma 4.1 gives either y ∈
Γ0(X) or d(b, x) = 1, which cannot hold as d(a, x) = 3. Thus bτ(X) 6= b.
Note that, as τ(X) ∈ Q(a), cτ(X) ∈ Γ0(Y ). Because y /∈ Γ0(Y ) we have
that yτ(X) /∈ Γ0(Y ). Therefore yτ(X) 6= y and yτ(X)τ(Y ) 6= y. So the
state of play is as follows.

c

b

y

a

y

c

τ(X)

b

y
y

τ(Y)

τ(X)τ(Y)
τ(X)

τ(X)

x

Observe that y + c 6= y + x 6= yτ(X) + cτ(X) (as Γ0(y + c) ∩ ∆2(a) 6=
∅ 6= Γ0(yτ(X) + cτ(X)) ∩ ∆2(a)). Also, d(yτ(X), yτ(Y )) = 1 yields, by
Lemma 3.4, the impossible c ∈ Γ0(y+x). Hence we deduce that yτ(Y ) ∈
∆1

2(y
τ(X)) with y, yτ(X)τ(Y ) ∈ {yτ(Y ), yτ(X)}⊥ and y 6= yτ(X)τ(Y ). Call-

ing upon Lemma 3.10 gives d(c, cτ(X)) = 1. This in turn implies that
c ∈ ∆1

2(b
τ(X)). But then b + c ∈ α3(b, b + a) which contradicts Lemma

3.8(i) and the fact that c ∈ ∆2
2(a). This completes the proof of (4.15.1).
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(4.14.2) i = 5 and j = 6 cannot hold.

Again we suppose this statement is false. So we have x ∈ ∆5
3(a),

y ∈ ∆6
3(a) with d(x, y) = 1. Putting m = |∆1(x) ∩ ∆6

3(a)| and n =
|∆1(y) ∩ ∆5

3(a)| we obtain m|∆5
3(a)| = n|∆6

3(a)|. Hence 24m = 5n,
using Lemma 4.11. Therefore 5|m. Now ∆1(x)∩∆6

3(a) must be a union
of Gax-orbits, and so, by (2.7) and Lemma 4.11(i), we deduce that
m ≥ 40. Hence 24.40 ≤ 5n, which gives n ≥ 192. Let b ∈ ∆1

2(y)∩∆1(a)
– by Lemma 4.5(iii) such a point b exists. From Lemma 4.12 a ∈ ∆5

3(x).
In view of (4.15.1) (with x playing the role of a, a the role of y and
b the role of x) b /∈ ∆1

3(x) ∪ ∆2
3(x). Using Lemma 4.12 again gives

x /∈ ∆1
3(b) ∪ ∆2

3(b). Hence (y + x) ∩ T (y, b) = ∅ and therefore y + x ∈
α0(y, T (y, b)). This shows that n ≤ 80.2 = 160, contrary to the earlier
prediction of n ≥ 192. Thus we have verified (4.15.2).

By (4.15.1) and (4.15.2) we have that x, y ∈
⋃4

l=1 ∆l
3(a). Now we

prove that

(4.14.3) X(a, y) ∈ D(a, x) (when i = 1) and X(a, x) = X(a, y) (when
i 6= 1).

If (4.15.3) is false, then we may find X ∈ Γ3(a, x) and Y ∈ Γ3(a, y)
for which y /∈ Γ0(X) and x /∈ Γ0(Y ). Then employing Lemma 3.2,
yτ(X) = xτ(Y ), which, by Lemma 4.4, forces ∆i

3(a) = ∆j
3(a). This, by

Lemma 4.8, is clearly impossible.

From (4.15.3) we get that x + y ∈ Γ1(X) for some X ∈ Γ3(a, y, x)
and then, consulting [5], we obtain one of the three listed possibilities,
so proving the lemma.

Lemma 4.15. Suppose x, y ∈ ∆i
3(a) where i ∈ {1, 2, 3, 4}. If

d(x, y) = 1, then D(a, x) = D(a, y) (for i = 1) and X(a, x) = X(a, y)
(for i 6= 1).

Proof . Suppose the lemma is false. Then we must have X ∈
Γ0(a, x) and Y ∈ Γ0(a, y) such that X /∈ D(a, y) and Y /∈ D(a, x)
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(if i = 1), X 6= X(a, y) and Y 6= X(a, x) (if i 6= 1). So y /∈ Γ0(X)
and x /∈ Γ0(Y ). Therefore, by Lemma 3.2, y 6= yτ(X) ∈ Γ0(x + y), in
addition to yτ(X) ∈ Γ0(Y ). Hence x + y ∈ Γ1(Y ) and then x ∈ Γ0(Y ),
a contradiction.
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