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Abstract 

In this paper, we generalize the notion of cyclicity of codes and study the 
relation between polycyclic codes and sequential codes over finite 
commutative QF rings. Furthermore, we characterize the family of some 
constacyclic codes. 

1. Introduction 

Let R be a finite commutative ring. Then a linear code C of length n over R is a 

non-empty submodule of the R-module ( ){ }....,, 10 RaaaR in
n ∈|= −  If C is a free 

R-module, then C is said to be a free code. A linear code nRC ⊆  is called cyclic if 

( ) Caaa n ∈−110 ...,,,  implies ( ) ....,,,, 2101 Caaaa nn ∈−−  The notion of cyclicity 

has been extended in various directions. 

In [6], López-Permouth et al. studied the duality between polycyclic codes and 
sequential codes. By the way, Wood established the extension theorem and 
MacWilliams identities over finite Frobenius rings in [9]. Greferath and O’Sullivan 
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studied bounds for block codes on finite Frobenius rings in [2]. In this paper, we 
generalize the result of [6] to codes with finite commutative QF rings. 

In Section 2, we define polycyclic codes over finite commutative rings. And we 
study the properties of polycyclic codes. In Section 3, we define sequential codes 
and consider the properties of sequential codes. In Section 4, we study the relation 
between polycyclic codes and sequential codes over finite commutative QF rings. 
And we characterize the family of some constacyclic codes. 

Throughout this paper, R denotes a finite commutative ring with ,01 ≠  n 
denotes a natural number with ,2≥n  unless otherwise stated. 

2. Polycyclic Codes 

A linear [ ]kn, -code over a finite commutative ring R is a submodule nRC ⊆  

of rank k. We define polycyclic codes over a finite commutative ring. 

Definition 1. Let C be a linear code of length n over R. C is a polycyclic code 

induced by c if there exists a vector ( ) n
n Rcccc ∈= −110 ...,,,  such that for every  

( ) ( ) ( ) ....,,,...,,,,0,...,,, 1101210110 CcccaaaaCaaa nnnn ∈+∈ −−−−  

In this case, we call c an associated vector of C. 

As cyclic codes, polycyclic codes may be understood in terms of ideals in 

quotient rings of polynomial rings. Given ( ) ,...,,, 110
n

n Rcccc ∈= −  if we let 

( ) ( ),XcXXf n −=  where ( ) ,01
1

1 cXcXcXc n
n +++= −
−  then the R-module 

homomorphism [ ] ( )( )XfXRRn →ρ :  sending the vector ( )110 ...,,, −= naaaa  

to the equivalence class of polynomial ,01
1

1 aXaXa n
n +++−
−  allows us to 

identify the polycyclic codes induced by c with the ideal of [ ] ( )( ).XfXR  

Definition 2. Let C be a polycyclic code in [ ] ( )( ).XfXR  If there exist monic 

polynomials g and h such that ( ) ( ) ( )fgC =ρ  and ,hgf =  then C is called a 

principal polycyclic code. 

Proposition 1. A code nRC ⊆  is a principal polycyclic code induced by some 
Cc ∈  if and only if C is a free R-module and has a nk ×  generator matrix of        
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the form 
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with an invertible .kng −  In this case, ( ) ( )01 gXgXgC kn
kn +++=ρ −

−  is the 

ideal of [ ] ( )( ).XfXR  

Proof. If C is principal polycyclic, then we may assume that ( ) ( ) ( ),fgC =ρ  

where the leading coefficient of g is invertible. Then { ( ) ( ) ( )}XgXXgXgX k ,...,,1−  

is a basis of ( ).Cρ  Hence, C is a free module and above G is a generator matrix of 

C. 

Conversely, suppose G is a generator matrix of C and kng −  is invertible. Put 

( ) .01
1

1 gXgXgXgXg kn
kn

kn
kn ++++= −−

−−
−

−  

Now let ( )Xh  be any polynomial whose leading coefficient is invertible and of 

degree k. Then ( ) ( ) ( )XgXhXf =  is a polynomial whose leading coefficient is 

invertible and of degree n. Then ( ) ( ) ( )fgC =ρ  is an ideal of [ ] ( ).fXR  

Therefore, C is principal polycyclic. ~ 

Definition 3. Let ( ) ( )fgC =  be a principal polycyclic code in [ ] ( )( ).XfXR  

If the constant term of g is invertible, then C is called a principal polycyclic code 
with an invertible constant term. 

For a ( ) ,...,,, 110
n

n Rcccc ∈= −  let cD  be the following square matrix: 
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It follows that a code nRC ⊆  is polycyclic with an associated vector nRc ∈  

if and only if it is invariant under right multiplication by .cD  

3. Sequential Codes 

Definition 4. Let C be a linear code of length n over R. Then C is a sequential 

code induced by c if there exists a vector ( ) n
n Rcccc ∈= −110 ...,,,  such that for 

every 

( ) ( ) .,...,,,,...,,, 111100121110 CcacacaaaaCaaa nnnn ∈+++∈ −−−−  

In this case, we call c an associated vector of C. 

Let C be a sequential code with an associated vector ( )....,,, 110 −= ncccc  

Then C is invariant under right multiplication by the matrix 
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On ,nR  define the standard inner product by 

∑ −

=
=

1

0
,

n

i ii yxyx  

for ( ),...,,, 110 −= nxxxx  ( ) ....,,, 110
n

n Ryyyy ∈= −  

The orthogonal of a linear code C is defined by 

{ }.anyfor0, CcacRaC n ∈=|∈=⊥  

Clearly, ⊥C  is a linear code. ⊥C  is called a dual code of C. 

Theorem 1. For a code ,nRC ⊆  we have the following assertions: 

(1) If C is polycyclic, then ⊥C  is sequential. 

(2) If C is sequential, then ⊥C  is polycyclic. 

Proof. (1) If C is polycyclic, then we have CaDc ∈  for any .Ca ∈  So, 
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0=baD t
c  for any .⊥∈ Cb  By ( ) ,0=bDa t

c  we get .⊥∈ CbD t
c  Hence, ⊥C  is 

sequential. 

(2) It is proved analogously to use c
t D  instead of .cD  ~ 

4. Codes over Finite Commutative QF Rings 

Let R be a (not necessarily commutative) ring. Then a left R-module P is 
projective if for every R-epimorphism NMg →:  and every R-homomorphism 

,: NPf →  there exists an R-homomorphism MPh →:  with .hgf =  

A left R-module Q is injective if for every R-monomorphism MNg →:  and 

every R-homomorphism ,: QNf →  there exists an R-homomorphism QMh →:  

with .ghf =  

The ring R is said to be left (resp. right) self-injective if R itself is injective as 
left (resp. right) R-module. If both conditions hold, then R is said to be a self-
injective ring. 

A left R-module M is Artinian if M satisfies the descending chain condition on 
submodules. A ring R is left (resp. right) Artinian if R itself is Artinian as left (resp. 
right) R-module. If both conditions hold, then R is said to be an Artinian ring. 

It is clear that a finite ring is an Artinian ring. 

Definition 5. For a (not necessarily commutative) ring R, R is called a QF 
(quasi Frobenius) ring if R is left Artinian and left self-injective. 

It is well known that the definition of a QF ring is left-right symmetric. For any 

R-submodule CRC n ,⊆  is defined by 

{ ( ) ( ) }.0, =λ|∈λ= CRRHomC n
R  

Theorem 2. For a (not necessarily commutative) ring R, the following 
conditions are equivalent: 

(1) R is a QF ring. 

(2) For submodules ., MMRM n =⊆  

Proof. See [9, Theorem 7.2].  
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Theorem 3. For a (not necessarily commutative) ring R, the following are 
equivalent: 

(1) R is a QF ring. 

(2) A left module is projective if and only if it is injective. 

Proof. See [5, Theorem 15.9]. ~ 

We define an R-module homomorphism RRn
x →δ :  as ( ) xyyx ,=δ  for 

any .nRx ∈  

Proposition 2. The homomorphism CC →δ ⊥:  sending x to xδ  is an 

isomorphism of R-modules. 

Proof. Straightforward. ~ 

Theorem 4. Let R be a finite commutative QF ring. If nRC ⊆  is a free                

R-module of finite rank, then ⊥C  is a free R-module of .rankCnrankC −=⊥  

Proof. Let .rankCk =  Since C is a free R-module, it is a projective R-module. 

Then C is an injective R-module. Hence, C is a direct summand of .nR  And there 

exists some submodule K such that .KCRn ⊕=  Then K is a free R-module of rank 
.kn −  Therefore, we can get the following: 

 ( ) ( ) .,, knkn
RR RRRHomRKHomCC −−⊥ ≅≅≅≅  ~ 

Corollary 1. Let R be a finite commutative QF ring. For a submodule ,nRC ⊆  

( ) .. CC =⊥⊥  

Proof. By Theorem 4, ( )⊥⊥= CrankrankC  and ( ) .⊥⊥⊆ CC  Since the orders 

of C and ( )⊥⊥C  are finite, we get ( ) .⊥⊥= CC  ~ 

By Theorem 1 and Corollary 1, we can get the following Corollary 2. 

Corollary 2. Let R be a finite commutative QF ring. Then C is a polycyclic code 

if and only if ⊥C  is a sequential code. 

We determine the parity check matrix of a constacyclic code. 
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Proposition 3. Let R be a finite commutative QF ring and [ ].XRXf n ∈α−=  

Suppose [ ],XRhgf ∈=  where g and h are polynomials of degree kn −  and k, 

respectively. Let C be the linear [ ]kn, -code corresponding to the ideal generated by 

g in [ ] ( )α−nXXR  and ( ) .01
1

1 hXhXhXhXh k
k

k
k ++++= −

−  Then C has 

the ( ) nkn ×−  parity check matrix H given by 
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Proof. For any ,Ca ∈  it holds 0=ah  in [ ] ( ).α−nXXR  Now ( )ahdeg  

kn +<  and we deduce the coefficients of the monomials 11 ...,,, −+ nkk XXX  in 

this product ah must be zero. Since R is commutative and ∑ = − =k
j jjl ha0 0  

( ),1...,,1, −+= nkkl  we get .0=Ha  As the leading coefficient of h is 

invertible, the rank of above matrix is .kn −  Hence, we get the result. ~ 

Definition 6. Let R be a finite commutative QF ring. For a sequential code 

,nRC ⊆  C is called a principal sequential code if ⊥C  is a principal polycyclic 
code. And C is called a principal sequential code with an invertible constant term if 

⊥C  is a principal polycyclic code with an invertible constant term. 

Theorem 5. Let R be a finite commutative QF ring. Suppose C is a free code of 

.nR  Then the following conditions are equivalent: 

(1) Both C and ⊥C  are principal polycyclic codes with invertible constant 
terms. 

(2) Both C and ⊥C  are principal sequential codes with invertible constant 
terms. 

(3) C is a principal polycyclic and sequential code with an invertible constant 
term. 
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(4) ⊥C  is a principal polycyclic and sequential code with an invertible constant 
term. 

(5) ( ) ( )α−= nXgC  is a constacyclic code with an invertible α. 

(6) ( ) ( )β−=⊥ nXqC  is a constacyclic code with an invertible β. 

Proof. The equivalence of first four statements is from Corollary 2. 

(1) ⇒ (5) If C and ⊥C  have generator matrices of the forms 
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⎛
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respectively, then as ,0=HGt  we get ( ) ( ) ,00hgXhgXhXg n
kkn += −  where 

( ) ∑= i
i XgXg  and ( ) ∑= .j

j XhXh  Since ,kng −  ,0g  kh  and 0h  are invertible, 

C is constacyclic. 

(5) ⇒ (1) Clearly, C is a principal polycyclic code with an invertible constant 

term. Next let [ ]1, −XXR  be a Laurent polynomial ring. Then we can define a map 

[ ] [ ]1,: −→ϕ XXRXR  such that ∑ ∑= =
−n

i
n
i

i
i

i
i XaXa0 0 .  For [ ],, XR∈ηξ  

we get ( ) ( ) ( )ηϕ+ξϕ=η+ξϕ  and ( ) ( ) ( ).ηϕξϕ=ξηϕ  If ,ghX n ⋅=α−  then we 

have ( ) ( ) ( ) .1 nknnkknk XXXXXghX α−=⋅α−ϕ⋅=⋅ϕ⋅ϕ⋅ −−  By ( ) =ϕ⋅ hX k  
k

kk XhXhh 01 +++ −  and Proposition 3, ⊥C  is a constacyclic code with the 

generator matrix ( ).hX k ϕ⋅  That is, ⊥C  is a principal polycyclic code with an 

invertible constant term. 

Since C and ⊥C  are symmetric, we can get (1) ⇒ (6), similarly. ~ 
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