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Abstract
In this paper, observing an interesting phenomenon of ‘scattering’ of the

zeros of twisted g-Euler polynomials Ej  w(X), we investigate the

complex roots of twisted g-Euler polynomials E,, 4 -

1. Introduction

In this paper, we investigate the complex roots of twisted g-Euler polynomials
En, q,w- The outline of this paper is as follows: In Section 2, we introduce twisted

g-Euler polynomials En,q,w(x)- In Section 3, we display distribution and structure
of the zeros of twisted g-Euler polynomials En,qyw(x) by using computer. By using

the results of our paper, the readers can observe the regular behavior of the roots of
twisted g-Euler polynomials En’qyw(x). Finally, we carry out computer experiments

for demonstrating a remarkably regular structure of the complex roots of twisted
g-Euler polynomials E, 4 \(x). Throughout this paper, we always make use of the

following notations: C denotes the set of complex numbers and
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First, we introduce the g-Euler numbers and Euler polynomials. The g-Euler
numbers E, o are defined by the generating function:

0

F(t _,f,2, 1.1
qe+1z . of. 2] (11)

where we use the technique method notation by replacing (Eq)n by Ep q(n >0)

symbolically. We consider the Euler polynomials E,(x) as follows:

2 o n
F(x, 1) = [t]q eXt=ZEn,q(x)tn—!. (1.2)

ge” +1 e

2. Twisted g-Euler Numbers and Polynomials

Our primary aim in this section is to introduce the twisted g-Euler numbers
En, q,w and polynomials En'q‘w(x) and investigate their properties. Let q be a

complex number with |q| <1 and w be the pN th root of unity. By the meaning of

(1.1) and (1.2), let us define the twisted g-Euler numbers E, ; ,, and polynomials

En,q w(x) as follows:

(2] = t"
Fy ()= —3— = E E —, (2.1)
aw wae! +1 e AW
Faw(d )= ——0 e = >"E, o (x = 2.2)
q,w( ) qu +1 n=0 n,q, wl )

The following elementary properties of twisted g-Euler numbers E, 4, and
polynomials En'q‘w(x) are readily derived from (2.1) and (2.2). We, therefore,

choose to omit the details involved.
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Proposition 1 (The several values).

[2],

E X ,
Oq,w( ) 1+ qw

[2],(—=qw + X + qwx)
El,q,W(X)z d 2

1+ qw)

[] (—qw + q°w? — 2qwx — 2g°w?x + X2 + 2qwx? + g°w

EZ,q,W(X)—

1+ qw)®

Proposition 2. For any positive integer n, we have

Enq, w(X) = Z{ JEk a WX

Proposition 3. For n > 0, we have

memW+n”+EmmW:{

[2l;, ifn=0
0, if n>0,

147

with the usual convention about replacing (Eq'W)n by Ep gw in the binomial

expansion.
Proposition 4 (Differential relation).

0
X En, q,w(X) =nEp 1 g, w(X).

Proposition 5 (Integral formula).

J. En_1,qw(X)dx = ( n,q,w(0) = En g w(@))

Theorem 6 (Addition theorem).

En,q,w(x +y)= Z[:j Ek,q,w(x) yn—k

k=0
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Theorem 7 (Difference equation).
WOEp, g, w(X +1) + Ep g w(X) = [2], x".

Theorem 8 (Theorem of complement).
En, g w(l+X)=(-1)" w‘lEn‘

q—lyw—l(_x)1

1
En,qw@—%) = (-1)"w B gt w100

3. Distribution of Zeros of Twisted g-Euler Polynomials

This section aims to discover new interesting pattern of the zeros of twisted
g-Euler polynomials E, 4 (x) and to demonstrate the benefit of using numerical
investigation to support theoretical prediction. First, we investigate the zeros of

27
twisted g-Euler polynomials E,,  ,(x) by using computer. Let w =e N in C. We

plot the zeros of Ej, o w(x) for N =5, 7,9, 11 (Figure 1).
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Figure 1. Zeros of E, g w(X).
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2mi
In Figure 1(top-left), we choose n =20,q=1/2 and w=e 5. In Figure

2mi
1(top-right), we choose n =20, q=1/2 and w=e 7 . In Figure 1(bottom-left),
27i

we choose n =20,q=12 and w= e 9. In Figure 1(bottom-right), we choose

27

n=20,q=12and w=ell

Stacks of zeros of Ej g (x) for g =1/2,1<n <20 from a 3-D structure are

27
presented (Figure 2). In Figure 2, we choose w = ¢ 5 .

Figure 2. Stacks of zeros Ey, g (x) for 1 <n < 20.

Our numerical results for numbers of real and complex zeros of E,  (x) are

displayed in Table 1.

Table 1. Numbers of real and complex zeros of Ej, ¢ y(x)

_ i 27i
w==¢e o3

2mi
w =e >

W

degree n| real zeros complex zeros|real zeros complex zeros| real zeros complex zeros

1 1 0 0 1 0 1
2 0 2 0 2 0 2
3 1 2 0 3 0 3
4 0 4 0 4 0 4
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5 1 4 0 5 0 5
6 0 6 0 6 0 6
7 1 6 0 7 0 7
8 0 8 0 8 0 8
9 1 8 0 9 0 9
10 0 10 0 10 0 10
11 1 10 0 11 0 11
12 0 12 0 12 0 12
13 1 12 0 13 0 13

In Table 1, we choose q = 1/2.

We calculated an approximate solution satisfying En’qlw(x), x e C. The

results are given in Table 2.

Table 2. Approximate solutions of Ej ¢ ,(x) =0

degree n X
1 -1.0000
2 —-1.0000 —1.4142i, -1.0000 + 1.4142i
3 —-1.8846, —0.5577 — 2.5665i, —0.5577 + 2.5665i
4 —2.076 —1.256i, —2.076 + 1.256i, 0.0756 — 3.5686i,
0.0756 + 3.5686i
5 —2.739, -1.951 — 2.402i, —1.951 + 2.402i,
0.820 — 4.468i, 0.820 + 4.468i
6 —2.999 —1.188i, —2.999 + 1.188i, —1.640 — 3.461i,
-1.640 + 3.461i, 1.640 — 5.290i, 1.640 + 5.290i

In Table 2, we choose q =1/2 and w = e™.
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Figure 3. Zero contour of Ey, g y(X).

The plot above shows E; g (x) for real —9/10 < q <9/10 and -3 < x <3,
with the zero contour indicated in black (Figure 3). In Figure 3(top-left), we choose
n=1 and w=e™ In Figure 3(top-right), we choose n =2 and w=e™. In
Figure 3(bottom-left), we choose n = 3 and w = e™. In Figure 3(bottom-right), we
choose n =4 and w = e™.

We shall consider the more general open problem. How many roots do
En,q w(X) have? Prove or disprove: E, g (X) has n distinct solutions. Find the

numbers of complex zeros CEn,q,w(X) of Ej g w(X), Im(x) = 0. Prove or give a
counterexample: Since n is the degree of the polynomial E, o (x), the number of
real zeros Rg, qw(X) lying on the real plane Im(x) =0 is then Rg aw) =

n- CEn,q w(x)» Where CEn,q,w(X) denotes complex zeros. See Table 1 for tabulated

values of REn,q,W(X) and CEn,q,W(X)' The theoretical prediction on the zeros of

En,qw(X) is await for further study. For related topics the interested reader is
referred to [1-5].
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