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Abstract

As is well-known, submerged horizontal cylinders can serve as
waveguides for surface water waves. For large values of the wave number
k in the direction of the cylinders, there is only one trapped wave. We
construct asymptotics of these trapped modes and their frequencies as
k — oo in the case of n submerged cylinders by means of reducing the
initial problem to a system of integral equations on the boundaries and
then solving them using the Neumann series.
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1. Introduction

It is well-known that submerged horizontal cylinders can serve as waveguides
for water waves. The first result in this direction was obtained by Ursell [10] for a
cylinder of circular cross-section. Later, it was discovered that horizontal “bumps”
on the bottom (underwater ridges) can also trap waves (see [2, 5]). In [2], Bonnet-
Ben Dhia and Joly proved that for large values of the wave number k in the direction
of the ridge, there is only one trapped mode. Their proof can be straightforwardly
carried over to the case of one or several parallel submerged cylinders. They also
showed that the distance of the frequency of this mode to the cut-off frequency is
exponentially small in k and that the corresponding eigenfunction decays
exponentially slowly in the direction orthogonal to the ridge. In [7], we have
constructed explicitly this trapped mode for large values of k in the case of a ridge
and also indicated the formula for the frequency in the case of one submerged
cylinder. In [8], we obtained this trapped mode for large values of k in the case of
one or two submerged cylinders.

In the present paper, we obtain a generalization of those results to the case of n
submerged cylinders. We note that the limit k — o is to some extent analogous to
the limit of small height of the underwater ridge: surface water waves decay
exponentially with depth h as exp(—kh), so the influence of an object submerged at

a finite distance from the surface is small, just as the influence of a small bump on
the bottom. The problem of the ridge of small height was treated in [11], where a
close analogy of the problem of water waves and small perturbations of the one-
dimensional Schrédinger equation is established. The latter problem was studied by
a number of authors (we mention, for example, [3, 6, 9], and, in the context of water
waves, [4]). In our case, a technique similar to that of [11] yields the desired result.
We note that in contrast to [11] the asymptotics turns out to be exponential, i.e., the
distance of the trapped wave frequency to the cut-off frequency is exponentially
small in k. This fact seemingly could have rendered the problem quite complicated
from the point of view of asymptotic expansions, but, since in fact, we construct an
exact convergent expansion, no additional difficulties arise.

2. Mathematical Formulation and Main Result

The geometry of the problem is as follows: we assume that

G = {x=x(t), y = yi(t), t € [-m, =]}



TRAPPING OF WATER WAVES BY SUBMERGED CYLINDERS ... 97
with smooth x;(t) and y;(t), y;(t) <0,
(P + (i) =0, 2.1)

and max y;(t) = y;(0), y/(0) < 0, x{(0) > 0, where y is the vertical coordinate, x is
the horizontal coordinate orthogonal to the direction of the cylinders, Iy, Ty, ..., I}

describe curves bounding their cross-sections. We assume that these cross-sections
are disjoint and

YOO = x;@)2 + (O - ;@)% =d >0, i ] (22)

Ir ={(x, 0) : x € R} is the free surface. The water layer Q is the domain exterior

to Iy, Iy, ..., [}, and lying below T’ (see Figure 1).
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Figure 1

Looking for the velocity potential in the form exp{i(wt — kz)} ®(x, y), where z

is the horizontal coordinate along the cylinders, o is the frequency, we come to the
problem

Dy + Dy k2P =0 in Q (2.4)
ov/of =0 on TG, i=1..,n, (2.5)

for the function ®; here A = coz/g. Solutions of this problem from the Sobolev

space H4(Q) are called trapped waves and exist only for certain values of A (the
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eigenparameter) for k fixed. It is known that essential spectrum of (2.3)-(2.5)
coincides with the interval [k, o). There exists only one eigenvalue 2 below the

essential spectrum for large values of k. Our goal is to construct an asymptotic of this
eigenvalue. Our main result is as follows.

Theorem 2.1. The unique eigenvalue A(k) of (2.3)-(2.5) has the form

A=k -p2 (2.6)

(S [2n vy 1
B—(;k,/lyiﬂ(o)ley x.<0)]<1+o<k ) @7)

Remark 2.2. Clearly, if | y;(0)| < | y;(0) | for some jand all i = j, then all the

where

summands with i = j in (2.7) are negligible, and the result, in fact is, the same as in

the case of one cylinder.

In the next section, we construct the corresponding eigenfunction.
3. Reduction to Integral Equations and their Solution

We reduce (2.3)-(2.5) to n +1 integral equations on T, I, I, ..., I}, for the

functions ¢ = ®|y_g, 6; = ®@[. We have, by the Green formula,

06 M = 52 [ Kolkdlx =2 + )l dx
Lk 7 KaaJ(x =8 + )

el g o

o(x)dx

_i K [T Kk = 8% + (i () - m)?)
=2 o) -2 + (i) - n)?

<[y (M) - &) - OO -nleiMdt € n)eq (6.1
(here Ky(r) is the Macdonald function so that —2—1n Ko(kr) is the fundamental

solution to (2.4)). Passing in equation (3.1) to the limit when n — 07, £ — x;(t),
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n — y;(t), and taking into account the jump formulas for the potentials, we obtain

the following integral equations:

mo@) = [ KolkIx £)a(x)dx

S Kk 00— 82 + v (D)
—k 0 i i
ZI V() - 2 + yi (1)

x [Yi®) (% (1) - €) = X (1) y; ()]0 (t)dlt, 3.2)

w00 = 2 Kolkltx = (0 + 307 Jox)x

= Kok (x = % (D)% + ;(0)?)
ky; (t 0 ' d
o], o nr om0

) anl | m Ky(ky 0 (1) = % O + (v (1) - ¥ (0)?)
=) - (0% + () - i)
< [y () (x5(1) = X (1) = X5(E) (y;(t) - yi(@)]0;(t)dt.  (3.3)

In order to apply the technique of [11], it is necessary to pass to the Fourier
transform ¢ of the function ¢,

Feplo@(p) = a(p) = [~ e p()de

Using the formulas (see [1]; here h > 0 is a parameter):

T

k2+p21

fé_)p[Kl(k\/e"; +h )}( )_ TC —hwlk +p?

Feonpliokl2” +07N(P) = e i, (34)
tp

Ko(z) = —Ki(2),  Feryp[Ko(kIED](P) =
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and passing to the Fourier transform ¢ of the function ¢, we come to the following

system for o(p), 0;(t):

(1<m%@‘23 oo i+ L aoa @9

= L7 aipx+yi(p) A N
0= e (14755 e

K c T KO(k\/Qu(t t ) QL (40 A
nZ.[ Joij &, t) ojj(t, 1)0;(t)dt!, (3.6)

where
o(p) = VK2 + p?,
2t 1) = ()~ %) + (y; (1) - V()2
i (1, 1) = V) (6 (1) = () - x5 ) (vt - yi(0)).
Rewriting system (3.5) as

@—77ﬁw)(me) 37)

[(@-0)6](t) = (Ng) (1), (3.8)

where

0= (01, .. 0y), N =(Ng, .. N), O=(Gy) jy. o MO= Zmiei,
(400 (p) = [ Mitp.vei0et, (DO = [~ Nitt, pIEp).

G301 = [~ 0y, 1)8; )
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with

ED)

Nift, )= - m&®+m0ﬂp{1+ran)

(tU——%E@&ﬂﬁiliNJ) (3.9)

4. Solution of the System of Integral Equations

Consider equation (3.8). It is not hard to see, using the asymptotics of K;(z) for

small and large z, that the operator O is bounded by const. kY2 In fact, the
following lemma holds.

Lemma 4.1. We have

“ " 0u(t V)0, (1)dt | < V2o,

where C is a constant and || 6; | = supe[—z, )l 8i(t) | Furthermore,

§ 2
‘J 05 (t, t)0;(t)dt’| < Ck ¥ exp(~dk) | 0; [, i # .

Proof. For a given & > 0, we divide the interval of integration in two domains,

kjt—t'|< & and k|t —t'| > &. In the first domain, we use the asymptotics K;(z) ~%,

and in the second, the asymptotics K(z) ~ 1}2—nze_z. For k|t —t'| < 8, we have

|0ii(t, )| < G |G"((tt i))l

The numerator here is O((t — t')?), and by (2.1),

Joiit, t) > ¢t -t'|, c>0. (4.1)
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Hence Oj;(t, t') is bounded in this domain. For k|t —t'| > §, we have

O (t, )] < C kY2ekai®t) Lot ]
| ||( )l 2 € (Qii(t, t,))3/4

The last factor is bounded by virtue of (4.1), and by the same inequality, we
obtain

| 0ji(t, t)] < Cgk¥Ze ek =], 4.2)

since e Mt > ¢78 = const for [t —t"| < §/k, we see that (4.2) holds for all t, t'.

Now

Un 0, (t, 1)6; () dt’

s '
< const j kY26t lge 0, | < ckY2| 65 |
-7

as claimed. The second inequality of the lemma follows from the fact that Oj(t, t')
are exponentially small, since Jgij (t,t)y>d>0,i=j by(22). O

By Lemma 4.1, O is small (e.g., in the Cartesian product of n copies of

C[-=, =]). Hence we can invert (1 - (5) in (3.8) by the Neumann series, obtaining
0(t) = [(1 - 0) *N1p(t), (43)

where (1—CA))_l = Z:zoém. Substituting in (3.5), we finally come to

A N\~ e
(1 - Wj #(p) = [G](p). (4.4)

where Q = M(1- O)™*N.

We apply the reasoning of [11]. We look for the eigenvalue A in the form (2.6)
and we know that B is exponentially small in k [2]. Hence the first factor in the left-
hand side of (4.4),

k — p?

oM _q__K-B”
L(p) =1 =0 1 e (4.5)
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is exponentially small in k for p = 0. In fact, the roots of L(p) = 0 which tend to

zero as k — oo, as it is not hard to see, are simple and given by

'{_B +O(V2), =1 (4.6)

We look for ¢ inthe form ¢(p) = A(p)/L(p). Assuming that A(p) is analytic
and using the fact that Nj(t, p) are analytic in a strip containing the real axis, and

we can change the contour of integration in the integrals

[* Ny p) ﬁgg} dp,

to the one shown in Figure 2 (with a suitable a > 0 such that in the disc | p| < a

there are no zeros of L(p) apart from p.): we have, by the residue theorem,

J NSt p)A(p)dp j e p)ﬁgpgdp+2niw. @4.7)
N EL(pr:er

Thus (4.4) transforms into
A(p) = Q"A(p) + g(p) A(p,.), (4.8)
where

Q" = M(@-0;) N7,

VA = [ NG ) o

g(p) = M@-0)TE(r), f(1)= znidN(t,—m)_
% L( p)‘p: o
Note that now the operator Q" is small in ¢, since | L(p)| > constk ™2 along y

and N(t, p) is exponentially small. Indeed, on the arc we have up to O(k™™),

a2 _4
=z +ok™), (4.9)

1

L =[1-
|L(p)]| N
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and on the part of the contour which lies on the real axis, the minimum of | L(p)| is

attained at the points p = +a, hence, the above estimate still holds.
Rewriting (4.8) as
[@-Q")Al(p) = 9(p) A(p.,), (4.10)
we see that (1— Q) is invertible and
A(p) = [(L- Q") g](p) A(p,). (4.11)
Let us show that A(p) is indeed analytic in a strip containing the real axis.
Lemma 4.2. Let f;(t) becontinuousin t e [-r, n] Then g(p)= M (1—6)’1f(t)
is analytic in a strip containing vy, and

[9(p)| < Ce™0™/2 max | ;|

pey, hy=maxiy  nlyi(0)].
Remark 4.3. Note that %t = k + O(k 1) for finite p and Rt = © for p real.

Proof. By Lemma 4.1, (1-O)* is bounded on (C[-m, =])". The assertion

now follows directly from the explicit formula for M ;(p, t), since Mj(p, t) are

analytic in p for | 3p | < k. O

N

=0 0

v
=

=

Figure 2
Lemma 4.4. Let g(p) be analytic in a strip containing vy and |g| =
SUP pey| 9(P)| < 0. Then A(p) = (1- Q") g(p) is analytic in p in a strip

containingyand | A< C| g |
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Proof. We have (1-Q") =" (Q")" and
|Q¥g|=| M- 0)"Ng | < Ce 0™ Mok/2) g (4.12)
by Lemma 4.1, (4.9), and the explicit form of Mj, Nj. QYg is analytic in the strip,
since M (p, t) are. Iterating (4.12), we see that

| (Q)"g | < Cle~ok/2-Mo%e) g

hence, the series Z::o('\h ")"g converges uniformly for sufficiently large k and its
sum is analytic by the Weierstrass theorem. O

Putting p = p, in (4.11) and dividing by A(p, ), we obtain an equation for f:
1=[2-Q") " gl(P)lp=p,- (4.13)

A standard application of the Laplace method of asymptotic evaluation of
integrals to the leading term in (4.13) yields formula (2.7). In fact, from the leading
termin (4.13),

B~y4 Zanmamm (4.14)

with M;(p, t), N;(t, p) defined in (3.9). We have A =k-p% and w(p,)=

k(1+0O(ep?)), hence 1+ = 2+ O(B?). Then from (4.14), we have for large

A
©(p.)

values of k,

il J Z 29y (t)dt.

Applying the Laplace method to the last integral, we obtain (2.7).
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