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Abstract 

Matrix orthogonalities appear in a number of mathematical and statistical 
contexts. This study presents a sufficient condition for non-orthogonality 
of general matrices in stochastic contexts and provides a linear model 
procedure for testing the condition. 

1. Introduction 

Let 1X  be an ( )Kn ×  matrix and 2X  be an ( )Ln ×  matrix. In the sense of 

orthogonality or perpendicularity in the Euclidean space ,nR  the condition 

021 =′XX  is equivalent to the statement that every column of 1X  is orthogonal to 

every column of 2X  (Halmos [6]). The general matrix orthogonality 021 =′XX  

plays a central role in many statistical contexts, including the following. Let 
ε+β= Zy  be a standard regression model with more than one regressor, so y is the 

( )1×n  vector of observations on the dependent variable, Z is the ( )Kn ×  matrix of 

observations on the regressors, β is the ( )1×K  vector of coefficients, and ε is the 

( )1×n  vector of stochastic errors. Partition matrix Z into two matrices 1X  and 2X  
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so that [ ]21 XXZ =  and the model ε+β= Zy  is decomposed into +β= 11Xy  

,22 ε+βX  where 1β  and 2β  form the corresponding partition of β, i.e., 

[ ] ., 21
′β′β′=β  It can then be shown that the orthogonality condition 021 =′XX  is 

sufficient for the absence of “omitted variable bias” in the regression ,22 ε+β= Xy  

i.e., the least squares estimation of ε+β= 22Xy  generates the same estimate for 

2β  as the least squares estimation of ε+β+β= 2211 XXy  (Davidson and 

MacKinnon [2] and Greene [5]). Another application is in the context of 
instrumental variables. If 2X  is correlated with the error term ε, then 2X  is 

replaced with another set ,3X  where the instrument 3X  satisfies the exogeniety 

property 03 =ε′X  and the relevance property .023 ≠′ XX  The instrument is said to 

be weak if 23XX ′  is near zero. The implications of weak instruments have received 

attention in the recent literature (Godfrey [3] and Stock et al. [10]). Other versions of 
the general orthogonality 021 =′XX  appear in the study of independence and other 

statistical contexts (Solomon and Taylor [9], Graybill [4], Mendenhall and Scheaffer 
[7] and Schott [8]). 

Although matrix orthogonalities appear in several stochastic contexts, the 
literature lacks an explicit and simple procedure for testing the validity of general 
matrix orthogonalities in stochastic contexts. Such a test is important since non-
experimental sample data rarely satisfy an orthogonality condition exactly even if the 
true features satisfy the orthogonality condition. The issue also arises in 
experimental cases that are subject to measurement error. The underlying objective 
of this study is to propose a readily accessible routine for checking if two matrices of 
arbitrary sizes drawn from a stochastic context are in fact non-orthogonal or the 
deviation from orthogonality could be only due to a sampling error. The study first 
briefly reviews some of the rather known but core statistical properties of matrix 
orthogonality in Section 2. A sufficient condition for non-orthogonality is 
established in Section 3 and a procedure for testing the condition is proposed in 
Section 4. Section 5 concludes by highlighting some of the distinctive features of the 
proposed test in relation to those in the existing literature. 

2. Orthogonality and Correlation 

Let x and y be two ( )1×n  vectors that represent sample observations on two 
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variables, nxx i ⎟⎠
⎞

⎜
⎝
⎛= ∑  and nyy i ⎟⎠

⎞
⎜
⎝
⎛= ∑  be the corresponding mean values, 

and ( )xx −  and ( )yy −  be the corresponding vectors of deviations from the mean. 

The simple correlation between the two variables x and y is defined by ( ) =yxcor ,  

( ) ( ) ( )[ ] ,, 21yvarxvaryxcov  where ( ) ( ) ( ) nyyxxyxcov −′−=,  is the covariance 

of x and y and ( ) ( )xxcovxvar ,=  is the variance of x. Then it follows from the 

stated definitions that the orthogonality ( ) ( ) 0=−′− yyxx  is equivalent to the 

absence of simple correlation between x and y. The following result is an immediate 
consequence of the stated definitions. 

Remark 1. Let 1X  be an ( )Kn ×  matrix and 2X  be an ( )Ln ×  matrix. 

Suppose the columns of either 1X  or 2X  have zero sums. Then the orthogonality 

021 =′XX  is equivalent to the absence of simple correlation between every column 

of 1X  and every column of .2X  

Consider the regression 

ε+β+β++β+β= ++ 11221 KKjj xxxy  (1) 

with .2≥K  Select a regressor jx  and refer to the rest of the regressors 

{ }1112 ...,,,...,, ++− Kjj xxxx  as the “other regressors”. The partial correlation 

between y and jx  when the other regressors are partialed out is denoted by parcor 

( )jxy,  and computed as follows. Let ye  be the residuals when y is regressed on the 

other regressors and je  be the residuals when jx  is regressed on the other 

regressors. The stated partial correlation is then computed as the simple correlation 
between je  and ,ye  i.e., parcor ( ) ( ).,, jyj eecorxy =  One of the central results 

regarding partial correlation provides an equivalent and useful computational 
statement for parcor ( )jxy,  is as follows. In the regression specified in (1) with a 

sample of size n, let jb
~

 be the least squares estimate of ,jβ  ( )jbSE
~

 be its estimated 

standard error, ( )jjj bSEbt
~~

=  be its usual t-statistic, and .1−−= KnD  It can 

then be shown that (Graybill [4] and Greene [5]) 
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The result shows that parcor ( )jxy,  and jb
~

 share the same sign and parcor 

( ) 0, =jxy  if and only .0
~

=jb  The following result can readily be shown. 

Remark 2. Let 1X  be an ( )Kn ×  matrix and 2X  be an ( )Ln ×  matrix. 

Suppose the columns of either 1X  or 2X  have zero sums. Then the orthogonality 

021 =′XX  is equivalent to the absence of partial correlation between every column 

of 1X  and every column of 2X  when any subset of the remaining columns in 1X  

and 2X  is partialed out. 

Remark 3. Let M be the ( )nn ×  mean deviation matrix defined by IM =  

,1 11 ′− n  where I is the ( )nn ×  identity matrix and 1 is the ( )1×n  vector of 1’s. It 

can readily be verified that M is symmetric, idempotent and transforms vectors into 
mean deviations. Thus, if v is an ( )1×n  vector, then ,1vvMv −=  where 

∑ =
= n

i ivnv 1 ,1  hence vector Mv has zero sum. Also, if [ ]KwwW ...,,1=  is an 

( )Kn ×  matrix with its jth column denoted by ,jw  the mean deviation 

transformation of W defined by [ ]KMwMwMW ...,,1=  satisfies the zero column 

sum condition. 

Remark 4. The zero sum condition stated in Remarks 1 and 2 above is often 
either present or can be obtained by mean deviation transformations. Consider the 

regression [ ][ ] ,ε+′β′α= Xy 1  where β is the slope vector. The requirement of 

zero column sum in [ ]Xy  could be obtained by transforming y and X into 

deviations from the column means, that is, transforming y into My and X into MX, 
where M is the mean deviation matrix as defined in Remark 3 above. The 

transformation then reduces [ ][ ] ε+′β′α= Xy 1  to ,ε′+β= MXMy  so the constant 

term is eliminated. Alternatively, the mean deviation transformation could be applied 
only to X. These two transformations generate the required zero sum condition and, 

more importantly, the least squares estimate b
~

 of the slope vector β in the stated 
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regression [ ][ ] ε+′β′α= Xy 1  is invariant under these two transformations. 

However, transforming only y into its mean deviations generates the required zero 

sum in y but will revise .
~
b  

3. A Sufficient Condition for Non-orthogonality 

Assumption. Throughout this and the following sections, it is assumed that the 
mean deviation transformation stated in Remark 4 above has been applied in 
advance so that all of the matrices satisfy the zero sum condition stated in Remarks 1 
and 2 above. 

The intended condition emerges from the following theorem. 

Theorem 5. Consider the regression model ,2211 ε+β+β= XXy  where y is 

( ) 1,1 Xn ×  is ( ) 2, XKn ×  is ( ),Ln ×  and the ( )1×n  vector of error terms ( )ε  

satisfies the usual assumptions of the classical regression model. In particular, 
adopt the following assumptions: (i) [ ]21 XX  has full column rank, (ii) there is no 

endogeniety problem so that [[ ] ] ,021 =ε′XXE  and (iii) ( ) 111 PXXE =′  and 

( ) ,222 PXXE =′  where 1P  and 2P  are positive definite matrices. Then 02 =β  if 

[ ] .021 =′XXyE  

Proof. Premultiplying ε+β+β= 2211 XXy  by 2X ′  and then taking expectation 

lead to 

( ) ( ) ( ) ( ).22221122 ε′+β′+β′=′ XEXXEXXEyXE  

It follows then from the assumptions of the theorem that 

( ) ( )[ ].1122
1

22 β′−′=β − XXEyXEP  (3) 

Hence, if ( ) 02 =′ yXE  and ( ) ,012 =′ XXE  which are equivalent to [ ] ,021 =′XXyE  

then .02 =β  � 

Remark 6. It follows from Theorem 5 that the nonzero condition 02 ≠β  is a 

sufficient condition for the non-orthogonality [ ] .021 ≠′XXyE  The condition is not 

necessary since 02 =β  does not imply [ ] .021 =′XXyE  
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4. A Test of Non-orthogonality 

Theorem 5 and Remark 6 suggest a regression-based and testable sufficient 
condition for non-orthogonality of matrices. To elaborate, consider the problem of 
testing the non-orthogonality ( ) ,02 ≠′XZE  where Z is ( ) 2, XKn ×  is ( ),Ln ×  and 

[ ]2XZ  has full column rank. Let y be an arbitrary column of Z, and 1X  be the 

( )[ ]1−× Kn  matrix that contains the remaining columns in Z. There is no loss in 

the generality of 02 =′XZ  if Z is stated as [ ].1XyZ =  Consider then the 

regression ,2211 ε+β+β= XXy  where the error term ( )ε  satisfies the usual 

assumptions of the classical regression. It follows from Theorem 5 and Remark 6 
that the non-orthogonality condition ( ) 02 ≠′XZE  is implied by the nonzero 

condition .02 ≠β  Testing the latter is the standard F-test of linear equality 

restrictions on the regression parameters under the classical assumptions (Graybill 
[4], Mendenhall and Scheaffer [7] and Greene [4]). Thus, rejection of the null 
hypothesis 0H  in 

⎪⎩

⎪
⎨
⎧

≠β

=β

0:

0:

21

20

H

H
 

on the stated regression ε+β+β= 2211 XXy  verifies the non-orthogonality 

( ) .02 ≠′XZE  

The stated result is independent of the decomposition [ ]1XyZ =  of matrix Z. 

To show this independence, suppose [ ]1
ˆˆ XyZ =  is another decomposition of matrix 

Z. The orthogonality ( ) ,02 =′XZE  then implies ( ) 0ˆ2 =′ yXE  and ( ) .0ˆ
12 =′ XXE  

Thus, by the result in (3) with y replace by ,ŷ  and 1X  replaced by ,ˆ
1X  the 

implication 02 =β  continues to hold. Therefore, 02 ≠β  implies ( ) ,02 ≠′XZE  

regardless of the choice of column vector y from matrix Z to form the decomposition 
[ ]1XyZ =  and regression .2211 ε+β+β= XXy  

The procedure can be summarized as follows. Decompose the observed matrix 
[ ]2XZ  into [ ] [ ]212 XXyXZ =  as described above and let e be the standard 
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( )1×n  vector of residuals that result from the least squares estimation of the 

unrestricted model 

[ ] ,
2

1
212211 ε+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

β

β
=ε+β+β= XXXXy  (4) 

where 1β  and 2β  are the ( )[ ]11 ×−K  and ( )1×L  parameter vectors. Thus ye =  

( ),~~
2211 bXbX +−  where ( )21

~
,

~
bb  is the least squares estimate of ( )21, ββ  in (4). 

Let ∗e  be the ( )1×n  vector of residuals that emerge from the least squares 

estimation of the restricted model 

.11 ε+β= Xy  (5) 

Thus ,1̂1bXye −=∗  where 1̂b  is the least squares estimate of 1β  in (5). The 

inequality ,∗∗′≤′ eeee  then holds and the F-statistic for the stated test is 

( )
( ) ,

1
2

eed
eeeedF ′
′−′

= ∗∗  (6) 

where Ld =1  is the number of restrictions in 02 =β  and ( )12 −+−= LKnd  is 

the degree of freedom in the unrestricted regression. Under the null hypothesis, the 
sampling distribution of the stated F-statistic in (6) is the F-distribution ( )., 21 ddF  

At a given type I error level α, the non-orthogonality ( ) 02 ≠′XZE  is supported if 

the computed F-statistic in (6) exceeds the cut-off value ( );, 21 ddFα  otherwise, the 

test is inconclusive with respect to the orthogonality of Z and .2X  

For small and moderate sizes of n and for typical values of α, the cut-off values 
( )21, ddFα  are readily available from the standard statistical tables. For large values 

of n, the distribution ( )21, ddF  is approximated by its asymptotic version, which is 

the chi-squared distribution ( )1
2 dχ  with cut-off values ( )1

2 dαχ  that are also readily 

available from the standard tables for certain values of 1d  and α. There are also a 

number of statistical software packages that readily compute the stated statistic and 
cut-off values. While the stated F distribution requires the normality assumption 

for  the regression error term ( ),ε  the stated 2χ  distribution continues to hold 

asymptotically without the normality assumption (Greene [5]). 
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5. Concluding Remarks 

This study suggested a regression-based sufficient condition for non-
orthogonality of matrices and proposed a procedure for testing the condition. In 
relation to the existing literature, the area of multivariate analysis (Anderson [1]) 
suggests certain tests of independence of two sets of normal variates. The normality 
assumption adopted in this literature allows equivalence between independence and 
zero correlation as well as application of the maximum likelihood method. To briefly 
highlight some of the comparative features, let [ ]2XZX =  be a set of ( )LK +  

variates where Z contains K variates and 2X  contains L variates. Suppose X has a 

joint normal distribution with mean zero and the ( ) ( )[ ]LKLK +×+  symmetric 

covariance matrix .∑  Decompose ∑  as 

( ) ,
2221

1211

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∑∑

∑∑
=′=∑ XXE  

where ( )ZZE ′=∑11  is ( )KK ×  and ( )2222 XXE ′=∑  is ( ).LL ×  Given a 

random sample of n observations on [ ],2XZX =  it follows from ( ) 122 ∑=′XZE  

that testing the orthogonality hypothesis ( ) 02 =′XZE  is equivalent to testing the 

independence hypothesis 012 =∑  under the stated normality. The multivariate 

literature (Anderson [1]) provides a likelihood ratio procedure for testing the latter 
hypothesis with a likelihood ratio and a sampling distribution that are both rather 
complicated for computation. The regression-based approach suggested in the 
present study is distinct in the sense that it not only presents a rather simple routine 
for the testing but also provides flexibility with respect to the distributional 
assumption adopted for the error term ( )ε  in the corresponding regression. Any of 

the widely available regression software packages can quickly perform the test 
suggested in the present study. The statistical properties of the proposed test are 
readily defined by those of the classical F-test for testing joint linear restrictions in 
the linear models. However, the stated advantages of the proposed test come at the 
cost of its limitation, namely, the proposed procedure tests only a sufficient 
condition for non-orthogonality of matrices and is inconclusive if the test fails to 
support the non-orthogonality. The proposed regression-based procedure is still 
significant in light of the fact that the literature lacks a general procedure that 
possesses the stated features and is void of the stated limitation. 
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