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Abstract 

The measures of local dependence are calculated on a function of the 
support of the variables, and may provide more information about the 
structure of dependence than the global coefficients which result in a 
single numerical value. In this paper, we study the function of Sibuya [11] 
in the context of stationary stochastic process both in the univariate and 
bivariate cases. We rewrite this function in terms of copula studying its 
properties. Two kernel smoothed estimators are proposed and their 
properties are derived. Monte Carlo experiments considering a stationary 
vector autoregressive process of order one and a Gaussian process are 
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performed. Empirical illustrations are done using the series of daily 
returns of CAC 40 and DAX and of IBOVESPA (the Brazilian index). 

1. Introduction 

Some measures of local dependence in the context of random variables found in 
the literature are the function of local dependence of Holland and Wang [5], the 
curve of correlation of Bjerve and Doksum [2], the function of local dependence of 
Bairamov et al. [1], and also the copula and copula density (Nelsen [9]). Another 
measure of interest is the function of dependence of Sibuya [11] for which Kolev et 
al. [6] developed additional properties and Latif and Morettin [7] proposed kernel 
estimators verifying their weak convergence and finite sample properties. 

In the context of stochastic processes, few studies have been developed to assess 
measures of local dependence. Among them, we can mention the study of copulas 
for time series addressed by Fermanian and Scaillet [3] who used kernel estimators, 
and by Morettin et al. [8] who used estimators through wavelets. 

The purpose of this paper is to study the function of Sibuya [11] for time series 
considering univariate and bivariate stationary processes. This function is written in 
terms of copula and its properties are verified. We propose two kernel smoothed 
estimators, one through distribution functions and other through copula for which 
the weak convergence are derived and the consistency is verified for the first one. 
The behaviour of this local measure is assessed through simulations and some 
information on finite sample performance are evaluated through a Monte Carlo 
study. Empirical illustrations are provided considering the daily returns of CAC 40 
(French stock market index) and DAX (German stock index), and also the 
IBOVESPA (Brazilian stock index). 

The plan of this paper is as follows: in Section 2, we describe the function of 
Sibuya and its properties. In Section 3, we study the function of Sibuya for a 
bivariate stationary process, where its properties, kernel estimators and asymptotic 
behaviors are derived. Also, we show some Monte Carlo results considering a 
VAR(1) model with Gaussian innovations and an empirical illustration considering 
the daily returns of CAC 40 and DAX. A similar study is done in Section 4 for a 
univariate stationary process, where the Monte Carlo simulations are performed 
considering a Gaussian process and the empirical illustration concerns the 
IBOVESPA index. Section 5 contains the conclusions. 
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2. Definitions 

Aiming to extend the concept of extreme statistics from the univariate to 
bivariate case, Sibuya [11] proposed a function of dependence between two 
continuous random variables, which relates the joint distribution with their 
corresponding marginal distributions. 

Let X and Y be continuous random variables with joint distribution function 
( ) [ ]yYxXPyxF ≤≤= ,,  and marginals ( ) [ ]xXPxF ≤=1  and ( ) [ ].2 yYPyF ≤=  

Thus, the function of dependence of Sibuya, ( ) ( )( ) ,, 21 yFxFΛ=Λ  is given by 

 ( ) ( )( ) ( )
( ) ( ) ( ) ,,,,, 2

21
21 R∈∀=Λ yxyFxF

yxFyFxF  (1) 

where ( ) 01 >xF  and ( ) .02 >yF  If ( ) 01 =xF  or ( ) ,02 =yF  then ( ) ( )( )yFxF 21 ,Λ  

will be defined if the limit 

( )
( ) ( ) ( )( )yFxFyxF

xF
21

0
,lim

1 →
  or  

( )
( ) ( ) ( )( )yFxFyxF

yF
21

0
,lim

2 →
 

exists, respectively. 

 

Figure 1. Plots (top panel) and contour curves (bottom panel) of the Sibuya’s 
measure of local dependence given by formula (1) for ( )YX ,  with standard normal 

distribution and coefficient of correlation equals to ,80.0=ρ  ,80.0−=ρ  20.0=ρ  

and ,20.0−=ρ  respectively. 

Since this function of dependence corresponds to the association between the 
events ( )xX ≤  and ( )yY ≤  with ( )yx,  belonging to the support of the distribution 
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of ( )YX ,  (see Sibuya [11]), we call it as local. That is, we are not referring to the 

concept of local in terms of conditional distributions on the point ( )., yx  

The theoretical behaviour of this measure of local dependence for a bivariate 
random vector with standard normal distribution and correlation coefficient equal to 
+0.80, –0.80, +0.20 and –0.20, are shown, respectively, in the plots (top panel) and 
contour curves (bottom panel) of Figure 1. 

The properties for Λ defined by Sibuya [11] are given below, see also Kolev et 
al. [6]. First, let us remember that X and Y are PQD-positively quadrant dependent 

(NQD-negatively quadrant dependent), if for all ( ) ,, 2R∈yx  ( ) ( )≤≥yxF ,  

( ) ( ).21 yFxF  

  (i) 

( ) ( )
( ) ( ) ( ) ( )( )yFxFyFxF

yFxF
21

21
21 ,1,0max Λ≤⎟

⎠
⎞

⎜
⎝
⎛ −+  

 ( ) ( ) ( ) ;,,1,1min 2

21
R∈∀⎟

⎠
⎞

⎜
⎝
⎛≤ yxyFxF  

 (ii) ( ) ( )( ) ,1, 21 =Λ yFxF  ( ) 2, R∈∀ yx  if and only if X and Y are independent; 

(iii) If X and Y are ( )( ),NQDPQD 1  then ( ) ( )( ) ( )11, 21 ≤≥Λ YFXF  almost surely; 

(iv) Let ( )⋅ϕ  and ( )⋅ψ  be arbitrary functions of X and Y, respectively, such that 

( )⋅ϕ−1  and ( )⋅ψ−1  exist. Using the notation 

( ) ( ),1 11 xFxF −=  ( ) ( ),1 22 yFyF −=  ( )( ) ( )[ ],xXPxF X ≤ϕ=ϕ  

( )( ) ( )[ ],yYPyF Y ≤ψ=ψ  ( ) ( )( ) ( ( )( ) ( )( ))yFxFyx YXYX ψϕψϕ Λ=Λ ,,  

and ( ( ) ( )) ( ( ( )) ( ( ))),,, 1
2

1
1

11 yFxFyxXY
−−−− ψϕΛ=ψϕΛ  with S being the support 

of ( ),, YX  then: 

(a) If ( )⋅ϕ  and ( )⋅ψ  are increasing functions on the support of X and Y, 

respectively, then 

( ) ( )( ) ( ( ) ( )) ( ) ;,,,, 11 Syxyxyx XYYX ∈∀ψϕΛ=Λ −−
ψϕ  
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(b) If ( )⋅ϕ  is a decreasing function on the support of X and ( )⋅ψ  is an increasing 

function on the support of Y, then 

( ) ( )( )
( ( ))

( ( ))
( ( ))

( ( ) ( )) ( ) ;,,,1, 11
1

1

1
1

1
1

Syxyx
xF
xF

xF
yx XYYX ∈∀ψϕΛ

ϕ

ϕ
−

ϕ
=Λ −−

−

−

−ψϕ  

(c) If ( )⋅ϕ  is an increasing function on the support of X and ( )⋅ψ  is a decreasing 

function on the support of Y, then 

( ) ( )( )
( ( ))

( ( ))
( ( ))

( ( ) ( )) ( ) ;,,,1, 11
1

2

1
2

1
2

Syxyx
yF
yF

yF
yx XYYX ∈∀ψϕΛ

ψ

ψ
−

ψ
=Λ −−

−

−

−ψϕ  

(d) If ( )⋅ϕ  and ( )⋅ψ  are decreasing functions on the support of X and Y, 

respectively, then 

( ) ( )( ) ( ( )) ( ( ))
( ( )) ( ( ))yFxF

yFxFyxYX 1
2

1
1

1
2

1
11, −−

−−

ψϕ
ψϕ

ψ−ϕ−
=Λ  

( ( )) ( ( ))
( ( )) ( ( ))

( ( ) ( )) ( ) ;,,, 11
1

2
1

1

1
2

1
1 Syxyx

yFxF
yFxF

XY ∈∀ψϕΛ
ψϕ

ψϕ
+ −−

−−

−−
 

(v) If ( ),0,00 <>=ρXY  then ( ) ( )( ) ( )1,11, 21 <>=Λ YFXF  in the bivariate 

normal case. 

Kolev et al. [6] observed that the property (iv) shows that Λ at point ( )yx,  is 

not ordinally invariant under monotone transformations, and this is because it 

depends on the functions ( )⋅ϕ−1  and ( ) ,1 ⋅ψ−  and possible functions of the marginals. 

These authors also suggested the empirical estimator nΛ  of Λ which is built by 

the plug-in method using the empirical joint distribution and empirical marginal 
distributions. However, some method of smoothing is recommended to obtain better 
results for small samples and also to facilitate the graphical display. 

We rewrite formula (1) in the following equivalent expression: 

 ( ) ( ) ( ) ( ] ,1,0,,,, 2∈∀=Λ vuuv
vuCvu  (2) 

where ( )vuC ,  denotes the copula of ( )YX ,  on the point ( ) ( ) ( )( ).,, 21 yFxFvu =  
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Figure 2. Considering the VAR(1) model with ( ) ,44.6,05.3 ′=μ  ( )( ) =0Γvec  

( )′99.3,49.1,49.1,13.1  (correlation 0.70) and Gaussian innovations, we have the 

plots and contour curves of 0Λ  (formula (3) or (4)) and of 0Λ̂  (formula (5)), 

respectively. 

 

Figure 3. Considering the VAR(1) model with ( ) ,44.6,05.3 ′=μ  ( )( ) =0Γvec  

( )′99.3,49.1,49.1,13.1  (correlation 0.70) and Gaussian innovations, we have on 

some bivariate points of the secondary diagonal the histograms of 0Λ̂  (formula (5)). 
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The properties (i) to (v) of Λ written as formula (1) remain valid for formula  
(2), with the necessary adjustments. Considering formula (2), we observe that 

( ) ( )( ) ( )vuvu XYYX ,, Λ=Λ ψϕ  if ( )⋅ϕ  and ( )⋅ψ  are strictly increasing. 

For Λ given through formula (1) or (2), Latif and Morettin [7] suggested the use 
of kernel smoothed estimators whose weak convergence were obtained for large 
samples and also for finite samples via bootstrap procedure, and their finite sample 
performance was studied through simulations. 

3. Contemporaneous Function of Local Dependence 

Let ( ){ }Z∈tYX tt ,,  be a strictly stationary process with continuous values. 

Let ( )yxF ,  be the joint distribution of tX  and ,tY  ( )xF1  and ( )yF2  their marginal 

distributions, and ( )vuC ,  the corresponding copula, .Z∈∀t  Thus, the Sibuya’s 

measure of local dependence given by formula (1) can be represented by 

 ( ) ( )( ) ( )
( ) ( ) ( ) ,,,,,, 2

21
210 ZR ∈∀∈∀=Λ tyxyFxF

yxFyFxF  (3) 

with ( ) 01 >xF  and ( ) ,02 >yF  and for formula (2), we used the notation 

 ( ) ( ) ( ) ( ] ,,1,0,,,, 2
0 Z∈∀∈∀=Λ tvuuv

vuCvu  (4) 

where 

( ) ( ( ) ( )),,, 1
2

1
1 vFuFFvuC −−=  

( ) ( ){ },:inf 1
1

1 uxFxuF ≥∈=− R  

( ) ( ){ }.:inf 2
1

2 vyFyvF ≥∈=− R  

For this process, the properties (i) to (v) are satisfied by formula (3) and also by 
formula (4) with the necessary adjustments. We call the formulas (3) and (4) as 
contemporaneous function of local dependence through distribution functions and 
copula, respectively. 
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Figure 4. Considering the VAR(1) model with ( ) ,44.6,05.3 ′=μ  ( )( ) =0Γvec  

( )′99.3,49.1,49.1,13.1  (correlation 0.70) and Gaussian innovations, we have for 

some bivariate points of the secondary diagonal the qqplot of 0Λ̂  (formula (5)). 

3.1. Estimators and their properties 

We propose for time series the same kind of smoothed estimators for random 
variables (Latif and Morettin [7]). Let ( ) ( )( )TT YXYX ,...,,, 11  be observed from the 

process under study, then formula (3) can be estimated by the plug-in method using 
kernels, that is 

 ( ( ) ( )) ( )
( ) ( )

( ) ,,,ˆˆ
,ˆˆ,ˆˆ 2

21
210 R∈∀=Λ yx

yFxF
yxFyFxF  (5) 

with ( ) ( ) ,0ˆ,ˆ
21 >yFxF  where 

( ) ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −−

=
T

t

tt
h

Yy
h

XxKTyxF
1 21

,,1,ˆ  

( ) ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
T

t

t
h

XxKTxF
1 1

11 ,1ˆ  

( ) ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
T

t

t
h

YyKTyF
1 2

22 ,1ˆ  
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with K such that ( ) ( )∫ ∫∞− ∞−
=

x y
dudvvukyxK ,,,  ( ) ⎟

⎠
⎞

⎜
⎝
⎛=

21
21 ,,;, h

y
h
xKhhyxK  

where RR →2:k  is a kernel function such that ( )∫ ∫ = ,1, dudvvuk  ( )21,;, hhyxk  

,,1

2121
⎟
⎠

⎞
⎜
⎝

⎛=
h
y

h
xk

hh
 and ,0>ih  ,2,1=i  are functions of T such that 0→ih  as 

.∞→T  Also, ( ) ,; ii hwK  ,2,1=i  are the univariate versions of K. For formula 

(4), a smoothed kernel estimator is 

 ( ) ( ) ( ) ( ] ,1,0,,,ˆ
,~ 2

0 ∈∀=Λ vuuv
vuCvu  (6) 

where ( ),,ˆ vuC  ( )uF 1
1̂
−  and ( )vF 1

2
ˆ −  are the corresponding kernel estimators of 

copula and quantiles. 

 

Figure 5. Considering the VAR(1) model with ( ) ,44.6,05.3 ′=μ  ( )( ) =0Γvec  

( )′99.3,49.1,49.1,13.1  (correlation 0.70) and Gaussian innovations, we have the 

plots of perspective and contour curves of 0Λ  (formula (3) or (4)) and of 0
~
Λ  

(formula (6)), respectively. 
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In order to establish the properties of the estimators, consider the following 
regularity conditions where ( ):,max 21 hhh =∗  

(C1) 02 →∗Th  as ;∞→T  

(C1′) 04 →∗Th  as ∞→T  and the bivariate kernel k is even; 

(C2) the kernel k has a compact support; 

(C3) the process ( )tt YX ,  is α-mixing with coefficients ( )a
T To −=α  for some 

1>a  as ;∞→T  

(C4) the marginal distributions ,iF  ,2,1=i  are continuously differentiable on 

the intervals [ ( ) ( ) ]ε+ε− −− bFaF ii
11 ;  for every 10 <<< ba  and some ,0>ε  

with positive derivatives .if  Moreover, the first partial derivatives of F exist and are 

Lipschitz continuous on the product of these intervals. 

As pointed out by Fermanian and Scaillet [3], the condition (C2) can be 
weakened by controlling the tails of k, for example, by assuming that ( ) ≤xk j

j
sup  

( ) α−+ x1  for every x and some .0>α  This type of assumption is satisfied by 

most kernels, in particular by the Gaussian kernel (see Robinson [10]). 

 

Figure 6. Considering the VAR(1) model with ( ) ,44.6,05.3 ′=μ  ( )( ) =0Γvec  

( )′99.3,49.1,49.1,13.1  (correlation 0.70) and Gaussian innovations, on some 

bivariate points of the secondary diagonal we have the histograms of 0
~
Λ  (formula 

(6)). 
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Theorem 1. Let ( ){ }Z∈tYX tt ,,  be a strictly stationary process with 

continuous values. Under assumptions (C1) ( )( )1C ′or  to (C4), we have 

{ ( ) ( ) ( ) ( ) ( ) ( ) ( ) }0ˆ,ˆ,,:,,,ˆ, 212100 >∈Λ−Λ≡ yFxFyFxFyxyxTyxW F R  

converges weakly to a centered Gaussian process in ( ).2R∞l  

Proof. Assuming the conditions (C1) (or (C1′)) to (C4) valid for the process 
{( ) },,, Z∈tYX tt  Theorem 2 of Fermanian and Scaillet [3] is valid, i.e., 

( )FFT −ˆ21  tends weakly to a centered Gaussian process G  in ( )2R∞l  (the space 

of almost surely bounded functions on ,)2R  endowed with the sup-norm, with 

covariance function 

( ) ( )( ) ( ) ( ){ } ( ) ( ){ }( )∑
∈

′′≤≤=′′
Z

GG
t

tt yxYXyxYXCovyxyxCov ,,,,,,,,, 00 11  

and also ( ) ( ) ( ).1,,ˆsup21
PoyxFyxFT =−  Then, ( ) ( )xFxF

P
11̂ →  and ( ) P

yF →2
ˆ  

( )yF2  as .∞→T  Therefore, we can write 

 ( ( ) ( )) ( ) ( )( )yFxFyFxF 210210 ,ˆ,ˆˆ Λ−Λ  

[ ( ) ( ( ) ( ))] ( ) ( ) ( )( )[ ]yFxFyxFyFxFyxF 2121 ,ˆˆ,ˆ −=  

asymptotically as ( ( ) ( )) ( ) ( )( ),,,ˆ
21 yFxFyxFyxF −  and then the process FW  

converges weakly to a centered Gaussian process. ~ 

Theorem 2. Let ( ){ }Z∈tYX tt ,,  be a strictly stationary process with 

continuous values. Assuming the conditions (C1) (or (C1′)) to (C4) are valid, we 
have 

( ( ) ( )) ( ) ( )( )yFxFyFxF
T

P
210210 ,ˆ,ˆˆ Λ⎯⎯ →⎯Λ

∞→
 for every ( ) ,, 2R∈yx  

with ( ) ( ) ( ) ( ) .0ˆ,ˆ,, 2121 >yFxFyFxF  

Proof. By Theorem 2 of Fermanian and Scaillet (see the proof of the previous 

theorem), we have that ( ) ( ),,,ˆ yxFyxF P
→  ( ) ( )xFxF P

11̂ →  and ( ) ( )yFyF P
22

ˆ →  as 

,∞→T  and the result follows. ~ 
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Figure 7. Considering the VAR(1) model with ( ) ,44.6,05.3 ′=μ  ( )( ) =0Γvec  

( )′99.3,49.1,49.1,13.1  (correlation 0.70) and Gaussian innovations for some 

bivariate points of the secondary diagonal we have the qqplot of 0
~
Λ  (formula (6)). 

 

 

Figure 8. Autocorrelation functions of returns and squared returns of CAC 40 ( )tX  

and DAX ( )tY  (from 3/01/94 to 08/08/00), and their cross correlation function. 
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Theorem 3. Let ( ){ }Z∈tYX tt ,,  be a strictly stationary process with 

continuous values. Under assumptions (C1) (or (C1′)) to (C4), 

{ ( ) ( ) ( ) }1,0,,~, 00 ≤<Λ−Λ≡ vuvuTvuW C  

converges weakly to a centered Gaussian process in (( ] ).1,0 2∞l  

Proof. Theorem 3 of Fermanian and Scaillet is valid, i.e., ( )CCT −ˆ21  tends 

weakly to a centered Gaussian process ( )Gφ′  in ([ ] )21,0∞l  endowed with the sup-

norm (where G  is the Gaussian process described in the proof of Theorem 1 and φ 
is a Hadamard-differentiable map), whose limiting process is given by 

( ) ( ) ( ( ) ( )) ( ) ( ) ( ) ( ).,,,,,, 1
2

1
1 vv

vuCuu
vuCvFuFvu ∞

∂
∂−∞

∂
∂−=φ′ −− GGGG  

Using the continuous mapping theorem, the weakly convergence of the process CW  
is obtained. ~ 

 

Figure 9. Scatter plot, plots and contour curves of 0Λ̂  (formula (5)) for the daily 

returns of CAC 40 ( )tX  and DAX ( )tY  from 3/01/94 to 8/08/00. 

 

Figure 10. Plots and contour curves of 0
~
Λ  (formula (6)) for the daily returns of 

CAC 40 ( )tX  and DAX ( )tY  from 3/01/94 to 8/08/00. 
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3.2. Simulation results 

The simulations are based on a bivariate stationary vector autoregressive model 
of order 1, VAR(1), with contemporary correlation 0.70. Thus, the contemporaneous 
function of local dependence 0Λ  is calculated (by formula (3) or (4)) and then 

estimated firstly by formula (5) and then by formula (6), using 1,000 replications of 
Monte Carlo (with series of sizes 500 and 1,000) from which the biases, mean 
squared errors and histograms are computed. The simulations are done on a bivariate 
grid with 2525 ×  points, 98% of the central data, using the product of two Gaussian 
kernels and optimal bandwidth according to Hansen [4]. 

Consider the stationary VAR(1) process 

,110 ttt ε++= −ZΦΦZ  

where ( ),, ttt YX=Z  ( ) ,1,10
′=Φ  ( ) ( )′= 75.0,2.0,2.0,25.01Φvec  and ( )Σ0,~ Ntε  

with ( ) ( ) ,25.1,5.0,5.0,75.0 ′=Σvec  i.e., tZ  has dependent components. Thus,             

the parameters of the Gaussian stationary distribution are ( )′=μ 44.6,05.3  and 

( )( ) ( )′= 99.3,49.1,49.1,13.10Γvec  (correlation 0.70). 

The plots and contour curves on the left of Figure 2 refer to ,0Λ  and the others 

refer to .ˆ
0Λ  We can see that the left plots are very similar to the right ones. 

The theoretical values, the biases and mean squared errors of 0Λ̂  are shown in 

Table 1 of the Appendix. The estimator computed on the lower quantiles (0.01 and 
0.05) exhibits the higher biases and mean squared errors. For some bivariate grid 
points on the secondary diagonal, we can see the histograms (Figure 3) and qqplots 

(Figure 4) of ,ˆ
0Λ  which show non-normality as we move away from the central 

point. Comparing the results of simulations for series of sizes 500 (not shown) and 
1,000 (Table 1 of the Appendix), we see that with increasing T, the biases and the 
mean squared errors decrease. 

Next, we evaluate 0
~
Λ  given through (6). For the 1,000 series of size 1,000 

considered previously, we see in Figure 5 that 0
~
Λ  is very similar to 0Λ̂  (Figure 2). 

Table 2 (see Appendix) shows that the biases and the mean squared errors have 
small values, except at the first two points of the bivariate grid. In Figures 6 and 7, 
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we see some histograms and qqplots of 0
~
Λ  which show that their behaviour is 

closer to normality than .ˆ
0Λ  

The estimator 0
~
Λ  when compared with 0Λ̂  shows similar biases, and smaller 

mean squared errors and less departure from normality. One possible explanation of 

this behaviour is that 0Λ̂  is a ratio between estimators whereas 0
~
Λ  is not, and the 

inverse ,ˆ 1−
iF  ,2,1=i  used for the calculation of Ĉ  and then of ,~

0Λ  was calculated 

on a very fine grid. 

3.3. Empirical illustration 

To illustrate the implementation of the proposed estimators, we consider the 
daily log returns of CAC 40 (Cotation Assistée en Continu) and DAX (Deutscher 
Aktien IndeX) from 03/01/94 to 8/08/00, i.e., 1722 observations. 

The returns of the CAC 40 ( )tX  and DAX ( )tY  have contemporaneous 

correlation coefficient 0.67, Spearman’s rho 0.60 and Kendalls tau 0.44. The a.c.f. 
and c.c.f. of squared returns for these series are shown in Figure 8. In Figure 9, we 
see their scatter plot which shows positive linear relationship, plots and contour 
curves of the estimated contemporaneous function of local dependence given by 

formula (5) indicating positive dependence. Applying the estimator 0
~
Λ  to the series 

under study, we obtain the plots of Figure 10, whose behaviour is very similar to 
those of Figure 9. 

4. Function of Local Autodependence 

Let { }Z∈tX t ,  be a strictly stationary process with continuous values. We 

know that the univariate distribution is time invariant and the distribution of 
( ),, τ+tt XX  ,, Z∈τ∀t  only depends on the lag τ. Thus, let ( ) =τ;, 21 xxF  

[ ]21, xXxXP tt ≤≤ τ+  be the joint distribution of ( )τ+tt XX ,  with marginal 

distributions ( ).1 xF  Then the contemporaneous function of local dependence given 

by (3) can be rewritten as 

 ( ) ( )( ) ( )
( ) ( ) ( ) ,,,,;,, 2

21
2111

21
2111 ZR ∈τ∀∈∀

τ
=Λτ xxxFxF

xxFxFxF  (7) 
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with ( ) ,01 >ixF  ,2,1=i  and the function (4) as 

 ( ) ( ) ( ) ( ] ,,1,0,,,, 2
21

21
21

21 Z∈τ∀∈∀=Λτ uuuu
uuCuu  (8) 

where 

( ) ( ( ) ( ) ),;,, 2
1

11
1

121 τ= −− uFuFFuuC  

( ) ( ){ } .2,1,:inf 1
1

1 =≥∈=− iuxFxuF iiii R  

The properties (i), (iii), (iv)-a and (iv)-d ( ( ) ( )) ,where ⋅ψ=⋅ϕ  besides (v) (in 

this case, if { }tX  is a Gaussian process) of Section 2 are satisfied by (7) and (8), 

with the necessary adjustments. Also, the following properties are valid for these 
functions, which are written in terms of (7) only for convenience. The proofs are 
immediate. 

(a) ( ) ( )( ) ,1, 2111 ⎯⎯⎯ →⎯Λ ∞→ττ xFxF  ( ) ,, 2
21 R∈∀ xx  ,Z∈τ  if the process is 

α-mixing; 

(b) ( ) ( )( ) ( ) ( )( ) ,,, 21112111 xFxFxFxF ττ− Λ=Λ  ( ) ,, 2
21 R∈∀ xx  .Z∈τ∀  

We call the formulas (7) and (8) as function of local autodependence written 
through distribution functions and copula, respectively. 

4.1. Estimators and their properties 

One smoothed estimator for the formula (7) using the plug-in method is 

 ( ( ) ( )) ( )
( ) ( )

( ) ,,,,ˆˆ
;,ˆˆ,ˆˆ 2

21
2111

21
2111 ZR ∈τ∀∈∀

τ
=Λτ xx

xFxF
xxFxFxF  (9) 

with ( ) ,01̂ >ixF  where 

( ) ∑
τ−

=

τ+ ⎟
⎠
⎞

⎜
⎝
⎛ −−

τ−
=τ

T

t

tt
h
Xx

h
XxKTxxF

1

21
21 ,,1;,ˆ  

( ) ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
T

t

t
h

XxKTxF
1

11 .1ˆ  
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Figure 11. The first three plots refer to τΛ  (formula (7) or (8)), ,3,2,1=τ  and      

the next three plots are their contour curves, considering a Gaussian process with 
zero mean, unit variance and autocorrelation structure from an AR(1) model with 

.70.01 =φ  

 

Figure 12. The first three plots refer to τΛ̂  (formula (9)), ,3,2,1=τ  and the next 

three plots are their contour curves, considering 1,000 series with 000,1=T  

observed from a Gaussian process with zero mean, unit variance and autocorrelation 
structure from an AR(1) model with .70.01 =φ  
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Here ( )Thh =  denote the bandwidth such that 0→h  as ,∞→T  and K and 

1K  are as before. To estimate the formula (8), we suggest 

 ( ) ( ) ( ) ( ] ,,1,0,,,ˆ
,~ 2

21
21

21
21 Z∈τ∀∈∀=Λτ uuuu

uuCuu  (10) 

where 

( ) ( ( ) ( ) ),;ˆ,ˆˆ,ˆ
2

1
11

1
121 τ= −− uFuFFuuC  

( ) { ( ) }uxFxuF ≥∈=−
1

1
1

ˆ:infˆ R  

are kernel estimators of the corresponding functions. 

 

Figure 13. Histograms of τΛ̂  (formula (9)), ,1=τ  for a Gaussian process with  

zero mean, unit variance and autocorrelation structure from an AR(1) model with 
.70.01 =φ  

Consider the following regularity conditions: 

(C1) 02 →Th  as ;∞→T  

(C1′) 04 →Th  as ,∞→T  and the bivariate kernel k is even; 

(C2) the kernel k has a compact support; 

(C3) the process ( )tX  is α-mixing with coefficients ( )a
T To −=α  for some 

1>a  as ;∞→T  
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(C4) the marginal distribution 1F  is continuously differentiable on the interval 

[ ( ) ( ) ]ε+ε− −− bFaF 1
1

1
1 ;  for every 10 <<< ba  and some ,0>ε  with positive 

derivatives f. Moreover, the first partial derivatives of F exist and are Lipschitz 
continuous on the product of these intervals. 

 

Figure 14. qqplots of τΛ̂  (formula (9)), ,1=τ  for a Gaussian process with zero 

mean, unit variance and autocorrelation structure from an AR(1) model with 
.70.01 =φ  

Theorem 4. Let { }Z∈tX t ,  be a strictly stationary process with continuous 

values. Assuming (C1) (or (C1′)) to (C4) valid, we have 

{ ( ) ( ) ( ) ( ) ( ) }ZR ∈τ>∈Λ−Λ≡ ττ ,0ˆ,:,,,ˆ, 11212121 xFxFxxxxTxxW F  

converges weakly to a centered Gaussian process in ( ).2R∞l  

Theorem 5. Let { }Z∈tX t ,  be a strictly stationary process with continuous 

values. Under assumptions (C1) (or (C1′)) to (C4), we have 

( ( ) ( )) ( ) ( )( )21112111 ,ˆ,ˆˆ xFxFxFxF
T

P
τ

∞→
τ Λ⎯⎯ →⎯Λ  for every ( ) ZR ∈τ∈ ,, 2

21 xx  

such that ( ) ( ) .0ˆ, 11 >xFxF  
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Figure 15. Autocorrelation function of returns and squared returns of IBOVESPA 
( ),tX  from 3/01/95 to 27/12/00. 

Theorem 6. Let { }Z∈tX t ,  be a strictly stationary process with continuous 

values. Assuming (C1) (or (C1′)) to (C4) are valid, we have 

{ ( ) ( ) ( ) }1,0,,~, 212121 ≤<Λ−Λ≡ ττ uuuuTuuW C  

converges weakly to a centered Gaussian process in (( ] ).1,0 2∞l  

The proofs of the previous three theorems are similar to those of Theorems 1           
to 3. 

4.2. Simulations 

The functions of local autodependence given by (7) or (8) were calculated      
and their corresponding estimators (9) and (10) were evaluated through 1,000 
replications of Monte Carlo with series of sizes 500 and 1,000 observed from a 
stationary Gaussian process with zero mean, unit variance and autocorrelation 
structure from an AR(1) model with .70.01 =φ  Some statistics and graphics of each 

estimator are obtained. The remaining specifications of these simulations were the 
same as the Subsection 3.2. 

First, we evaluated τΛ̂  (formula (9)) with series of size 1,000. In Figure 11, we 

see the plots and contour curves of ,τΛ  ,3,2,1=τ  which show the decay of the 

dependence along lags. The same types of plots for ,ˆ
τΛ  ,3,2,1=τ  are shown in 

Figure 12, in which we see a similar behaviour. Considering this estimator on lag 1, 
we see in Table 3 of the Appendix that the biases and mean squared errors are small, 
except for the quantiles 0.01 and 0.05. In Figures 13 and 14, we see the distribution 
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of the estimator on some bivariate points of the grid through histograms and qqplots, 
which show a behaviour near to normality for most of central points. For all lags, the 
biases and the mean squared errors generally decrease with increasing T. Comparing 
the estimator for these three lags, we verify that increasing the lag, the biases and 
mean squared errors generally decrease. 

 

Figure 16. Scatter plot, plots of the function of local autodependence estimated 
through distribution functions (formula (9)) and their contour curves for the daily 
returns of IBOVESPA (from 3/01/95 to 27/12/00) on the lags 1 to 3. 

The behaviour of τΛ
~  formula (10), ,3,2,1=τ  are similar to their theoretical 

functions (Figure 11) and also to the estimator τΛ̂  (see Figure 12). 

Comparing the performance of the two estimators, τΛ
~  presented lower bias on 

the quantile ( )01.0,01.0  (and greater frequency of slight higher bias on the remaining 

bivariate grid points), lower mean squared error and greater proximity to normality. 
Also, it can be seen that as T increases, both statistics tend to be less different. 
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4.3. Empirical illustration 

Next, we estimate the function of local autodependence on the first three lags 
considering the daily log returns of IBOVESPA from 3/01/95 to 27/12/00, i.e., 1,498 
observations. 

In Figure 15, we see the autocorrelation function of the returns and squared 
returns, which shows dependence along the lags. For the first three lags of the 

returns, we see in Figure 16 the scatter plots, the plots and contour curves of τΛ̂  

(given by formula (9)). We see that the positive dependence presents a smooth decay 
from lag 1 to lag 2. A similar result holds for the estimator given by formula (10). 

5. Further Remarks 

In the context of stationary time series, we study the estimation of the Sibuya’s 
function which can be seen as a measure of local dependence of quadrants. 

For this measure, two smoothed nonparametric estimators using kernels were 
proposed, one written in terms of distribution functions and other in terms of 
copulas, for both bivariate and univariate strictly stationary processes. Using the 
results of the functional limit theorem of copulas for these processes and the 
continuous mapping theorem, we obtained the weak convergence of the estimators 
and also the consistence for the estimator written in terms of distribution functions. 

The finite sample properties of the estimators were verified through Monte Carlo 
simulations considering series observed from a VAR(1) model with contemporary 
correlation 0.70 and from a Gaussian process with autocorrelation structure from an 
AR(1) model with .70.01 =φ  In general, in both cases, the estimator through copula 

presents smaller bias on the quantile ( ),01.0,01.0  smaller mean squared errors and 

less departure from normality. 

Some applications of the proposed estimators to real data were done. 
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Appendix 

Table 1. Actual value of 0Λ  (formula (3) or (4)), bias and mean squared error of 

0Λ̂  (formula (5)) at some points of the bivariate grid considering 1,000 series of size 

1,000 observed from the VAR(1) model with ( ) ,44.6,05.3 ′=μ  ( )( ) =0Γvec  

( )′99.3,49.1,49.1,13.1  (correlation 0.70) and Gaussian innovations 

  0.01 0.05 0.25 0.50 0.75 0.95 0.99 
         
Actual 0.01 27.083 12.293 3.728 1.989 1.342 1.054 1.010 
Bias  –3.136 –0.839 –0.054 0.003 0.006 0.003 0.001 
MSE  222.144 14.851 0.299 0.030 0.004 0.000 0.000 
         
Actual 0.05 12.293 7.820 3.342 1.947 1.339 1.054 1.010 
Bias  –0.858 –0.437 –0.082 –0.006 0.005 0.003 0.001 
MSE  13.695  2.545 0.179 0.026 0.004 0.000 0.000 
         
Actual 0.25 3.728 3.342 2.385 1.742 1.312 1.053 1.010 
Bias  –0.088 –0.094 –0.058 –0.020 –0.001 0.002 0.001 
MSE  0.218 0.133 0.047 0.014 0.003 0.000 0.000 
         
Actual 0.50 1.989 1.947 1.742 1.497 1.254 1.051 1.010 
Bias  –0.002 –0.011 –0.019 –0.013 –0.003 0.002 0.001 
MSE  0.018 0.016 0.011 0.006 0.002 0.000 0.000 
         
Actual 0.75 1.342 1.339 1.312 1.254 1.162 1.043 1.009 
Bias  0.005 0.004 –0.001 –0.004 –0.003 0.001 0.001 
MSE  0.002 0.002 0.002 0.002 0.001 0.000 0.000 
         
Actual 0.95 1.054 1.054 1.053 1.051 1.043 1.020 1.006 
Bias  0.003 0.003 0.003 0.002 0.001 0.000 0.000 
MSE  0.000 0.000 0.000  0.000 0.000 0.000 0.000 
         
Actual 0.99 1.010 1.010 1.010 1.010 1.009 1.006 1.003 
Bias  0.001 0.001 0.001 0.001 0.001 0.000 0.000 
MSE  0.000  0.000 0.000 0.000 0.000 0.000 0.000 
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Table 2. Actual value of 0Λ  (formula (3) or (4)), bias and mean squared error of 

0
~
Λ  (formula (6)) at some points of the bivariate grid considering 1,000 series of size 

1,000 observed from the VAR(1) model with ( ) ,44.6,05.3 ′=μ  ( )( ) =0Γvec  

( )′99.3,49.1,49.1,13.1  (correlation 0.70) and Gaussian innovations 

  0.01 0.05 0.25 0.50 0.75 0.95 0.99 
         
Actual 0.01 27.083 12.293 3.728 1.989 1.342 1.054 1.010 
Bias  –3.082 –0.828 –0.071 –0.010 –0.003 –0.002 –0.002 
MSE  119.657 7.574 0.055 0.002 0.000 0.000 0.000 
         
Actual 0.05 12.293 7.820 3.342 1.947 1.339 1.054 1.010 
Bias  –0.907 –0.396 –0.083 –0.016 –0.003 –0.001 –0.001 
MSE  7.979 1.331 0.039 0.002 0.000 0.000 0.000 
         
Actual 0.25 3.728 3.342 2.385 1.742 1.312 1.053 1.010 
Bias  –0.088 –0.084 –0.054 –0.024 –0.006 0.000 0.000 
MSE  0.071 0.039 0.013 0.002 0.000 0.000 0.000 
         
Actual 0.50 1.989 1.947 1.742 1.497 1.254 1.051 1.010 
Bias  –0.011 –0.016 –0.022 –0.016 –0.007 –0.001 0.000 
MSE  0.002 0.002 0.002 0.001 0.000 0.000 0.000 
         
Actual 0.75 1.342 1.339 1.312 1.254 1.162 1.043 1.009 
Bias  –0.003 –0.003 –0.006 –0.007 –0.005 –0.001 0.000 
MSE  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
         
Actual 0.95 1.054 1.054 1.053 1.051 1.043 1.020 1.006 
Bias  –0.002 –0.001 0.000  –0.001 –0.001 –0.001 0.000 
MSE  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
         
Actual 0.99 1.010 1.010 1.010 1.010 1.009 1.006 1.003 
Bias  –0.002 –0.001 0.000 0.000 0.000 0.000 0.000 
MSE  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 3. Actual value of τΛ  (formula (7) or (8)), bias and mean squared error of 

τΛ̂  (formula (9)) for 1=τ  at some points of the bivariate grid considering 1,000 

series of size 1,000 observed from a Gaussian process with zero mean, unit variance 
and autocorrelation structure from an AR(1) model with 70.01 =φ  

  0.01 0.05 0.25 0.50 0.75 0.95 0.99 
         
Actual 0.01 26.684 12.167 3.718 1.989 1.342 1.054 1.010 
Bias  –4.954 –0.994 –0.078 –0.006 0.005 0.002 0.001 
MSE  197.255 12.619 0.182 0.016 0.002 0.000 0.000 
         
Actual 0.05 12.167 7.743 3.327 1.945 1.339 1.054 1.010 
Bias  –1.016 –0.508 –0.090 –0.013 0.003 0.002 0.001 
MSE  11.908 2.161 0.112 0.014 0.002 0.000 0.000 
         
Actual 0.25 3.718 3.327 2.374 1.737 1.311 1.053 1.010 
Bias  –0.074 –0.088 –0.057 –0.022 –0.002 0.002 0.001 
MSE  0.183 0.110 0.033 0.009 0.002 0.000 0.000 
         
Actual 0.50 1.989 1.945 1.737 1.494 1.252 1.051 1.010 
Bias  –0.003 –0.012 –0.021 –0.015 –0.004 0.001 0.001 
MSE  0.016 0.014 0.009 0.004 0.001 0.000 0.000 
         
Actual 0.75 1.342 1.339 1.311 1.252 1.161 1.043 1.009 
Bias  0.005 0.003 –0.001 –0.005 –0.004 0.000 0.000 
MSE  0.002 0.002 0.002 0.001 0.001 0.000 0.000 
         
Actual 0.95 1.054 1.054 1.053 1.051 1.043 1.019 1.006 
Bias  0.002 0.002 0.002  0.001 0.000 0.000 0.000 
MSE  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
         
Actual 0.99 1.010 1.010 1.010 1.010 1.009 1.006 1.003 
Bias  0.001 0.001 0.001 0.001 0.000 0.000 0.000 
MSE  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 4. Actual value of τΛ  (formula (7) or (8)), bias and mean squared error of 

τΛ
~  (formula (10)) for 1=τ  at some points of the bivariate grid considering 1,000 

series of size 1,000 observed from a Gaussian process with zero mean, unit variance 
and autocorrelation structure from an AR(1) model with 70.01 =φ  

  0.01 0.05 0.25 0.50 0.75 0.95 0.99 
         
Actual 0.01 26.684 12.167 3.718 1.989 1.342 1.054 1.010 
Bias  –4.602 –0.985 –0.079 –0.012 –0.003 –0.002 –0.002 
MSE  135.016 7.850 0.062 0.002 0.000 0.000 0.000 
         
Actual 0.05 12.167 7.743 3.327 1.945 1.339 1.054 1.010 
Bias  –0.950 –0.449 –0.084 –0.018 –0.003 –0.001 –0.001 
MSE  7.815 1.419 0.042 0.002 0.000 0.000 0.000 
         
Actual 0.25 3.718 3.327 2.374 1.737 1.311 1.053 1.010 
Bias  –0.080 –0.080 –0.053 –0.023 –0.006 0.000 0.000 
MSE  0.062 0.040 0.012 0.002 0.000 0.000 0.000 
         
Actual 0.50 1.989 1.945 1.737 1.494 1.252 1.051 1.010 
Bias  –0.009 –0.017 –0.022 –0.017 –0.008 –0.001 0.000 
MSE  0.001 0.002 0.002 0.001 0.000 0.000 0.000 
         
Actual 0.75 1.342 1.339 1.311 1.252 1.161 1.043 1.009 
Bias  –0.003 –0.003 –0.006 –0.008 –0.006 –0.001 0.000 
MSE  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
         
Actual 0.95 1.054 1.054 1.053 1.051 1.043 1.019 1.006 
Bias  –0.002 –0.001 0.000  –0.001 –0.002 –0.001 –0.001 
MSE  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
         
Actual 0.99 1.010 1.010 1.010 1.010 1.009 1.006 1.003 
Bias  –0.002 –0.001 0.000 0.000 0.000 –0.001 0.000 
MSE  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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