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Abstract

The measures of local dependence are calculated on a function of the
support of the variables, and may provide more information about the
structure of dependence than the global coefficients which result in a
single numerical value. In this paper, we study the function of Sibuya [11]
in the context of stationary stochastic process both in the univariate and
bivariate cases. We rewrite this function in terms of copula studying its
properties. Two kernel smoothed estimators are proposed and their
properties are derived. Monte Carlo experiments considering a stationary
vector autoregressive process of order one and a Gaussian process are
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performed. Empirical illustrations are done using the series of daily
returns of CAC 40 and DAX and of IBOVESPA (the Brazilian index).

1. Introduction

Some measures of local dependence in the context of random variables found in
the literature are the function of local dependence of Holland and Wang [5], the
curve of correlation of Bjerve and Doksum [2], the function of local dependence of
Bairamov et al. [1], and also the copula and copula density (Nelsen [9]). Another
measure of interest is the function of dependence of Sibuya [11] for which Kolev et
al. [6] developed additional properties and Latif and Morettin [7] proposed kernel
estimators verifying their weak convergence and finite sample properties.

In the context of stochastic processes, few studies have been developed to assess
measures of local dependence. Among them, we can mention the study of copulas
for time series addressed by Fermanian and Scaillet [3] who used kernel estimators,
and by Morettin et al. [8] who used estimators through wavelets.

The purpose of this paper is to study the function of Sibuya [11] for time series
considering univariate and bivariate stationary processes. This function is written in
terms of copula and its properties are verified. We propose two kernel smoothed
estimators, one through distribution functions and other through copula for which
the weak convergence are derived and the consistency is verified for the first one.
The behaviour of this local measure is assessed through simulations and some
information on finite sample performance are evaluated through a Monte Carlo
study. Empirical illustrations are provided considering the daily returns of CAC 40
(French stock market index) and DAX (German stock index), and also the
IBOVESPA (Brazilian stock index).

The plan of this paper is as follows: in Section 2, we describe the function of
Sibuya and its properties. In Section 3, we study the function of Sibuya for a
bivariate stationary process, where its properties, kernel estimators and asymptotic
behaviors are derived. Also, we show some Monte Carlo results considering a
VAR(1) model with Gaussian innovations and an empirical illustration considering
the daily returns of CAC 40 and DAX. A similar study is done in Section 4 for a
univariate stationary process, where the Monte Carlo simulations are performed
considering a Gaussian process and the empirical illustration concerns the
IBOVESPA index. Section 5 contains the conclusions.
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2. Definitions

Aiming to extend the concept of extreme statistics from the univariate to
bivariate case, Sibuya [11] proposed a function of dependence between two
continuous random variables, which relates the joint distribution with their
corresponding marginal distributions.

Let X and Y be continuous random variables with joint distribution function
F(x, y)=P[X <x,Y <y] and marginals F(x)=P[X <x] and F,(y)=P[Y <y].

Thus, the function of dependence of Sibuya, A = A(F(x), F,(y)), is given by

AFL(X), Fo(y)) = % v(x, y) e B2, 0

where F(x) > 0 and Fy(y) > 0. If F(x) =0 or F(y) =0, then A(F(x), F2(y))
will be defined if the limit

Fl(lir)lo F(x y)/(R(x)F(y)) or Fzgiyf;Lo F(x y)/(R()Fa(y)

exists, respectively.

0 —

Figure 1. Plots (top panel) and contour curves (bottom panel) of the Sibuya’s
measure of local dependence given by formula (1) for (X, Y) with standard normal

distribution and coefficient of correlation equals to p = 0.80, p = -0.80, p = 0.20
and p = —0.20, respectively.

Since this function of dependence corresponds to the association between the
events (X <x) and (Y < y) with (x, y) belonging to the support of the distribution
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of (X, Y) (see Sibuya [11]), we call it as local. That is, we are not referring to the

concept of local in terms of conditional distributions on the point (X, y).

The theoretical behaviour of this measure of local dependence for a bivariate
random vector with standard normal distribution and correlation coefficient equal to
+0.80, —-0.80, +0.20 and -0.20, are shown, respectively, in the plots (top panel) and
contour curves (bottom panel) of Figure 1.

The properties for A defined by Sibuya [11] are given below, see also Kolev et
al. [6]. First, let us remember that X and Y are PQD-positively quadrant dependent

(NQD-negatively quadrant dependent), if for all (x, y)e R2, F(x y)= (<)
F(x)Fa(y).

(i)

Fi(x)+ Fo(y) -1
max( 0, AL < AR, Fo(y)

(11 2.
< ""”(Fl(x)’ F2<y))’ v y) € R

(i) A(F(X), Fp(y)) =1 W(x y) e R? ifand only if X and Y are independent;
(iiii) If X and Y are PQD(NQD)Y, then A(Fy(X), Fy(Y)) = 1(< 1) almost surely;

(iv) Let ¢(-) and y(-) be arbitrary functions of X and Y, respectively, such that

oY) and yY() exist. Using the notation
R(x) =1-F(x), Fa(y) =1-Fa(y), Fyx)(x)=Ple(X)<x],
Fy)(Y) = PLu(Y) < ], Agx )y ) (% ¥) = A(Fgx ) (%), Fyr)(¥))

and Axy (07(x), wH(y)) = A(Fi(e (), Fa(y(y)), with S being the support
of (X,Y), then:

(@ If o(-) and w(-) are increasing functions on the support of X and Y,
respectively, then

Ao )X ¥) = Axy (071 wH(Y), V(x y)€eS;



NONPARAMETRIC ESTIMATION OF SIBUYA’S MEASURE ... 5

(b) If () is a decreasing function on the support of X and () is an increasing

function on the support of Y, then

1 R
File () R ()

(c) If ¢(:) is an increasing function on the support of X and w(-) is a decreasing

Axy (@72 (x), wH(y) V(x y)eS;

Agx)y(r) (X ¥) =

function on the support of Y, then

1 Ry
Ru™(y) R ™(y)

(d) If ¢() and wy(-) are decreasing functions on the support of X and Y,

Axy (975 (x), wH(Y)), V(X ) € S;

Ag(x)(v) (X Y) =

respectively, then

1- R(e(x) - F(v(y)
Fi(o ™ () Fa(wH(y))

Ag(x)w(v) (% ) =

L Bl )R ()
F(o " (0) Ry H(y))

W) If pxy =0(>0, <0), then A(F(X), Fo(Y)) =1(>1, <1) in the bivariate

normal case.

Ay (@72 x), wH(y), V(x y) € S;

Kolev et al. [6] observed that the property (iv) shows that A at point (x, y) is
not ordinally invariant under monotone transformations, and this is because it

depends on the functions ¢~2(-) and w~1(:), and possible functions of the marginals.

These authors also suggested the empirical estimator A,, of A which is built by

the plug-in method using the empirical joint distribution and empirical marginal
distributions. However, some method of smoothing is recommended to obtain better
results for small samples and also to facilitate the graphical display.

We rewrite formula (1) in the following equivalent expression:
C(u, v) 2
A(u, v) = —w v(u, v) € (0, 1]%, )

where C(u, v) denotes the copula of (X, Y) on the point (u, v) = (F(x), F2(y)).
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Figure 2. Considering the VAR(1) model with p = (3.05, 6.44)’, vec(I'(0)) =

(1.13,1.49, 1.49, 3.99)’ (correlation 0.70) and Gaussian innovations, we have the

plots and contour curves of Ag (formula (3) or (4)) and of AO (formula (5)),

respectively.
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Figure 3. Considering the VAR(1) model with p = (3.05, 6.44)’, vec(I'(0)) =

(1.13,1.49, 1.49, 3.99)’ (correlation 0.70) and Gaussian innovations, we have on

some bivariate points of the secondary diagonal the histograms of f\o (formula (5)).
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The properties (i) to (v) of A written as formula (1) remain valid for formula
(2), with the necessary adjustments. Considering formula (2), we observe that
Ag(x)y(y)(U, V) = Axy (u, v) if o(-) and () are strictly increasing.

For A given through formula (1) or (2), Latif and Morettin [7] suggested the use
of kernel smoothed estimators whose weak convergence were obtained for large
samples and also for finite samples via bootstrap procedure, and their finite sample
performance was studied through simulations.

3. Contemporaneous Function of Local Dependence

Let {(X{,Y;), t € Z} be a strictly stationary process with continuous values.
Let F(x, y) be the joint distribution of X; and Y;, F(x) and F,(y) their marginal
distributions, and C(u, v) the corresponding copula, Vt € Z. Thus, the Sibuya’s

measure of local dependence given by formula (1) can be represented by

Ao(R(X), Fa(y)) = % v(x, y) e R2 Vi e Z, @)

with F(x) > 0 and F,(y) > 0, and for formula (2), we used the notation
Ag(u, V) = % (U, v) < (0,112, Vi < Z, @)
where
C(u, v) = F(F(u). F5'(v)),
Fri(u) = inf{x e R : Fy(x) > u},
Fyl(v) = inf{y e R : Fy(y) > v}.

For this process, the properties (i) to (v) are satisfied by formula (3) and also by
formula (4) with the necessary adjustments. We call the formulas (3) and (4) as
contemporaneous function of local dependence through distribution functions and
copula, respectively.
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Figure 4. Considering the VAR() model with p = (3.05, 6.44), vec((0)) =
(1.13,1.49, 1.49, 3.99)’ (correlation 0.70) and Gaussian innovations, we have for
some bivariate points of the secondary diagonal the qgplot of AO (formula (5)).

3.1. Estimators and their properties

We propose for time series the same kind of smoothed estimators for random
variables (Latif and Morettin [7]). Let (X1, Y1), ..., (X1, Y1 )) be observed from the

process under study, then formula (3) can be estimated by the plug-in method using
kernels, that is

Ro(B(x), Fr(y)) = %Fzy()y) v(x, y) e B2, ©)
1

with Ifl(x), Ifz(y) > 0, where

. U X, y-Y,
o= )

F(x) = %i Kl(x _hlxt )
t=1

)

.

- 1 —Y,

Fa(y) = ?Z Kz(y hy !
t=1



NONPARAMETRIC ESTIMATION OF SIBUYA’S MEASURE ... 9

with K such that K(x, y)= _[x Iy k(u, v)dudv, K(x, y; h, hy)= K(% hl)
—00 J —00 >

where k : R? - R is a kernel function such that j j k(u, v)dudv =1, K(x, y; hy, hy)

= Lk(i, lj and h; >0, i=1 2, are functions of T such that h; —> 0 as
hhy (o hy
T — oo, Also, Kj(w; hy), i=1 2, are the univariate versions of K. For formula

(4), a smoothed kernel estimator is
Rolu, v):w, (U, v) € (0, 17, 6)

where C(u, v), F*(u) and F;(v) are the corresponding kernel estimators of

copula and quantiles.
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Figure 5. Considering the VAR(1) model with p = (3.05, 6.44)’, vec(I'(0)) =

(1.13,1.49, 1.49, 3.99)’ (correlation 0.70) and Gaussian innovations, we have the

plots of perspective and contour curves of Ag (formula (3) or (4)) and of /~\0

(formula (6)), respectively.
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In order to establish the properties of the estimators, consider the following
regularity conditions where h, = max(h, h,):

(C1)Th? 5 0as T —

(C1) Th? > 0 as T — o and the bivariate kernel k is even;

(C2) the kernel k has a compact support;

(C3) the process (X, Y;) is a-mixing with coefficients oy = o(T ~?) for some
a>lasT — oo

(C4) the marginal distributions F, i =1, 2, are continuously differentiable on

the intervals [F2(a)— & F2(b)+¢] for every 0 <a<b <1 and some ¢ > 0,
with positive derivatives fj. Moreover, the first partial derivatives of F exist and are
Lipschitz continuous on the product of these intervals.

As pointed out by Fermanian and Scaillet [3], the condition (C2) can be

weakened by controlling the tails of k, for example, by assuming that sup| k;(x) | <
i

(@+|x])™® for every x and some o > 0. This type of assumption is satisfied by
most Kernels, in particular by the Gaussian kernel (see Robinson [10]).
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Figure 6. Considering the VAR(1) model with p = (3.05, 6.44)’, vec(I'(0)) =

(1.13,1.49, 1.49, 3.99)’ (correlation 0.70) and Gaussian innovations, on some
bivariate points of the secondary diagonal we have the histograms of 7\0 (formula

(6)).
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Theorem 1. Let {(X{, Y;), teZ} be a strictly stationary process with
continuous values. Under assumptions (C1) (or (Cl)) to (C4), we have
WF(x y) = VT (Ag = Ag) (X, ¥), %, ¥ € R Fy(x), Fa(y), Ru(x), Fa(y) > 0}
converges weakly to a centered Gaussian process in I°°(R2).

Proof. Assuming the conditions (C1) (or (C1')) to (C4) valid for the process
{(X{, Y¢), t € Z}, Theorem 2 of Fermanian and Scaillet [3] is valid, i.e.,

Tl/z(lE — F) tends weakly to a centered Gaussian process G in 1”(R?) (the space

of almost surely bounded functions on Rz), endowed with the sup-norm, with

covariance function

Cov(G(x, y), G(X', ¥)) = ZCOV(I{(XO, Yo) < (% Yl H(Xe, Vo) < (X Y},
teZ

and also T2 sup| F(x, y)- F(x, y)| = op(1). Then, Ifl(x) N Fi(x) and Ifz(y) 5
F,(y) as T — oo. Therefore, we can write
Ao(R(X). Fa(y)) = Ag(R(X). Fa(y)
= [FO6 /ROF()] = [FO6 YR Fa(y))]

asymptotically as (F(x, y)— F(x, y))/(Fi(x)F5(y)), and then the process wF

converges weakly to a centered Gaussian process. O

Theorem 2. Let {(X,Y;), teZ} be a strictly stationary process with

continuous values. Assuming the conditions (C1) (or (C1")) to (C4) are valid, we
have

Ag(Ry(x), Fa(y)) ——> Ao(Fi(x), F(y) for every (x, y) « R?,

with Fy(x), Fo(y), Fi(x), F2(y) > 0.
Proof. By Theorem 2 of Fermanian and Scaillet (see the proof of the previous

theorem), we have that F(x, y) 5 F(x, y), Ifl(x) 5 Fi(x) and Ifz(y) 5 Fo(y) as

T — oo, and the result follows. O
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Figure 7. Considering the VAR(L) model with p = (3.05, 6.44), vec((0)) =

(1.13,1.49, 1.49, 3.99)’ (correlation 0.70) and Gaussian innovations for some

bivariate points of the secondary diagonal we have the qgplot of 1~\0 (formula (6)).
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Figure 8. Autocorrelation functions of returns and squared returns of CAC 40 (X;)
and DAX (Y;) (from 3/01/94 to 08/08/00), and their cross correlation function.
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Theorem 3. Let {(X{,Y;), teZ} be a strictly stationary process with

continuous values. Under assumptions (C1) (or (C1")) to (C4),

WEC(u, v) = ﬁ(}io - Ag)(u,v),0<u, vl
converges weakly to a centered Gaussian process in 1°((0, 1]%).

Proof. Theorem 3 of Fermanian and Scaillet is valid, i.e., T]/Z(é - C) tends

weakly to a centered Gaussian process ¢'(G) in 1°([0, 1]°) endowed with the sup-

norm (where G is the Gaussian process described in the proof of Theorem 1 and ¢
is a Hadamard-differentiable map), whose limiting process is given by

V() (uv) = CF), Fw) - U Gy, o) - C Y sy,

Using the continuous mapping theorem, the weakly convergence of the process w©
is obtained. d

0z o4 08 oF

Figure 9. Scatter plot, plots and contour curves of ;\0 (formula (5)) for the daily
returns of CAC 40 (X;) and DAX (Y;) from 3/01/94 to 8/08/00.
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Figure 10. Plots and contour curves of /~\0 (formula (6)) for the daily returns of
CAC 40 (X;) and DAX (Y;) from 3/01/94 to 8/08/00.
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3.2. Simulation results

The simulations are based on a bivariate stationary vector autoregressive model
of order 1, VAR(1), with contemporary correlation 0.70. Thus, the contemporaneous
function of local dependence Ag is calculated (by formula (3) or (4)) and then

estimated firstly by formula (5) and then by formula (6), using 1,000 replications of
Monte Carlo (with series of sizes 500 and 1,000) from which the biases, mean
squared errors and histograms are computed. The simulations are done on a bivariate
grid with 25 x 25 points, 98% of the central data, using the product of two Gaussian
kernels and optimal bandwidth according to Hansen [4].

Consider the stationary VAR(1) process

Zt = (I)O + (I)]_Zt,]_ + &,

where Z, = (X, Y;), ® = (L 1), vec(®;) = (0.25, 0.2, 0.2, 0.75) and & ~ N(0, Z)
with vec(X) = (0.75, 0.5, 0.5, 1.25)’, i.e., Z; has dependent components. Thus,
the parameters of the Gaussian stationary distribution are p = (3.05, 6.44)' and

vec(I'(0)) = (1.13, 1.49, 1.49, 3.99)' (correlation 0.70).

The plots and contour curves on the left of Figure 2 refer to A, and the others

refer to AO. We can see that the left plots are very similar to the right ones.

The theoretical values, the biases and mean squared errors of Ag are shown in

Table 1 of the Appendix. The estimator computed on the lower quantiles (0.01 and
0.05) exhibits the higher biases and mean squared errors. For some bivariate grid
points on the secondary diagonal, we can see the histograms (Figure 3) and gqgplots

(Figure 4) of AO, which show non-normality as we move away from the central

point. Comparing the results of simulations for series of sizes 500 (not shown) and
1,000 (Table 1 of the Appendix), we see that with increasing T, the biases and the
mean squared errors decrease.

Next, we evaluate KO given through (6). For the 1,000 series of size 1,000

considered previously, we see in Figure 5 that KO is very similar to f\o (Figure 2).

Table 2 (see Appendix) shows that the biases and the mean squared errors have
small values, except at the first two points of the bivariate grid. In Figures 6 and 7,
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we see some histograms and qqgplots of KO which show that their behaviour is

closer to normality than /A\O.

The estimator Ko when compared with AO shows similar biases, and smaller
mean squared errors and less departure from normality. One possible explanation of
this behaviour is that /A\O is a ratio between estimators whereas XO is not, and the

inverse Ifi‘l, i =1, 2, used for the calculation of C and then of /~\0, was calculated

on a very fine grid.
3.3. Empirical illustration

To illustrate the implementation of the proposed estimators, we consider the
daily log returns of CAC 40 (Cotation Assistée en Continu) and DAX (Deutscher
Aktien IndeX) from 03/01/94 to 8/08/00, i.e., 1722 observations.

The returns of the CAC 40 (X;) and DAX (Y;) have contemporaneous

correlation coefficient 0.67, Spearman’s rho 0.60 and Kendalls tau 0.44. The a.c.f.
and c.c.f. of squared returns for these series are shown in Figure 8. In Figure 9, we
see their scatter plot which shows positive linear relationship, plots and contour
curves of the estimated contemporaneous function of local dependence given by

formula (5) indicating positive dependence. Applying the estimator 7\0 to the series

under study, we obtain the plots of Figure 10, whose behaviour is very similar to
those of Figure 9.

4. Function of Local Autodependence

Let {X;,t e Z} be a strictly stationary process with continuous values. We
know that the univariate distribution is time invariant and the distribution of
(Xt, Xt47), Vt, teZ, only depends on the lag t. Thus, let F(xq, Xp; 1) =
P[X; < X, Xtir € Xo] be the joint distribution of (X, X(,.) with marginal
distributions F;(x). Then the contemporaneous function of local dependence given

by (3) can be rewritten as

F(x, X2; 7)

2
F(x)F(x)’ V(x, Xp) € R, V1 e Z, ©)

A (Fi(x) Fi(xp)) =
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with F(x;) > 0, i =1, 2, and the function (4) as

As(ty, Uy) = % (up, uy) € (0, 1, v e Z, ®)

where
C(uy, Up) = F(RT(Wy), Ftup); o),
Frl(u) =inf{x e R:F(x) >y}, i=1 2
The properties (i), (iii), (iv)-a and (iv)-d (where ¢(-) = y(")), besides (v) (in

this case, if {X;} is a Gaussian process) of Section 2 are satisfied by (7) and (8),

with the necessary adjustments. Also, the following properties are valid for these
functions, which are written in terms of (7) only for convenience. The proofs are
immediate.

@ Ar(F(x) Fi(x2) —==z— 1 V(x, xp) € R2, 1 e Z, if the process is
o-mixing;
(b) A_(R(x) F0x)) = Ac(Fi(x) R(x)), V(X Xp) € R?, VreZ

We call the formulas (7) and (8) as function of local autodependence written
through distribution functions and copula, respectively.

4.1. Estimators and their properties

One smoothed estimator for the formula (7) using the plug-in method is

'E(le X2 T)

2 ) (%, Xp) e R?, Yt e Z, 9)
Fi(x) Fi(x2) b4, Xg) € °

/A\r(FAl(Xl)’ 'El(xz ) =

with F(x;) > 0, where

T-1
. oy 1 X = Xt Xp = Xiye
F(Xl, XZ’T)_T—‘C;K( h s h ,

T
~ 1 Xx—-X
t=1
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Figure 11. The first three plots refer to A, (formula (7) or (8)), t=1 2,3, and
the next three plots are their contour curves, considering a Gaussian process with
zero mean, unit variance and autocorrelation structure from an AR(1) model with
¢1 = 0.70.

i tau=z [ ]
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Figure 12. The first three plots refer to f\r (formula (9)), T =1, 2, 3, and the next
three plots are their contour curves, considering 1,000 series with T =1,000

observed from a Gaussian process with zero mean, unit variance and autocorrelation
structure from an AR(1) model with ¢; = 0.70.



18 SUMAIA A. LATIF and PEDRO A. MORETTIN

Here h = h(T) denote the bandwidth such that h — 0 as T — o, and K and

K, are as before. To estimate the formula (8), we suggest

A (ug, uy) = % V(uy, uy) € (0,12, vt € Z, (10)

where
Cluy, up) = F(FHw), Frt(uy); o),
Fi(u) = inf{x e R : F(x) > u}

are kernel estimators of the corresponding functions.
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Figure 13. Histograms of f\r (formula (9)), t =1, for a Gaussian process with

Zero mean, unit variance and autocorrelation structure from an AR(1) model with
¢, = 0.70.

Consider the following regularity conditions:

(c1) Th> 5 0as T —

(C1) Th* > 0 as T — oo, and the bivariate kernel k is even;
(C2) the kernel k has a compact support;

(C3) the process (X;) is a-mixing with coefficients oy = o(T ™) for some

a>lasT —
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(C4) the marginal distribution F; is continuously differentiable on the interval

[F(a) - & F{Y(b)+¢] for every 0 <a<b <1 and some & > 0, with positive

derivatives f. Moreover, the first partial derivatives of F exist and are Lipschitz
continuous on the product of these intervals.

0.01 0.05 025 0.50
2 | 59 J o] 5 2
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424401 2 13 4244012 3 424001 2 3

Figure 14. qgplots of AT (formula (9)), T =1, for a Gaussian process with zero

mean, unit variance and autocorrelation structure from an AR(1) model with
¢; = 0.70.

Theorem 4. Let {X,, t € Z} be a strictly stationary process with continuous
values. Assuming (C1) (or (C1") to (C4) valid, we have

WF(xg, %) = VT (Ay = A) (X, Xo ), X1, Xp € R Fy(X), Fy(x) > 0, T e Z}
converges weakly to a centered Gaussian process in I°°(IR<2).

Theorem 5. Let {X;,t e Z} be a strictly stationary process with continuous

values. Under assumptions (C1) (or (C1')) to (C4), we have

A(R(%), Fi(x2)) ——> AL(Fi(x), Fi(xp)) forevery (x, xp) € R?, t € Z
T—oo

such that F(x), Ifl(x) > 0.
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Figure 15. Autocorrelation function of returns and squared returns of IBOVESPA
(X¢), from 3/01/95 to 27/12/00.

Theorem 6. Let {X;, t € Z} be a strictly stationary process with continuous

values. Assuming (C1) (or (C1")) to (C4) are valid, we have
W (U, up) = VT (A; = Ag)(ug, Up), 0 < ug, up <1}

converges weakly to a centered Gaussian process in 1°((0, 1]?).

The proofs of the previous three theorems are similar to those of Theorems 1
to 3.

4.2. Simulations

The functions of local autodependence given by (7) or (8) were calculated
and their corresponding estimators (9) and (10) were evaluated through 1,000
replications of Monte Carlo with series of sizes 500 and 1,000 observed from a
stationary Gaussian process with zero mean, unit variance and autocorrelation
structure from an AR(1) model with ¢; = 0.70. Some statistics and graphics of each

estimator are obtained. The remaining specifications of these simulations were the
same as the Subsection 3.2.

First, we evaluated f\r (formula (9)) with series of size 1,000. In Figure 11, we

see the plots and contour curves of A;, t=1, 2, 3, which show the decay of the

dependence along lags. The same types of plots for f\r, T =1 2,3, are shown in

Figure 12, in which we see a similar behaviour. Considering this estimator on lag 1,
we see in Table 3 of the Appendix that the biases and mean squared errors are small,
except for the quantiles 0.01 and 0.05. In Figures 13 and 14, we see the distribution
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of the estimator on some bivariate points of the grid through histograms and qgplots,
which show a behaviour near to normality for most of central points. For all lags, the
biases and the mean squared errors generally decrease with increasing T. Comparing
the estimator for these three lags, we verify that increasing the lag, the biases and
mean squared errors generally decrease.
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Figure 16. Scatter plot, plots of the function of local autodependence estimated
through distribution functions (formula (9)) and their contour curves for the daily
returns of IBOVESPA (from 3/01/95 to 27/12/00) on the lags 1 to 3.

The behaviour of Kt formula (10), T =1, 2, 3, are similar to their theoretical

functions (Figure 11) and also to the estimator /A\T (see Figure 12).

Comparing the performance of the two estimators, /~\T presented lower bias on
the quantile (0.01, 0.01) (and greater frequency of slight higher bias on the remaining

bivariate grid points), lower mean squared error and greater proximity to normality.
Also, it can be seen that as T increases, both statistics tend to be less different.
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4.3. Empirical illustration

Next, we estimate the function of local autodependence on the first three lags
considering the daily log returns of IBOVESPA from 3/01/95 to 27/12/00, i.e., 1,498
observations.

In Figure 15, we see the autocorrelation function of the returns and squared
returns, which shows dependence along the lags. For the first three lags of the

returns, we see in Figure 16 the scatter plots, the plots and contour curves of AT

(given by formula (9)). We see that the positive dependence presents a smooth decay
from lag 1 to lag 2. A similar result holds for the estimator given by formula (10).

5. Further Remarks

In the context of stationary time series, we study the estimation of the Sibuya’s
function which can be seen as a measure of local dependence of quadrants.

For this measure, two smoothed nonparametric estimators using kernels were
proposed, one written in terms of distribution functions and other in terms of
copulas, for both bivariate and univariate strictly stationary processes. Using the
results of the functional limit theorem of copulas for these processes and the
continuous mapping theorem, we obtained the weak convergence of the estimators
and also the consistence for the estimator written in terms of distribution functions.

The finite sample properties of the estimators were verified through Monte Carlo
simulations considering series observed from a VAR(1) model with contemporary
correlation 0.70 and from a Gaussian process with autocorrelation structure from an
AR(1) model with ¢; = 0.70. In general, in both cases, the estimator through copula

presents smaller bias on the quantile (0.01, 0.01), smaller mean squared errors and

less departure from normality.

Some applications of the proposed estimators to real data were done.
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Table 1. Actual value of Ay (formula (3) or (4)), bias and mean squared error of

Appendix

/A\O (formula (5)) at some points of the bivariate grid considering 1,000 series of size

1,000 observed from the VAR(1) model with u = (3.05, 6.44)', vec(I'(0)) =

’

(2.13,1.49,1.49, 3.99) (correlation 0.70) and Gaussian innovations

0.01 0.05 0.25 0.50 0.75 0.95 0.99
Actual 0.01 27.083 12293 3.728 1.989 1342 1054 1.010
Bias -3.136 -0.839 -0.054 0.003 0.006 0.003 0.001
MSE 222.144 14851 0.299 0.030 0.004 0.000 0.000
Actual 0.05 12293 7.820 3.342 1947 1339 1.054 1.010
Bias -0.858 -0.437 -0.082 -0.006 0.005 0.003 0.001
MSE 13.695 2545 0.179 0.026 0.004 0.000 0.000
Actual 0.25 3.728 3342 2385 1.742 1312 1053 1.010
Bias -0.088 -0.094 -0.058 -0.020 -0.001 0.002 0.001
MSE 0.218 0.133 0.047 0.014 0.003 0.000 0.000
Actual 0.50 1989 1.947 1742 1497 1254 1051 1.010
Bias -0.002 -0.011 -0.019 -0.013 -0.003 0.002 0.001
MSE 0.018 0.016 0.011 0.006 0.002 0.000 0.000
Actual 0.75 1342 1339 1312 1254 1162 1.043 1.009
Bias 0.005 0.004 -0.001 -0.004 -0.003 0.001 0.001
MSE 0.002 0.002 0.002 0.002 0.001 0.000 0.000
Actual 095 1.054 1.054 1.053 1.051 1.043 1.020 1.006
Bias 0.003 0.003 0.003 0.002 0.001 0.000 0.000
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Actual 099 1010 1010 1.010 1.010 1009 1.006 1.003
Bias 0.001 0.001 0.001 0.001 0.001 0.000 0.000
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 2. Actual value of Ay (formula (3) or (4)), bias and mean squared error of

7\0 (formula (6)) at some points of the bivariate grid considering 1,000 series of size

1,000 observed from the VAR(1) model with p = (3.05, 6.44)', vec(I'(0)) =

’

(1.13,1.49, 1.49, 3.99) (correlation 0.70) and Gaussian innovations

0.01 0.05 0.25 0.50 0.75 0.95 0.99

Actual 0.01 27.083 12293 3.728 1.989 1342 1054 1.010
Bias -3.082 -0.828 -0.071 -0.010 -0.003 -0.002 -0.002
MSE 119.657 7.574 0.055 0.002 0.000 0.000 0.000

Actual 0.05 12293 7.820 3.342 1.947 1339 1054 1.010
Bias -0.907 -0.396 -0.083 -0.016 -0.003 -0.001 -0.001
MSE 7979 1331 0.039 0.002 0.000 0.000 0.000

Actual 025 3.728 3342 2385 1.742 1312 1.053 1.010
Bias -0.088 -0.084 -0.054 -0.024 -0.006 0.000 0.000
MSE 0.071 0.039 0.013 0.002 0.000 0.000 0.000

Actual 0.50 1.989 1947 1742 1497 1254 1051 1.010
Bias -0.011 -0.016 -0.022 -0.016 -0.007 -0.001 0.000
MSE 0.002 0.002 0.002 0.001 0.000 0.000 0.000

Actual 0.75 1342 1339 1312 1254 1162 1.043 1.009
Bias -0.003 -0.003 -0.006 -0.007 -0.005 -0.001 0.000
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Actual 095 1.054 1.054 1.053 1.051 1.043 1.020 1.006
Bias -0.002 -0.001 0.000 -0.001 -0.001 -0.001 0.000
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Actual 099 1.010 1.010 1.010 1.010 1.009 1.006 1.003
Bias -0.002 -0.001 0.000 0.000 0.000 0.000 0.000
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 3. Actual value of A, (formula (7) or (8)), bias and mean squared error of

AT (formula (9)) for T =1 at some points of the bivariate grid considering 1,000

series of size 1,000 observed from a Gaussian process with zero mean, unit variance
and autocorrelation structure from an AR(1) model with ¢; =0.70

0.01 0.05 0.25 0.50 0.75 0.95 0.99

Actual 0.01 26.684 12.167 3.718 1.989 1342 1.054 1.010
Bias -4954 -0.994 -0.078 -0.006 0.005 0.002 0.001
MSE 197.255 12.619 0.182 0.016 0.002 0.000 0.000

Actual 0.05 12167 7.743 3327 1945 1339 1054 1.010
Bias -1.016 -0.508 -0.090 -0.013 0.003 0.002 0.001
MSE 11.908 2161 0112 0.014 0.002 0.000 0.000

Actual 025 3.718 3327 2374 1737 1311 1.053 1.010
Bias -0.074 -0.088 -0.057 -0.022 -0.002 0.002 0.001
MSE 0.183 0.110 0.033 0.009 0.002 0.000 0.000

Actual 0.50 1.989 1945 1737 1494 1252 1.051 1.010
Bias -0.003 -0.012 -0.021 -0.015 -0.004 0.001 0.001
MSE 0.016 0.014 0.009 0.004 0.001 0.000 0.000

Actual 0.75 1.342 1339 1311 1.252 1161 1.043 1.009
Bias 0.005 0.003 -0.001 -0.005 -0.004 0.000 0.000
MSE 0.002 0.002 0.002 0.001 0.001 0.000 0.000

Actual 095 1.054 1.054 1.053 1.051 1.043 1019 1.006
Bias 0.002 0.002 0.002 0.001 0.000 0.000 0.000
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Actual 099 1.010 1.010 1.010 1.010 1.009 1.006 1.003
Bias 0.001 0.001 0.001 0.001 0.000 0.000 0.000
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 4. Actual value of A (formula (7) or (8)), bias and mean squared error of

7\T (formula (10)) for t =1 at some points of the bivariate grid considering 1,000

series of size 1,000 observed from a Gaussian process with zero mean, unit variance
and autocorrelation structure from an AR(1) model with ¢; = 0.70

0.01 0.05 0.25 0.50 0.75 0.95 0.99

Actual 0.01 26.684 12.167 3.718 1.989 1342 1.054 1.010
Bias -4.602 -0.985 -0.079 -0.012 -0.003 -0.002 -0.002
MSE 135.016 7.850 0.062 0.002 0.000 0.000 0.000

Actual 0.05 12167 7.743 3327 1945 1339 1054 1.010
Bias -0.950 -0.449 -0.084 -0.018 -0.003 -0.001 -0.001
MSE 7.815 1419 0.042 0.002 0.000 0.000 0.000

Actual 025 3.718 3327 2374 1737 1311 1.053 1.010
Bias -0.080 -0.080 -0.053 -0.023 -0.006 0.000 0.000
MSE 0.062 0.040 0.012 0.002 0.000 0.000 0.000

Actual 0.50 1.989 1945 1737 1494 1252 1.051 1.010
Bias -0.009 -0.017 -0.022 -0.017 -0.008 -0.001 0.000
MSE 0.001 0.002 0.002 0.001 0.000 0.000 0.000

Actual 0.75 1.342 1339 1311 1.252 1161 1.043 1.009
Bias -0.003 -0.003 -0.006 -0.008 -0.006 -0.001 0.000
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Actual 095 1.054 1.054 1.053 1.051 1.043 1019 1.006
Bias -0.002 -0.001 0.000 -0.001 -0.002 -0.001 -0.001
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Actual 099 1.010 1.010 1.010 1.010 1.009 1.006 1.003
Bias -0.002 -0.001 0.000 0.000 0.000 -0.001 0.000
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000




[1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

9]
[10]

(11]

NONPARAMETRIC ESTIMATION OF SIBUYA’S MEASURE ... 27

References

I. Bairamov, S. Kotz and T. J. Kozubowski, A new measure of linear local
dependence, Statistics 37(3) (2003), 243-258.

S. Bjerve and K. Doksum, Correlation curves: measures of association as functions of
covariate values, Ann. Statist. 21(2) (1993), 890-902.

J.-D. Fermanian and O. Scaillet, Nonparametric estimation of copulas for time series,
J. Risk 5 (2003), 25-54.

B. E. Hansen, Bandwidth selection for nonparametric distribution estimation, Working
paper, 2004.

P. W. Holland and Y. J. Wang, Dependence function for continuous bivariate
densities, Comm. Statist. Theory Methods 16(3) (1987), 863-876.

N. V. Kolev, M. Gongalves and B. Dimitrov, Probabilistic properties of Sibuya’s
dependence function, 2007, preprint.

S. A. Latif and P. A. Morettin, Estimation of Sibuya’s measure of local dependence,
Estadistica 61 (2009), 121-147.

P. A. Morettin, C. M. C. Toloi, C. Chiann and J. C. S. de Miranda, Wavelet estimation
of copulas for time series, J. Time Ser. Econom. (2010), to appear.

R. B. Nelsen, An Introduction to Copulas, 2nd ed., Springer-Verlag, New York, 2006.

P. Robinson, Nonparametric estimators for time series, J. Time Ser. Anal. 4 (1983),
185-207.

M. Sibuya, Bivariate extreme statistics, Ann. Inst. Statist. Math. 11 (1960), 195-210.



