Far East Journal of Mathematical Sciences (FJMS)

Volume 56, Number 2, 2011, Pages 123-135

Published Online: September 15, 2011

This paper is available online at http://pphmj.com/journals/fjms.htm

© 2011 Pushpa Publishing House

A NOTE ON (AMPLY) δ_M -SUPPLEMENTED MODULES

ALI OMER ALATTASS

Department of Mathematics
Faculty of Science
Hadramout University of Science and Technology
P. O. Box 50663
Mukalla, Yemen

e-mail: alattassali@yahoo.com

Abstract

Let M be a right module over a ring R. In the present paper, several properties of (amply) δ_M -supplemented modules are proved. It is shown, among others, that (1) The class of (amply) δ_M -supplemented modules is closed under taking homomorphic images; (2) Every π -projective module in $\sigma[M]$ is an amply δ_M -supplemented module; (3) Every module in $\sigma[M]$ is an amply δ_M -supplemented module if and only if every module in $\sigma[M]$ is a δ_M -supplemented module; and (4) A projective module in $\sigma[M]$ is an amply δ_M -supplemented module if and only if it is a δ_M -supplemented module. We also investigate the interconnections between δ_M -supplemented modules and δ_M -semiperfect modules.

1. Introduction and Preliminaries

Throughout this article, R denotes an associative ring with unity and modules M are unitary right R-modules. Mod-R denotes the category of all right R-modules. $\overline{2010}$ Mathematics Subject Classification: 16D80, 16D90.

Keywords and phrases: δ_M -supplemented module, projective δ_M -cover, δ_M -semiperfect module.

Received May 15, 2011

Let M be any R-module. Any R-module N is M-generated (or generated by M) if there exists an epimorphism $f: M^{(\Lambda)} \to N$, for some indexed set Λ . An R-module N is said to be *subgenerated* by M if N is isomorphic to a submodule of an M-generated module. We denote by $\sigma[M]$ the full subcategory of the right R-modules whose objects are all right R-modules subgenerated by M. In case of M = R, $\sigma[M] = Mod - R$. Any module $N \in \sigma[M]$ is said to be M-singular if $N \cong L/K$, for some $L \in \sigma[M]$ and K is essential in L. The class of all M-singular modules is closed under submodules, homomorphic images, and direct sums. The concept of small submodule has been generalized to δ-small submodule by Zhou [8]. Zhou called a submodule N of a module M is δ -small in M (notation $N \leq_{\delta} M$) if, whenever N + X = M with M/X singular, we have X = M. Özcan and Alkan considered this notation in $\sigma[M]$. For a module N in $\sigma[M]$, Özcan and Alkan [4] called a submodule L of N is a δ -M -small submodule, written $L \ll_{\delta_M} N$, in N if $L + K \neq N$, for any proper submodule K of N with N/K is M-singular. We write δ_M -small for δ -M -small. Clearly, if L is δ -small, then L is a δ_M -small submodule. Hence δ_M -small submodules are the generalization of δ -small submodules in the category Mod-R. Let L, K be submodules of M. L is called a δ -supplement of K in M if M = L + K and $L \cap K \ll_{\delta} L$. L is called a δ -supplement submodule of M if L is a δ -supplement of some submodule of M. M is called a δ -supplemented module if every submodule of M has a δ -supplement. If for every submodules L, K of M with M = L + K, there exists a δ -supplement N of L such that $N \leq K$, then M is called an amply δ-supplemented module. For the other definitions and notation in this paper, we refer to [1] and [7].

We write below some known results which are observed in [4] and [5].

Lemma 1.1. Let $N \in \sigma[M]$.

- (1) For modules K and L with, $K \le L \le N$, we have $L \ll_{\delta_M} N$ if and only if $K \ll_{\delta_M} N$ and $L/K \ll_{\delta_M} N/K$.
- (2) For submodules K and L of N, $K + L \ll_{\delta_M} N$ if and only if $K \ll_{\delta_M} N$ and $L \ll_{\delta_M} N$.

(3) If $K \ll_{\delta_M} N$ and $f: N \to L$ is a homomorphism, then $f(K) \ll_{\delta_M} L$. In particular, if $K \ll_{\delta_M} L$, $L \le N$, then $K \ll_{\delta_M} N$.

(4) If
$$K \leq L \leq^{\oplus} N$$
 and $K \ll_{\delta_M} N$, then $K \ll_{\delta_M} L$.

Also, Özcan and Alkan in [4] considered the following submodule of a module N in $\sigma[M]$ (see also Zhou [8]):

$$\delta_M(N) = \bigcap \{K \le N : N/K \text{ is } M \text{-singular simple} \}.$$

Lemma 1.2.
$$\delta_M(N) = \sum \{L \le N : L \ll_{\delta_M} N\}.$$

Lemma 1.3. Let K be a submodule of a module N in $\sigma[M]$. Then $K \ll_{\delta_M} N$ if and only if $N = X \oplus Y$ for a projective semisimple submodule Y in $\sigma[M]$ with $Y \leq K$, whenever X + K = N.

2. (Amply) δ_M -supplemented Modules

Let $N \in \sigma[M]$ and $L, K \leq N$. L is called a δ_M -supplement of K in N if N = K + L and $K \cap L \ll_{\delta_M} L$. L is called a δ_M -supplement submodule of N if L is a δ_M -supplement of some submodule of N. N is called a δ_M -supplemented module if every submodule of N has a δ_M -supplement in N. N is called an amply δ_M -supplemented module if for every submodules L, K of N with N = L + K, there exists a δ_M -supplement X of L such that $X \leq K$. It is clear that every amply δ_M -supplemented module is δ_M -supplemented. But the converse is not true.

Proposition 2.1. Let $N \in \sigma[M]$ and $L, K \leq N$. Then the following are equivalent:

- (a) L is a δ_M -supplement of K in N.
- (b) N = K + L and for each $X \le L$ with N = K + X and L/X M-singular, X = L.

Proof. (a) \Rightarrow (b) By the hypothesis, N = K + L and $K \cap L \ll_{\delta_M} L$. If $X \leq L$ with N = K + X and L/X is M-singular, then $L = (K \cap L) + X$. Hence, since $K \cap L \ll_{\delta_M} L$, X = L.

(b) \Rightarrow (a) Here we have to prove only $K \cap L \ll_{\delta_M} L$. Suppose that $X \leq L$ such that $L = (L \cap K) + X$ and L/X is M-singular. Then $N = K + L = K + (L \cap K) + X = K + X$. Hence, by (b), X = L. This shows $K \cap L \ll_{\delta_M} L$.

Proposition 2.2. Let $N \in \sigma[M]$ and L, K, $H \leq N$. If K is a δ_M -supplement of L in N and L is a δ_M -supplement of H in N, then L is a δ_M -supplement of K in N.

Proof. Let K be a δ_M -supplement of L in N and L is a δ_M -supplement of H in N. Then N=K+L=L+H, $K\cap L\ll_{\delta_M}K$ and $H\cap L\ll_{\delta_M}L$. We have to prove $K\cap L\ll_{\delta_M}L$. Let $X\leq L$ such that $L=(K\cap L)+X$ and L/X is M-singular. Hence $N=(L\cap K)+X+H$. Since $K\cap L\ll_{\delta_M}K$, $K\cap L\ll_{\delta_M}N$ and so by Lemma 1.3, $N=(X+H)\oplus Y$, for projective semisimple module Y in $\sigma[M]$ with $Y\subseteq L\cap K$. Hence, $L=(X\oplus Y)+(L\cap H)$. Since L/(X+Y) is M-singular and $L\cap H\ll_{\delta_M}L$, $L=X\oplus Y$. This implies Y=0 because Y is semisimple projective in $\sigma[M]$ and $Y\cong L/X$ is M-singular. Thus $K\cap L\ll_{\delta_M}L$. \square

Lemma 2.3. Let $N \in \sigma[M]$ be δ_M -supplemented module. Then

- (1) $N/\delta_M(N)$ is semisimple.
- (2) If $L \leq N$ with $L \cap \delta_M(N) = 0$, then L is semisimple.
- **Proof.** (1) We show that every submodule of $N/\delta_M(N)$ is a direct summand. Let K be a submodule of N containing $\delta_M(N)$. Since N is δ_M -supplemented, there exists a submodule U of N such that N = K + U and $K \cap U \ll_{\delta_M} U$. Then $N/\delta_M(N) = U/\delta_M(N) + (K + \delta_M(N))/\delta_M(N)$ and $K \cap U \ll_{\delta_M} N$. It follows that $N/\delta_M(N) = U/\delta_M(N) \oplus (K + \delta_M(N))/\delta_M(N)$ as $U \cap (K + \delta_M(N)) = (U \cap K) + \delta_M(N) = \delta_M(N)$.
 - (2) Since $L \cong (L \oplus \delta_M(N))/\delta_M(N) \leq N/\delta_M(N)$, L is semisimple by (1). \square

Proposition 2.4. Let $N \in \sigma[M]$ be δ_M -supplemented. Then there is a decomposition $N = N_1 \oplus N_2$ with N_1 is semisimple module and N_2 is a module with $\delta_M(N_2) \leq_e N_2$.

Proof. For $\delta_M(N)$, there exists $N_1 \leq N$ such that $\delta_M(N) \cap N_1 = 0$ and $N_1 \oplus \delta_M(N) \leq_e N$. By the hypothesis, there is $N_2 \leq N$ such that $N = N_1 + N_2$ and $N_1 \cap N_2 \ll_{\delta_M} N_2$. Hence $N = N_1 \oplus N_2$ because $N_1 \cap N_2 \leq N_1 \cap \delta_M(N) = 0$ and so by Lemma 2.3(2), N_1 is semisimple. The rest part of the proposition follows directly from [1, Proposition 5.20], since $\delta_M(N) = \delta_M(N_1) \oplus \delta_M(N_2)$ and $N_1 \oplus \delta_M(N) \leq_e N = N_1 \oplus N_2$.

The following example shows that the converse of Proposition 2.4 is not hold.

Example 2.5. Let $R = \mathbb{Z}$. If $N = \bigoplus_{i=1}^{\infty} N_i$ with each $N_i = \mathbb{Z}_{p^{\infty}}$, where p is a prime number, then $N \in \sigma[\mathbb{Z}]$, $N = N \oplus 0$ and $\delta_{\mathbb{Z}}(N) = \bigoplus_{i=1}^{\infty} \delta_{\mathbb{Z}}(N_i) = \bigoplus_{i=1}^{\infty} N_i = N$ $\leq_e N$. But N in not a δ_M -supplemented module (see [3, Example 2.14]).

Lemma 2.6. Let $N \in \sigma[M]$ and let $L, K \leq N$ such that L is a δ_M -supplemented module. If L + K has a δ_M -supplement in N, then so does K.

Proof. Let U be a δ_M -supplement of L+K in N. Then N=(L+K)+U and $(L+K)\cap U\ll_{\delta_M}U$. Since L is a δ_M -supplemented module, $L\cap (U+K)$ has a δ_M -supplement in N, there exists a submodule W of L such that $L=(L\cap (U+K))+W$ and $(U+K)\cap W\ll_{\delta_M}W$. Thus N=(K+U)+W and $(U+K)\cap W\ll_{\delta_M}N$. Now we show that U+W is a δ_M -supplement of K in N. It is clear that N=K+(U+W), hence it remains to prove $K\cap (U+W)\ll_{\delta_M}U+W$. Since $K+W\leq K+L$, $U\cap (K+W)\leq U\cap (L+K)\ll_{\delta_M}U$. Then, by Lemma 1.1(2), $U\cap (K+W)+W\cap (U+K)\ll_{\delta_M}U+W$ and so $K\cap (U+W)\ll_{\delta_M}U+W$ as $K\cap (U+W)\leq U\cap (K+W)+W\cap (U+K)$.

Proposition 2.7. The homomorphic images of a δ_M -supplemented module are δ_M -supplemented modules.

Proof. Let N be a δ_M -supplemented module and $f: N \to L$ be an epimorphism. We have to show that L is δ_M -supplemented. Let $K \le L$. Then $f^{-1}(K) \le N$ and so, by the hypothesis, there exists a submodule U of N with $N = f^{-1}(K) + U$ and $f^{-1}(K) \cap U \ll_{\delta_M} U$. It is clear that L = K + f(U), hence it suffices to show that $K \cap f(U) \ll_{\delta_M} f(U)$. Since $f^{-1}(K) \cap U \ll_{\delta_M} U$, by Lemma 1.1(3), $f(f^{-1}(K) \cap U) \ll_{\delta_M} f(U)$ and so $K \cap f(U) = f(f^{-1}(K) \cap U) \ll_{\delta_M} f(U)$. Thus L is a δ_M -supplemented module.

Corollary 2.8. Direct summands and factor modules of a δ_M -supplemented module are δ_M -supplemented modules.

Lemma 2.9. Let n be any positive integer. If $N = N_1 + \cdots + N_n \in \sigma[M]$ with each N_i is a δ_M -supplemented module, then N is a δ_M -supplemented module.

Proof. To show that N is δ_M -supplemented, it is sufficient by induction on n to prove this in the case when n=2. Thus suppose that n=2 and let $K \leq N$. Then $N=N_1+(N_2+K)$. By Lemma 2.6, N_2+K has δ_M -supplement in N as N_1 is δ_M -supplemented and N has a δ_M -supplement in N. Again, by Lemma 2.6, K has a δ_M -supplement in N. So N is δ_M -supplemented.

The following proposition follows immediately from Lemma 2.9 and Proposition 2.7.

Proposition 2.10. Let $N \in \sigma[M]$ be δ_M -supplemented. Then every finitely N-generated module is δ_M -supplemented module.

Proposition 2.11. The homomorphic images of amply δ_M -supplemented modules are amply δ_M -supplemented modules.

Proof. Let $N \in \sigma[M]$ be an amply δ_M -supplemented module and let $f: N \to K$ be an epimorphism. We have to show that K is an amply δ_M -

supplemented module. Let K_1 and K_2 be submodules of K such that $K = K_1 + K_2$. Then $N = f^{-1}(K_1 + K_2) = f^{-1}(K_1) + f^{-1}(K_2)$. Since N is amply δ_M -supplemented, there exists a submodule X of $f^{-1}(K_2)$ such that $N = f^{-1}(K_1) + X$ and $f^{-1}(K_1) \cap X \ll_{\delta_M} X \leq K_2$. Hence $N = K_1 + f(X)$ and $K_1 \cap f(X) = f(f^{-1}(K_1) \cap X) \ll_{\delta_M} f(X) \leq K_2$. This shows that f(X) is a δ_M -supplement of K_1 in N. Therefore, K is amply δ_M -supplemented.

Corollary 2.12. Direct summands and factor modules of an amply δ_M -supplemented module are amply δ_M -supplemented modules.

Proposition 2.13. A module $N \in \sigma[M]$ whose all submodules are δ_M -supplemented modules is an amply δ_M -supplemented module.

Proof. Let $L, K \le N$ such that N = L + K. Since L is δ_M -supplemented, $L \cap K$ has δ_M -supplement H in L. Hence $L = (L \cap K) + H$ and $L \cap K \cap H$ $\ll_{\delta_M} H$ imply that $N = L + K = L \cap K + H + K = K + H$ and $H \cap K \ll_{\delta_M} H$, that is, L contains a δ_M -supplement of K in N. So N is an amply δ_M -supplemented module.

Corollary 2.14. *The following are equivalent for any module M*:

- (a) Every module in $\sigma[M]$ is an amply δ_M -supplemented module.
- (b) Every module in $\sigma[M]$ is a δ_M -supplemented module.

Proof. (a) \Rightarrow (b) This obvious as every amply δ_M -supplemented module is δ_M -supplemented module.

(b) \Rightarrow (a) Since	$\sigma[M]$	is c	closed	under	submodules,	(a)	follows	directly	from
Proposition 2.13.									

If we take M = R in Corollary 2.14, then we get the following corollary which proved in [6]:

Corollary 2.15. *The following are equivalent for any ring R*:

- (a) Every R-module is an amply δ -supplemented module.
- (b) Every R-module is a δ -supplemented module.

Following [7 p. 359], a module M is called π -projective if for every two submodules L, K of M with K + L = M, there exists $f \in End(M)$ with $Im(f) \subseteq K$ and $Im(1 - f) \subseteq L$. This is obviously true if and only if the epimorphism $f: K \oplus L \to K + L = M$ given by f((k, l)) = k + l, splits.

Proposition 2.16. If N is a π -projective δ_M -supplemented module in $\sigma[M]$, then N is an amply δ_M -supplemented module.

Proof. Let $K, L \leq N$ such that N = K + L. Since N is π -projective, there exists $f \in End(N)$ such that $f(N) \leq K$ and $(1-f)(N) \leq L$. Note that $(1-f)(K) \leq K$ and N = f(N) + (1-f)(N). If H is a δ_M -supplement of K in N, then $(1-f)(N) = (1-f)(K) + (1-f)(H) \leq K + (1-f)(H)$. So N = K + (1-f)(H). We claim that $K \cap (1-f)(H) \ll_{\delta_M} (1-f)(H)$. Clearly, $(1-f)(H) \leq L$. Since $K \cap H \ll_{\delta_M} K$, by Lemma 1.1(3), $(1-f)(K \cap H) \ll_{\delta_M} (1-f)(H)$. Now, let $k \in K \cap (1-f)(H)$. Then $k \in K$ and k = h - f(h), for some $h \in H$. Hence $h = k + f(h) \in K$ as $k, f(h) \in K$. So $k \in (1-f)(K \cap H)$. Thus $K \cap (1-f)(H) \leq (1-f)(K \cap H) \ll_{\delta_M} (1-f)(H)$. It follows that N is an amply δ_M -supplemented module.

Proposition 2.17. Let N be a π -projective module in $\sigma[M]$. If L, K are δ_M -supplements to each other in N, then $K \cap L$ is semisimple and projective in $\sigma[M]$. If, in addition, N is projective in $\sigma[M]$, then L and K are both projective in $\sigma[M]$.

Proof. Since N is π -projective, the epimorphism $f: L \oplus K \to L + K$ given by f((l, k)) = l + k for each l in L and each k in K splits and so $N = L \oplus K = Ker(f) \oplus H$, where $H \cong N$. As $\ker(f) = \{(l, -l) : l \in K \cap L\}$, $\ker(f) \cong K \cap L$. Hence there exists a submodule Y of $\ker(f)$ which is semisimple and projective in $\sigma[M]$ and $L \oplus K = Y \oplus H$. This implies $Y = \ker(f) \cong L \cap K$. So $L \cap K$ is semisimple and projective in $\sigma[M]$. Further, if N is projective in $\sigma[M]$, then $L \oplus K$ is projective and hence L and K are projective in $\sigma[M]$.

3. Applications

In this section, we investigate the interconnection between (amply) δ_M -supplemented modules and δ_M -semiperfect modules. Following Özcan and Alkan [4], a module N in $\sigma[M]$ is said to be a δ_M -semiperfect module if for every submodule K of N, there is a decomposition $K = A \oplus B$ such that A is a projective summand of N in $\sigma[M]$ and $B \leq \delta_M(N)$.

Let $N, P \in \sigma[M]$. An epimorphism $f: P \to N$ is called a δ_M -cover if $Ker(f) \ll_{\delta_M} P$. A δ_M -cover $f: P \to N$ is called a *projective* δ_M -cover in case P is projective in $\sigma[M]$. We start this section by proving the composite of δ_M -covers is also a δ_M -cover.

Lemma 3.1. If $f: P \to K$, $g: K \to N$ are δ_M -covers, then $gof: P \to N$ is also a δ_M -cover.

Proof. Clearly that gof is an epimorphism. We have to prove $Ker(gof) \ll_{\delta_M} P$. Suppose that $L \leq P$ such that P = Ker(gof) + L and P/L is M-singular. Then f(P) = f(Ker(gof)) + f(L) and so, N = Ker(g) + f(L). Since P/L is M-singular, f(P)/f(L) is M-singular implying N = f(L) as $Kerg \ll_{\delta_M} N$. Thus $gof : P \to N$ is a δ_M -cover.

Proposition 3.2. Let N be in $\sigma[M]$ and $K \leq N$. Then the following are equivalent:

- (a) N/K has a projective δ_M -cover.
- (b) If $L \leq N$ and N = K + L, then K has a δ_M -supplement $K^{\setminus} \leq L$ such that K^{\setminus} has a projective δ_M -cover.
 - (c) K has a δ_M -supplement K which has a projective δ_M -cover.

Proof. (a) \Rightarrow (b) Let $L \le N$ such that N = K + L. Suppose that $f : P \to N$ is a projective δ_M -cover. Then the map $g : L \to N/K$ given by $g(v) = \overline{v} = v + K$ is an epimorphism. As P is projective in $\sigma[M]$, there is a map $h : P \to L$ such that

 $f = g \circ h$. We have N/K = f(P) = g(h(P)) = (h(P) + K)/K and so N = h(P) + K. Now $K \cap h(P) \ll_{\delta_M} h(P)$ because $h(Ker(f)) \ll_{\delta_M} h(P)$ and $h(Ker(f)) = K \cap h(P)$. Therefore, h(P) is a δ_M -supplement of K in N. Moreover, $Ker(h) \subseteq Ker(f) \ll_{\delta_M} P$. Hence $h: P \to h(P)$ is a projective δ_M -cover.

- (b) \Rightarrow (a) Since N = K + N, (c) follows directly from (b).
- (c) \Rightarrow (a) Let $f: P \to K^{\setminus}$ be a projective δ_M -cover. Since K^{\setminus} is a δ_M -supplement of K in N, $N = K + K^{\setminus}$ and $K \cap K^{\setminus} \ll_{\delta_M} K^{\setminus}$ imply that $K^{\setminus}/K \cap K^{\setminus} \cong N/K$ and the natural homomorphism $g: K^{\setminus} \to K^{\setminus}/K \cap K^{\setminus}$ is a δ_M -cover. So, if h is an isomorphism from $K^{\setminus}/K \cap K^{\setminus}$ to N/K, hence, by Lemma 3.1, $h \circ g \circ f: P \to N/K$ is a projective δ_M -cover.

As an immediate consequence of Proposition 3.2, we get the following:

Theorem 3.3. Let N be a module in $\sigma[M]$. Then the following are equivalent:

- (a) Every factor module of N has a projective δ_M -cover.
- (b) N is amply δ_M -supplemented by δ_M -supplements which have a projective δ_M -cover.
- (c) N is δ_M -supplemented by δ_M -supplements which have a projective δ_M -cover.

Wang [6] called a module N is δ -semiperfect module if every factor module of N has a projective δ -cover. Putting M = R in Theorem 3.3, we get the following corollary which was proved in [6].

Corollary 3.4. *Let N be any R-module. Then the following are equivalent:*

- (a) N is δ -semiperfect module.
- (b) N is amply δ -supplemented by δ -supplements which have a projective δ -cover.
 - (c) N is δ -supplemented by δ -supplements which have a projective δ -cover.

Next, we show that the concepts amply δ_M -supplemented and δ_M -supplemented modules are equivalent for projective modules in $\sigma[M]$.

Theorem 3.5. Let $N \in \sigma[M]$ be projective in $\sigma[M]$. Then the following are equivalent:

- (a) Every factor module of N has a projective δ_M -cover.
- (b) N is an amply δ_M -supplemented module.
- (c) N is a δ_M -supplemented module.

Proof. (a) \Rightarrow (b) is by Theorem 3.3 and (b) \Rightarrow (c) is obvious.

(c) \Rightarrow (a) Let K be a submodule of N. Then there exists a submodule L of N such that N = K + L and $K \cap L \ll_{\delta_M} L$. Consider the natural epimorphism $\pi : N \to \infty$ N/K. Let $\pi_L^{\setminus}: L \to N/K$ be the restriction of π to L. Since N is projective in $\sigma[M]$, there exists a homomorphism $g: N \to L$ such that $\pi = \pi_L^{\setminus} \circ g$. Then $N/K = \pi(N) = \pi_L^{\setminus}(g(N)) = (g(N) + K)/K$. This gives N = g(N) + K. Hence L = K $g(N) + (L \cap K)$ and so, by Lemma 1.3, $L = g(N) \oplus Y$ for a projective semisimple module Y in $\sigma[M]$ with $Y \subseteq K \cap L$. We claim that $g(N) \cap K \ll_{\delta_M} g(N)$. Let $g(N) = (g(N) \cap K) + X$ with g(N)/X is M-singular. Since $L = ((g(N) \cap K) + X)$ $\oplus Y$, $L/(X \oplus Y) \cong ((g(N) \cap K) + X)/X = g(N)/X$ is M-singular. Then, since L = $(g(N)\cap K)+(X\oplus Y)$ and $g(N)\cap K\leq L\cap K\ll_{\delta_M}L$, we have $L=X\oplus Y$. Then X = g(N) as $L = g(N) \oplus Y$. Hence $g(N)K \ll_{\delta_M} g(N)$. This shows that g(N) is a δ_M -supplement of K in N. Next, we show g(N) is projective in $\sigma[M]$. As N is δ_M -supplemented, g(N) has a δ_M -supplement Q in N. Hence, by Proposition 2.2, g(N) is also a δ_M -supplement of Q in N and so g(N) is projective in $\sigma[M]$ (see Proposition 2.17). Thus $\pi_{\sigma(N)}^{\setminus}: g(N) \to N/K$ is a protective δ_M -cover.

We conclude this paper by giving a characterization of a δ_M -semiperfect modules in $\sigma[M]$ for a certain class of modules.

Theorem 3.6. Let $N \in \sigma[M]$ be projective in $\sigma[M]$ and $\delta_M(N) \ll_{\delta_M} N$. Then the following are equivalent:

- (a) N is a δ_M -semiperfect module.
- (b) Every factor module of N has a projective δ_M -cover.
- (c) N is amply δ_M -supplemented by δ_M -supplements which have a projective δ_M -cover.
- (d) N is δ_M -supplemented by δ_M -supplements which have a projective δ_M -cover.
 - (e) N is a δ_M -supplemented module.
 - (f) N is amply δ_M -supplemented module.

Proof. It follows by [6, Theorem 2.19], Theorem 3.3 and Theorem 3.5.

Acknowledgement

The author is thankful for the facilities provided by Department of Mathematics, at Universiti Tekonologi Malaysia during his stay.

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
- [2] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending modules, Pitman Research Notes in Mathematics Series 313, 1994.
- [3] M. T. Kosan, δ-lifting and δ-supplemented modules, Alg. Coll. 14(1) (2007), 53-60.
- [4] A. Ç. Özcan and M. Alkan, Semiperfect modules with respect to a preradical, Comm. Alg. 34(2) (2006), 841-856.
- [5] D. K. Tütüncü, F. Kaynarca and M. T. Koşan, On non-δ-*M* cosingular completely ⊕-δ_M -supplemented modules, Ring Theory, Proceeding of the Fifth China-Japan-Korea Conference, Tokyo, Japan, 10-15 September 2007.

- [6] Y. Wang, δ -small submodules and δ -supplemented modules, Int. J. Math. Math. Sci. (2007), 1-8.
- [7] R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach, 1991.
- [8] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular, Alg. Coll. 7(3) (2000), 305-318.