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Abstract 

In this paper, we present a new algorithm for planar offset approximation 
based on precise representation of the sweeping circle. The basic idea of 
such algorithms is to regard the unit normal of the original curve as a unit 
circular arc, to express it as a rational curve precisely, and to perform a 
reparameterization work to approximate the offset curve. Compared with 
previous algorithms, our new algorithm overcomes the shortcomings of 
most of them which could not offset circle segments precisely, or those 
which could but highly dependent on sample technique, or those whose 

error estimation was roughly given. Furthermore, the method yields 1C  
continuous offset curve approximation with smaller numbers of 
segmented curves and control points for regular Bézier or rational Bézier 
curves, and so it is of much significance in terms of saving computing 
time, reducing the data storage and smoothing curves entirely. 

1. Introduction 

Offset curves/surfaces, also called parallel curves/surfaces, are defined as locus 
of the points which are at constant distance r along the normal from the original 
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curves/surfaces. Offsets are widely used in various CAD/CAM (Computer Aided 
Design and Computer Aided Manufacturing) areas such as tool path generation, 3D 
NC machining, solid modeling, and so on [1-5]. 

Given a planar parametric curve ( ) ( ) ( )( ),, tytxt =C  the offset curve with an 

offset radius r is defined by ( ) ( ) ( ),trttr NCC +=  where ( ) ( ( ) ( ))txtyt ′−′= ,N  

( ) ( )tytx 22 ′+′  is the unit normal of ( ).tC  In general, the offset curve is not 

rational because of the square root function in the denominator of ( ) ,tN  and so is 

hard to be applied in CAD system. 

Although Farouki and Sakkalis [6] introduced Pythagorean hodograph (PH) 
curves, whose offsets are rational curves, they were not widely used due to less 
flexibility. So approximation techniques seem to be a more feasible solution to the 
planar curve offsetting. 

Several research results on offset approximation have been reported such as 
translating methods [7-9], interpolation and fitting algorithms [10-12]. Cobb [7] 
translated each control point, whereas Tiller and Hanson [8] translated each edge of 
the control polygon to obtain a new control net for approximated offset curve. 
Unfortunately, Cobb [7] always underestimated the offset [13]. Tiller and Hanson 
[8] had a similar performance to that of Cobb [7] for offsetting high degree curves. 

As an interpolation and fitting algorithm, Hoschek [10] suggested a least 
squares solution to determine the hodographs at the endpoints. Piegl and Tiller [11] 
approximated the offsets of NURBS curves/surfaces by interpolating sample points. 
Li and Hsu [12] used Legendre series. However, those interpolation and fitting 
algorithms all estimated the approximation error only at finite sample points, thus 
there is no guarantee that the exact error is bounded by the given tolerance. 

Taking a slightly different approach, in 1996, Lee et al. [14] proposed a novel 
algorithm CAO, and developed another two methods MO and CAMO in [15, 16]. 
They considered the offset problem as a sweeping problem in which the centre of a 
circle with the radius r is moving along the given planar curve. The boundary of the 
sweep is obtained as an envelope curve of the swept circle, which is identical to the 
exact offset curve. 

The method CAO [14] approximated the offset circle with piecewise quadratic 
polynomial Bézier curves. Ahn et al. [17] developed the idea by using conic 
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approximation technique [18], and yielded a Bézier curve with the same degree as 
the original curve. However, both the methods could not offset arcs precisely, which 
are widely applied in engineering. The method MO and its variants LRC, SRC [15] 
used the exact rational representation of the swept circle, and then approximated the 
reparameterization function for offset approximation. The methods could offset arcs 
precisely. However, MO and SRC methods are highly dependent on sample 
techniques. So the approximation effect is quite unstable. Besides the final 
approximated offset could not be obtained until a program is run, which made the 
methods inconvenient for application. LRC used a simple linear transformation, 
which is usually improper for most approximations. In addition, the approximated 

offsets of CAO, MO and their variants are at most 1G  continuous. 

To modify the shortcomings of previous offset approximation algorithms, in this 
paper, we introduce a new method based on circle representation. The basic idea is 
to view the locus of the unit normal of the original curve as a circular arc, represent 
it with a rational polynomial, and then to reparameterize its convolution with the 
original curve in a new way to approximate the offset. Our method could offset 
circles precisely and generate high quality approximation without using samples. 
The global error can also be controlled by an effective error bound. Experimental 
results show that our approach outperforms the previous methods in the error bound 
and the number of curve subdivision. 

2. Circle Representation 

In this section, we review the quadratic rational Bézier representation of circular 
arc with the central angle 2θ, where .220 π<θ<  The result will be used in the 

construction of the approximated offset curve in Section 3. 

The quadratic rational Bézier curve with three control points 10, PP  and 2P  

and three weights 10, ωω  and 2ω  is defined by 
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( ) ( )
( ) ( )

.10,
121

121

2
2

10
2

22
2

1100
2

≤≤
ω+ω−+ω−

ω+ω−+ω−
= s

ssss
ssss PPP  



ZHAO HONGYAN 204 

 

Figure 1. Circular arc with quadratic rational representation. 

For the arc representation (see Figure 1), we assume that ( ),0,10 =P  =1P  

( ),tan,1 θ  ( ),2sin,2cos2 θθ=P  ,120 =ω=ω  .cos1 θ=ω  The two components 

of ( )sQ  are 
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3. Offset Curve Approximation 

This section considers a regular parametric polynomial/rational curve ( )tC  of 

degree d. In the following, its offset approximation will be represented with 
piecewise rational curve segments. The approximation is based on the original curve 
( ),tC  the quadratic rational representation ( )sQ  of the circle, and the parameter 

transformation ( ).tss =  

Consider a simple kind of original curve ( ) ( ) ( )( ) ( )10, ≤≤= ttytxtC  which 

satisfies the following conditions. ( )tC  is convex for ,10 ≤≤ t  and the direction 

angle range of the normal vectors of the curve is less than .2π  In addition, for the 

beginning point ( ),0C  there should be ( ) ( ) ( ) .00,000 >′=′= yxy  For those curves 

not satisfying the above conditions, a rotation can be done to bring them into accord. 
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Here we define a mapping [ ] ( ) ( )
( ) [ ],2,0arctan1,0: π∈⎟

⎠
⎞⎜

⎝
⎛

′
′

−=α∈α ty
txtt  where 

( )tα  is the directed angle from the positive half of X-axis to the normal ( )tN  at the 

original curve point ( ).tC  Consequently, ( ) .00 =α  Assume that ( ) ,21 θ=α  or 

( ) ( ) .2cos12sin1 θ′−=θ′ xy  Thus the locus of ( )tN  is a unit circular arc with the 

central angle 2θ. It can be represented by a quadratic rational Bézier curve ( )sQ  

( )10 ≤≤ s  defined in Section 2. Then ( )trC  can be interpreted as a convolution of 

( )tC  and ( )sQ  with a non-rational reparameterization ( ).tss =  

We may approximate the reparameterization by a rational polynomial, 

and   then   derive the approximated offset curve ( ) ( ) ( )( ).tsrtta
r QCC +=  The 

reparameterization may be designed to make ( ) 1Cta
rC  continuous, interpolate the 

endpoints of the exact offset, and offset arcs precisely. 

In this case, the approximation error only comes from the inconsistency of the 
directions of ( )( )tsQ  and ( ).tN  Error analysis in Section 4 shows that the error is 

much smaller than that of Lee et al. [14]. So our algorithm not only improves the 
continuity but also reduces the approximation error. 

Inspired by Lee et al. [14], the approximated reparameterization may be defined 
by 

( ) ( )( ) ( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( ) ,11

11
tyhttgtxftte
tydttctxbttats ′+−+′+−
′+−+′+−=  

where a, b, c, d, e, f, g, h are undetermined coefficients. 

Note that ( )ta
rC  should be a 1C  endpoints interpolation of the exact offset, 

which requires that 

( ) ( )( ) ( ) .1,0,, ===
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dt
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itit

NQ  (1) 

In addition, arcs should be offset precisely. Assume that the arc is represented by 

( ) ( ( ) ( ))tytxt ∗∗∗ = ,C  
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In this case, ( ) ( )( )tsrt QC +∗  should be equal to the exact offset. That is, 

( ) ( )( ) ( ) ( ),trttsrt ∗∗∗ +=+ NCQC  

where ( )t∗N  is the unit normal of ( ).t∗C  

It is easy to transform the above equation to 

( ).tst =  (2) 

Solving the linear system of equations (1) and (2), we obtain 

,2coscos,0,1,cos θ−θ====θ= edcba  

.cos2sin,2sin,2coscos1 θθ−=θ−=θθ−= hgf  

Then the reparameterization ( )ts  is represented by 

( ) ( )[ ] ( )
( )( ) ( )[ ] ( ) ( )[ ] ( ) .cos12sin2coscos112coscos

1cos
tytttxtt

txttts ′θ+−θ−′θθ−+−θ−θ
′+−θ=  

 (3) 

Here we give some explanations for ( ) .11 =s  Applying ( ) =θ′ 2sin1y ( ) θ′− 2cos1x  

to ( ),1s  we have 

( ) ( ) ( ) .12coscos2sin2sin2coscos1
2sin1 =

θθθ−θ−θθ−
θ−=s  

For those regular, but not simple original curves, it should be subdivided so that 
each segment is convex or concave, and the range of direction angles of normal 
vectors is less than .2π  Then the parameter domain should be transformed to [ ]1,0  

by a simple translation and scaling. Finally, a rotation is required to locate the 
beginning point on the X-axis, with its tangent parallel to the positive Y-axis. 

For a polynomial curve ( )tC  of degree d, the degree of our approximated offset 

curve is 3d, and for a rational curve, the degree is ,25 −d  a little higher than 

23 −d  and 45 −d  of the method suggested by Lee et al. [14]. However, Section 5 
shows that the experimental results of our method are much better. 
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4. Error Analysis 

 

Figure 2. The curve segment is offset in the convex direction. 

It has been mentioned that, for any [ ],1,0∈t  the distance between the original 

curve point ( )tC  and the approximated offset point ( )ta
rC  is guaranteed to be equal 

to the offset radius r, while the direction of the difference vector ( ) ( )tta
r CC −  is 

inconsistent with that of the normal vector ( ).tN  Assume that the deflection angle 

between ( ) ( )tta
r CC −  and ( )tN  is β, and ( )( ) ( ).cos tts NQ ⋅=β  In the 

neighborhood of the point ( ),tC  we can find a unique point ( )tt Δ+C  on the 

original curve, at which the normal line just passes through ( ).ta
rC  Here tΔ  is a 

slight increment and [ ].1,0∈Δ+ tt  That is, for any [ ],1,0∈t  a constant λ can be 

found so that ( ) ( ) ( ) ( )( ),tsrtttrtt QCNC +=Δ+λ+Δ+  and therefore ( )1−λr  is 

considered as the actual approximation error [19]. Denote the unit normal vector at 
( )tt Δ+C  by ( ).tt Δ+N  Assume that the direction angle between ( )tt Δ+N  and 

( )( )tsQ  is γ, and that between ( )tt Δ+N  and ( ) ( )ttt Δ+− CC  is δ, then we have 

( )( ) ( ) ( ) ( ) ( )ttr
tttttts Δ+⋅Δ+−+Δ+⋅=λ NCCNQ  

( ) ( ) .coscos δ⋅
Δ+−

+γ= r
ttt CC  

To estimate ( ),1−λr  the error bounds proposed in [19] are used. The original 

curve segments are classified into two kinds. For those offset in their convex side, 
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the error bound is 

( ) ,01sin2 ≤−λ≤β− rr  (4) 

and for those offset in their concave side, the error bound is 

( )
( ) ( )

( )
,

cos
21cos

2sin21
sincos

sin
2

2
2

22

2

η−β

η−η+β
⎟
⎠
⎞⎜

⎝
⎛ β≤−λ≤

β+η−β

β− rrr  (5) 

where ( ) ,tr ρ=η  and ( )tρ  is the curvature radius function of the original curve. 

 

Figure 3. The curve segment is offset in the concave direction. 

For those points where ρ is close to the offset radius r, the bound in equation (5) 
may be too large to be estimated. However, since self-intersections would happen in 
the neighborhood of those points, they are usually intentionally eliminated in 
advance, in practice. Thus we can give no consideration of them. Hence a positive 

constant ρ=η>η∗ r  can be found for any point ( ),tC  and then in equation (5), 

replacing η with ∗η  we obtain an error bound only related to β. 

Note that ( )( ) ( ).cos tts NQ ⋅=β  Hence the range of βcos  or β can be derived 

by symbolic computation. Applying it to equations (4) and (5), we get the error 
bounds for the two cases, respectively. Clearly, both the bounds are dependent on θ. 
Numerical analysis and symbol computation indicate that our error bound is at least 

(( ) ) ,6θO  better than (( ) )4θO  in Lee et al. [14]. 
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5. Experimental Results 

In this section, we compare experimental results of our method with previous 
methods. The examples are the same as those in Lee et al. [14]. The total number of 
the control points of the approximated offset curve is compared between different 
algorithms. 

The first example is the circle represented by piecewise quadratic rational 
Bézier curve segments. It is clear that our algorithm can precisely offset it. The 
resultant offset has the same degree and control points with the exact offset curve. 

 

δ  Cob Elb 2Elb  Til Lst 2Lst  Lee Zhao 

110−  28 19 22 25 16 31 78 73 

210−  73 57 55 67 48 49 92 73 

310−  208 174 190 202 84 94 141 109 

410−  637 417 550 640 138 166 211 136 

510−  1846 1357 1690 1918 240 277 365 172 

Figure 4. Uniform cubic B-spline curve and its offset. 

For the other example, the comparisons are shown in the table in Figure 4. The 
input curve in Figure 4 is a uniform cubic B-spline curve with 7 control points: 
(−3.01619, 2.34143), (−3.97193, −2.20842), (−1.07045, 0.0722807), (0.319568, 
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−2.77522), (−0.152767, 2.299), (2.92416, −0.939865), (2.8027, 3.02775). An offset 
radius 0.5 is used for the example. The input curve in our algorithm generates 
less control points under the same tolerance than the other methods, especially for 

high precision offset approximation. In addition, the approximated offset is 1C  

continuous. Many other algorithms achieve only at most 1G  continuity. 

Although it is difficult to represent an accurate error bound for the global 
control due to the complicated expression of the normal ( ),tN  a practical one can be 

found by a statistical technique, based on strict numerical analysis of many 
examples. For the length limitation of the paper, below we only give some 
explanations to the above two examples. 

The uniform cubic B-spline curve (see Figure 4) can be divided into four curve 

segments. Compute 2θ and β2sin  for each curve segment. By fitting technique, we 

have ( ) ( ) ( ) 182.62181.62105.62 sin024.0sin,sin03.0sin,sin019.0sin θ≈βθ≈βθ≈β  

and ( ) .sin0214.0sin 175.62 θ≈β  So for the cubic B-spline curve, β2sin  is at least 

(( ) ).6θO  

It is well known that data explosion is a serious problem in offset computation. 
Therefore, it is necessary to store only a minimum amount of computation results. 
Under such consideration, our algorithm is of much significance because of its 
excellent approximation effect. 

6. Conclusion 

We presented an offset curve approximation method based on exact presentation 
for the swept circle. Theoretical analysis and experimental results show that our 
algorithm is superior to most of the other methods in terms of the approximation 
effect, especially for high precision approximation. Our algorithm can offset circles 
without using sample techniques, and applies a more effective error bound. 

Furthermore, 1C  offset approximation is yielded. 

Like Lee et al.’s method [14], the main disadvantage of our method is that 
the approximated offset curves are rational curves of relatively high degree. The 
degrees are 3d and ,25 −d  respectively, a little higher than 23 −d  and 45 −d  in 
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Lee et al. [14], where d is the degree of the original Bézier or rational Bézier curve. 
However, it is deserved at the expense of little increase of the degree to achieve 
much better approximation with a smaller number of segmented curves and control 
points, especially for high precision approximation. 
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