A NOTE ON THE COMPLEX ROOTS OF TWISTED q-EULER POLYNOMIALS

C. S. RYOO

Department of Mathematics
Hannam University
Daejeon 306-791, Korea

Abstract

In this paper, observing an interesting phenomenon of 'scattering' of the zeros of twisted q-Euler polynomials $E_{n, q, w}(x)$, we investigate the complex roots of twisted q-Euler polynomials $E_{n, q, w}$.

1. Introduction

In this paper, we investigate the complex roots of twisted q-Euler polynomials $E_{n, q, w}$. The outline of this paper is as follows: In Section 2, we introduce twisted q-Euler polynomials $E_{n, q, w}(x)$. In Section 3, we display distribution and structure of the zeros of twisted q-Euler polynomials $E_{n, q, w}(x)$ by using computer. By using the results of our paper, the readers can observe the regular behavior of the roots of twisted q-Euler polynomials $E_{n, q, w}(x)$. Finally, we carry out computer experiments for demonstrating a remarkably regular structure of the complex roots of twisted q-Euler polynomials $E_{n, q, w}(x)$. Throughout this paper, we always make use of the following notations: \mathbb{C} denotes the set of complex numbers and 2010 Mathematics Subject Classification: 11B68, 11S40, 11S80.

Keywords and phrases: Euler numbers, Euler polynomials, twisted q-Euler numbers, twisted q-Euler polynomials.

Received June 2, 2011

$$
[x]_{q}=\frac{1-q^{x}}{1-q}
$$

First, we introduce the q-Euler numbers and Euler polynomials. The q-Euler numbers $E_{n, q}$ are defined by the generating function:

$$
\begin{equation*}
F(t)=\frac{[2]_{q}}{q e^{t}+1}=\sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!}, \text { cf. [2] } \tag{1.1}
\end{equation*}
$$

where we use the technique method notation by replacing $\left(E_{q}\right)^{n}$ by $E_{n, q}(n \geq 0)$ symbolically. We consider the Euler polynomials $E_{n}(x)$ as follows:

$$
\begin{equation*}
F(x, t)=\frac{[2]_{q}}{q e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!} . \tag{1.2}
\end{equation*}
$$

2. Twisted q-Euler Numbers and Polynomials

Our primary aim in this section is to introduce the twisted q-Euler numbers $E_{n, q, w}$ and polynomials $E_{n, q, w}(x)$ and investigate their properties. Let q be a complex number with $|q|<1$ and w be the p^{N} th root of unity. By the meaning of (1.1) and (1.2), let us define the twisted q-Euler numbers $E_{n, q, w}$ and polynomials $E_{n, q, w}(x)$ as follows:

$$
\begin{align*}
& F_{q, w}(t)=\frac{[2]_{q}}{w q e^{t}+1}=\sum_{n=0}^{\infty} E_{n, q, w} \frac{t^{n}}{n!}, \tag{2.1}\\
& F_{q, w}(x, t)=\frac{[2]_{q}}{w q e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n, q, w}(x) \frac{t^{n}}{n!} . \tag{2.2}
\end{align*}
$$

The following elementary properties of twisted q-Euler numbers $E_{n, q, w}$ and polynomials $E_{n, q, w}(x)$ are readily derived from (2.1) and (2.2). We, therefore, choose to omit the details involved.

Proposition 1 (The several values).

$$
\begin{aligned}
& E_{0, q, w}(x)=\frac{[2]_{q}}{1+q w}, \\
& E_{1, q, w}(x)=\frac{[2]_{q}(-q w+x+q w x)}{(1+q w)^{2}}, \\
& E_{2, q, w}(x)=\frac{[2]_{q}\left(-q w+q^{2} w^{2}-2 q w x-2 q^{2} w^{2} x+x^{2}+2 q w x^{2}+q^{2} w^{2} x^{2}\right)}{(1+q w)^{3}}
\end{aligned}
$$

Proposition 2. For any positive integer n, we have

$$
E_{n, q, w}(x)=\sum_{k=0}^{n}\binom{n}{k} E_{k, q, w^{x^{n-k}}}
$$

Proposition 3. For $n \geq 0$, we have

$$
w q\left(E_{q, w}+1\right)^{n}+E_{n, q, w}= \begin{cases}{[2]_{q},} & \text { if } n=0 \\ 0, & \text { if } n>0\end{cases}
$$

with the usual convention about replacing $\left(E_{q, w}\right)^{n}$ by $E_{n, q, w}$ in the binomial expansion.

Proposition 4 (Differential relation).

$$
\frac{\partial}{\partial x} E_{n, q, w}(x)=n E_{n-1, q, w}(x)
$$

Proposition 5 (Integral formula).

$$
\int_{a}^{b} E_{n-1, q, w}(x) d x=\frac{1}{n}\left(E_{n, q, w}(b)-E_{n, q, w}(a)\right) .
$$

Theorem 6 (Addition theorem).

$$
E_{n, q, w}(x+y)=\sum_{k=0}^{n}\binom{n}{k} E_{k, q, w}(x) y^{n-k}
$$

Theorem 7 (Difference equation).

$$
w q E_{n, q, w}(x+1)+E_{n, q, w}(x)=[2]_{q} x^{n} .
$$

Theorem 8 (Theorem of complement).

$$
\begin{aligned}
& E_{n, q, w}(1+x)=(-1)^{n} w^{-1} E_{n, q^{-1}, w^{-1}}(-x) \\
& E_{n, q, w}(1-x)=(-1)^{n} w^{-1} E_{n, q^{-1}, w^{-1}}(x)
\end{aligned}
$$

3. Distribution of Zeros of Twisted q-Euler Polynomials

This section aims to discover new interesting pattern of the zeros of twisted q-Euler polynomials $E_{n, q, w}(x)$ and to demonstrate the benefit of using numerical investigation to support theoretical prediction. First, we investigate the zeros of twisted q-Euler polynomials $E_{n, q, w}(x)$ by using computer. Let $w=e^{\frac{2 \pi i}{N}}$ in \mathbb{C}. We plot the zeros of $E_{n, q, w}(x)$ for $N=5,7,9,11$ (Figure 1).

Figure 1. Zeros of $E_{n, q, w}(x)$.

In Figure 1(top-left), we choose $n=20, q=1 / 2$ and $w=e^{\frac{2 \pi i}{5}}$. In Figure 1(top-right), we choose $n=20, q=1 / 2$ and $w=e^{\frac{2 \pi i}{7}}$. In Figure 1(bottom-left), we choose $n=20, q=1 / 2$ and $w=e^{\frac{2 \pi i}{9}}$. In Figure 1(bottom-right), we choose $n=20, q=1 / 2$ and $w=e^{\frac{2 \pi i}{11}}$.

Stacks of zeros of $E_{n, q, w}(x)$ for $q=1 / 2,1 \leq n \leq 20$ from a 3-D structure are presented (Figure 2). In Figure 2, we choose $w=e^{\frac{2 \pi i}{5}}$.

Figure 2. Stacks of zeros $E_{n, q, w}(x)$ for $1 \leq n \leq 20$.
Our numerical results for numbers of real and complex zeros of $E_{n, q, w}(x)$ are displayed in Table 1.

Table 1. Numbers of real and complex zeros of $E_{n, q, w}(x)$

	$w=e^{\pi i}$			$w=e^{\frac{2 \pi i}{3}}$	
	real zeros complex zeros	real zeros complex zeros	real zeros complex zeros		
1	1	0	0	1	0

5	1	4	0	5	0	5
6	0	6	0	6	0	6
7	1	6	0	7	0	7
8	0	8	0	8	0	8
9	1	8	0	9	0	9
10	0	10	0	10	0	10
11	1	10	0	11	0	11
12	0	12	0	12	0	12
13	1	12	0	13	0	13

In Table 1, we choose $q=1 / 2$.
We calculated an approximate solution satisfying $E_{n, q, w}(x), x \in \mathbb{C}$. The results are given in Table 2.

Table 2. Approximate solutions of $E_{n, q, w}(x)=0$

degree n	x
1	-1.0000
2	$-1.0000-1.4142 i, \quad-1.0000+1.4142 i$
3	$-1.8846,-0.5577-2.5665 i, \quad-0.5577+2.5665 i$
4	$-2.076-1.256 i,-2.076+1.256 i, 0.0756-3.5686 i$,
$0.0756+3.5686 i$	

In Table 2, we choose $q=1 / 2$ and $w=e^{\pi i}$.

Figure 3. Zero contour of $E_{n, q, w}(x)$.
The plot above shows $E_{n, q, w}(x)$ for real $-9 / 10 \leq q \leq 9 / 10$ and $-3 \leq x \leq 3$, with the zero contour indicated in black (Figure 3). In Figure 3(top-left), we choose $n=1$ and $w=e^{\pi i}$. In Figure 3(top-right), we choose $n=2$ and $w=e^{\pi i}$. In Figure 3(bottom-left), we choose $n=3$ and $w=e^{\pi i}$. In Figure 3(bottom-right), we choose $n=4$ and $w=e^{\pi i}$.

We shall consider the more general open problem. How many roots do $E_{n, q, w}(x)$ have? Prove or disprove: $E_{n, q, w}(x)$ has n distinct solutions. Find the numbers of complex zeros $C_{E_{n, q, w}(x)}$ of $E_{n, q, w}(x), \operatorname{Im}(x) \neq 0$. Prove or give a counterexample: Since n is the degree of the polynomial $E_{n, q, w}(x)$, the number of real zeros $R_{E_{n, q, w}(x)}$ lying on the real plane $\operatorname{Im}(x)=0$ is then $R_{E_{n, q, w}(x)}=$ $n-C_{E_{n, q, w}(x)}$, where $C_{E_{n, q, w}(x)}$ denotes complex zeros. See Table 1 for tabulated values of $R_{E_{n, q, w}(x)}$ and $C_{E_{n, q, w}(x)}$. The theoretical prediction on the zeros of $E_{n, q, w}(x)$ is await for further study. For related topics the interested reader is referred to [1-5].

References

[1] T. Kim, On p-adic interpolating function for q-Euler numbers and its derivatives, J. Math. Anal. Appl. 339 (2008), 598-608.
[2] T. Kim, M.-S. Kim, L. C. Jang and S.-H. Rim, New q-Euler numbers and polynomials associated with p-adic q-integrals, Adv. Stud. Contemp. Math. 15 (2007), 243-252.
[3] C. S. Ryoo and T. Kim, A note on the q-extension of Bernoulli numbers and Bernoulli polynomials, Discrete Dynamics in Nature and Society 2010 (2010), Art. ID 807176, 11pp.
[4] C. S. Ryoo, Calculating zeros of the second kind Euler polynomials, J. Comput. Anal. Appl. 12 (2010), 828-833.
[5] C. S. Ryoo, On the generalized Barnes type multiple q-Euler polynomials twisted by ramified roots of unity, Proc. Jangjeon Math. Soc. 13 (2010), 255-263.

