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Abstract 

This paper studies the inverse optimal control problem for nonlinear 
system with an input constraint. Based on the control Lyapunov function 
(CLF), the proposed controller is designed such that the small control 
property (SCP) is satisfied. This implies the existence of a smooth CLF 
and then a smooth stabilizing feedback control providing global 
asymptotical stability of the closed-loop system is designed. Using the 
inverse approach, a robust optimal controller is developed to minimize a 
derived performance index and make the system globally asymptotically 
stable. Moreover, some relations between the resulting controller and 
sliding mode controller are given. An example is presented and simulation 
results are included to verify the usefulness of the developed controller. 

1. Introduction 

The concepts of CLF have attracted much attention in nonlinear control theory 
[1-3]. In previous works [4-7], some stabilizing controllers were studied for input 
constrained nonlinear systems by using CLFs. However, the main drawback of the 
concept of CLF as a design tool is that there is no systematic technique for finding 
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CLFs for general nonlinear systems and these control laws do not ensure robustness 
against structural uncertainty. 

Inverse optimal control [8-11] is an alternative approach to solve the nonlinear 
optimal control problem without solving the Hamilton-Jacobi-Bellman (HJB) 
equation. By finding a CLF, which can be shown also to be a value function, an 
optimal controller that optimizes a derived cost can be developed. In most cases, an 
inverse optimal control requires exact knowledge of the nonlinear dynamics, 
however, inverse optimal adaptive control [12-14] techniques have been developed 
for systems with linear in the constant parameter uncertainty. Other works on robust 
inverse optimal control approach were proposed in [15-19], but these works did not 
consider the input constraints. 

In this paper, our controller is designed such that the SCP [1, 5] is satisfied. We 
then obtain an almost smooth stabilizing feedback control providing global 
asymptotical stability of the closed-loop system. Furthermore, the inverse optimal 
control problem for nonlinear systems with an input constraint is considered. Hence 
the contribution in this work is based on incorporating inverse optimal control 
elements with improvements of robustness performance. Some theoretical concepts 
will be derived to ensure that our proposed control law globally asymptotically 
stabilizes the equilibrium point of the closed-loop system. We also use the derived 
theorem to design an inverse optimal controller for a class of nonlinear systems with 
an input constraint. On the other hand, sliding mode control (SMC) has been shown 
to be an effective approach when applied to a system with disturbances which satisfy 
the matched uncertainty condition [20-23]. This paper presents connections between 
sliding mode control and inverse optimal control with an input constraint. 

This paper is organized as follows: In Section 2, a nonlinear system with 
structural uncertainty is described. Some preliminary definitions of CLFs and 
smooth feedback stabilizer are restated. In Section 3, we present the design of a 
smooth feedback stabilizer which is proven to satisfy the SCP and makes the system 
globally asymptotically stable. Section 4 addresses the inverse optimal control 
technique that gives optimality and robustness performance. A controller minimizing 
the derived performance index is proposed and the stability proof of this controller is 
given. In Section 5, relations between inverse optimal control and sliding mode 
control are illustrated. In Section 6, an example of spacecraft manoeuvres is 
presented to explain the design procedure and to verify the usefulness of the 
proposed method. In Section 7, we present conclusions. 
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2. System Description and Preliminaries 

A nonlinear system with structural uncertainty can be described by 

 ( ) ( ) ( ),xhuxgxfx ++=  (2.1) 

where nx R∈  denotes the state of the system. The mappings ,: nnf RR →  with 

( ) ,00 =f  mnng RRR ×→:  are assumed to be smooth. mu R∈  is the control 

vector with a following constraint: 

 { },1≤|∈=∈ uuu nRU  (2.2) 

where ⋅  denotes the Euclidean norm. ,: nnh RR →  with ( ) ,00 =h  represents a 

structural uncertainty characterized by 

 ( ) ( ) ( ),xxexh δ=  (2.3) 

where mnne RRR ×→:  is a matrix whose entries are given smooth functions, 

and mn RR →δ :  is an unknown, vector valued function. It is assumed that ( )xδ  

is constraint to a given smooth function +→ RRnN :  with ( ) ,00 =N  i.e., 

 ( ) ( ) ( ){ }.: xNxx ≤δδ=Γ  (2.4) 

If, for any ( )xx n δ∈ ,R  satisfies (2.3), then ( )xδ  or ( )xh  is said to be admissible. 

Let +→ RRnV :  be a continuous function. Then V is said to be positive 
definite if ( ) 00 =V  and ( ) 0>xV  for ;0≠x  V is said to be proper if ( ) ∞→xV  

as .∞→x  

The Lie derivative of V with respect to f is defined as the inner product of the 

gradient of V with f, i.e., ( ) ( ).xfx
VxVL f ∂
∂=  

Throughout the paper, we follow the definitions presented in [8] and [19]. 

Definition 2.1. A smooth, proper and positive definite function +→ RRnV :  
is a CLF for the system (2.1) if it satisfies 

 { ( ) ( ) } ( ) ( )xNxVLuxVLxVL egf
u

−≤+inf  (2.5) 

for each .0≠x  
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Definition 2.2. ( )xV  is said to satisfy the SCP with respect to the system (2.1) 

if, for each ,0>ε  there is a 0>σ  such that 0≠x  satisfies ,σ<x  then there is 

some u with ε<u  such that inequality (2.5) holds. 

Definition 2.3. Let RR →nk :  be a function with ( ) .00 =k  Then ( )xku =  

is said to be almost smooth on ,nR  if it is not only smooth on { },0−nR  but also 

continuous on all of .nR  

3. Smooth Feedback Stabilization 

In this section, a controller is designed such that a CLF for the system (2.1) 
satisfies a sufficient condition for globally asymptotical stabilization. If a CLF 
satisfies the SCP, then an almost smooth feedback stabilizer [5] that ensures global 
asymptotical stability of the closed-loop system will be obtained. For bounded 
control case, our design can be considered as an extension of the work by [5], but the 
nonlinear model in this research includes the structural uncertainty and has more 
complicated formula. 

Let 

( ) ( ) ( ) ( ( )) ( ) ( )xVLxCxVLxxVLx e
T

gf ==β=ψ ,,   and  ( ) ( ).xVLx g=β′  (3.1) 

The construction of our control law can be illustrated using the following 
theorem: 

Theorem 3.1. Let V be a CLF for the system (2.1) and ( )xP  be defined by 

 ( ) ( ) ( ) ( )
( ) ,x

xNxCxxP
β

+ψ
=  (3.2) 

and 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )[ ] .2211
T

mm xsignxxsignxxsignx β′β′β′β′β′β′=Ξ  

Then the input 

 ( )
( ) ( ) ( )

( ) ( )

( )
⎪
⎩

⎪
⎨

⎧

=β

≠βΞ
β

β++
==

00

0
22

xfor

xfor
x

xxPxP
xku  (3.3) 

globally asymptotically stabilizes the origin. 
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Note that, by simple multiplications, we obtain ( ) ( ) .222 Ξ=β=β′ xx  

This implies ( ) .Ξ=β x  Next, we present the proof of the above theorem. 

Proof. Using (2.5), we obtain 

 ( ) ( ) ( ) ( ).0,0 xNxCxxx −<ψ⇒≠=β′  (3.4) 

Consider an open subset of nR  as follows: 

 {( ) }.0or0, 2 <≠|∈= abbaS R  (3.5) 

Let ( ) .bbq =  Then the statement is found by [5] that the function defined by 

( )
( )

⎪
⎩

⎪
⎨

⎧

=

≠++
=φ

0for0

0for,
2

b

bb
bbqaa

ba  

is smooth on S. 

Using (3.4) for any 0≠x  then ( ) ( ) ( )
( ) ( ) ., Sxx

xNxCx
∈⎟

⎠
⎞⎜

⎝
⎛ β

β
+ψ  For any 

( )xkux =≠ ,0  is smooth on S. Moreover, at nonzero x, we have 

( ) ( ) ( )xVLuxVLxVLV hgf ++=  

( ) ( ) ( ) ( ) ( ( ) ( ) ( ) )
( ) Ξ

β
β++

β′−+ψ≤ x
xxPxPxxNxCx

22
 

( ) ( ) ( )
( ) ( )

( )

( )

( )

( ( ) ( ) ( ) )
( )

( )x
x

xxPxPxx
xNxCx

mm

β

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

β

β++

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

β′β′

β′β′

β′β′

β′−
β

+ψ
≤ 2

2222

11

sign 

sign

sign

 

( ) ( ) ( )
( ) ( ) ( ( ) ( ) ( ) )

( )
( )x

x
xxPxPxx

xNxCx
β

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

β

β++
β−

β
+ψ

≤ 2

22
2  

( ( ) ( ( ) ( ) ( ) )) ( )xxxPxPxP ββ++−≤ 22  

( ( ) ( ) ) ( ) .022 <ββ+−≤ xxxP  (3.6) 
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Thus, V decreases along trajectories of the corresponding closed-loop system. 

Now we can say that the control ( )xku =  is continuous on { }.0\nR  To improve 

this result, it is required to show that the function ( )xV  satisfies the SCP. If this is 

the case, then the control law ( )xku =  is continuous on all of nR  and completely 

characterizes almost smooth stabilizability [5]. Clearly, we always obtain ( ) 0=xk  

whenever ( ) ,0=β x  so it is sufficient to consider the case that ( ) .0≠β x  ( )xV  

satisfies the SCP. This means that there is a 0>σ  such that, if x satisfies 0≠x  and 
,σ<x  then there is some u with ε<u  so that 

 ( ) ( ) ( ) ( ).xNxCxx −<β′+ψ  (3.7) 

Since V is positive definite, it has a minimum at zero. This implies ( ) .00 =
∂
∂

x
V  

Since the gradient is continuous, we obtain 

 ( ) ,ε<β x  (3.8) 

when x is sufficiently small. By the Cauchy-Schwartz inequality, one has 

 ( ) ( ) ( ) ( ) ( ) .uxuxxNxCx β≤β′−<+ψ  (3.9) 

Dividing both the sides of (3.9) by ( ) ,xβ  we obtain 

 .ε≤≤ uP  (3.10) 

For ( ) ,0>xP  since 

 ( ) ( ) ( ) ( ) ( ) ,222 xxPxxPxP β+≤β++  (3.11) 

( ) ( ) ( )( ) [ ]TmxxPxku β′β′β′β+≤= 212  

( )( ) ( )xx ββ+ε≤ 2  

( ) .32 2 ε=ε=εε+ε≤  (3.12) 

On the other hand, for ( ) 0≤xP  it implies that 

( ) ( ( ) ( ) ( ) ) [ ]TmxxPxPxk β′β′β′β++≤ 21
22  

( ) ( ) ( )( ) ( ) ( ) .3
22 ε=ε≤β≤ββ++≤ xxxxPxP  (3.13) 
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Clearly, ( )xku =  satisfies the SCP. That is to say, ( )xku =  is continuous at the 

origin. Hence the control law (3.3) is an almost smooth control and globally 
asymptotically stabilizes the equilibrium 0=x  of the closed-loop system. ~ 

In this paper, we find 0u  that solves the system (2.1) and minimizes the 

performance index: 

 ( ) ( ( ) ( ) )∫
∞

+=
0

2
0 .,, dtuxRxlxxuJ  (3.14) 

Let 0u  be the solution to the optimal control problem and 

 ( ) ( ( ) ( ) ) .min
0

2
0 ∫

∞
+= dtuxRxlxV

u
 (3.15) 

The HJB equation with the function V of (3.15) is given by 

 { ( ) ( ) ( ) ( ) ( ) ( )( )}.min 2 xxeuxgxfVuxRxlt
V T

xu
δ−+++=

∂
∂−  (3.16) 

Therefore, the controller 0u  satisfies 

 ( ) ( ) ( ) ( ) ( ) ( )( )xxeuxgxfVuxRxl T
x δ−+++= 2

00  (3.17) 

and 

 ( ) ( ) ( ).sign20 00 xVLuuxR g
T +=  (3.18) 

Using (3.18), one obtains the control input 

 ( )Ξ−= − xRu 1
0 2

1  (3.19) 

which is the solution to the above optimal control problem. In Section 4, we give the 
design and analysis of this control law. 

4. Inverse Optimal Control 

In this section, the design of an inverse optimal controller is examined. The 
proposed controller is designed to globally asymptotically stabilize the equilibrium 

0=x  and minimize the performance index (3.14). Using the inverse approach, it is 
shown that ( ) 0≥xl  and ( ) 0>xR  such that ( )xku =  optimizes (3.14). 
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Pick any 0>η  and let 

 ( )
( ) ( ) ( )

( ) ( )

( )
⎪
⎩

⎪
⎨

⎧

=βη

≠β⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

β
β++

+η
=−

.0for2

,0for22
22

1

x

xx
xxPxP

xR  (4.1) 

Theorem 4.1. Let V be a CLF for the system (2.1) and the control input be 

chosen as (3.19) with ( )xR 1−  determined by (4.1). Then there exists an ( ) 0≥xl  

such that ( ) ( )000 ,, xVxxuJ =  for every nx R∈0  and every admissible ( ).xh  

Proof. For all admissible ( ),xh  consider ( )xV  of (3.15) as a Lyapunov function 

candidate. Clearly, we obtain ( ) 00 =V  and ( ) 0>xV  for .0≠x  We next show 

that ( ) 0<xV for ,0≠x  

( ) ( ) ( )xVLuxVLxVLV hgf ++=  

( ) ( ) ( ) ( ) ( ( ) ( ) ( ) )
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ξ

β
β++

+Ξηβ′−+ψ≤ x
xxPxPxxNxCx

22
 

( ) ( ) ( )
( ) ( ) ( ( ) ( ) ( ) )

( ) ( ) ( )xxx
xxPxPxx

xNxCx
β

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

β
η+

β

β++
Ξβ′−

β
+ψ

≤ 2

22
 

( ) ( ) ( )
( ) ( ) ( ( ) ( ) ( ) )

( ) ( ) ( )xxx
xxPxPxx

xNxCx
β

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

β
η+

β

β++
β−

β
+ψ

≤ 2

22
2  

[ ( ) ( ( ) ( ) ( ) )] ( ) ( ) 222 xxxxPxPxP βη−ββ++−≤  

( ( ) ( ) ) ( ) ( ) .0222 <βη−ββ+−≤ xxxxP  (4.2) 

Thus, 0u  globally asymptotically stabilizes the equilibrium point 0=x  of the 

system (2.1). 

Letting 01 5.0 uu =  and following the procedure to find V  similar to (4.2), it 

yields the same result ( ).0≤V  
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Choose: 

 ( ) ( ) ( ) ( ) ( ) .1uxxNxCxxl β′−−ψ−=  (4.3) 

Then ( ) 0>xl  since 

( ) ( ) ( ) ( ) ( ) ( ) .04
1 21 ≥β+−ψ−= − xxRxNxCxxl  

Substituting ( )Ξ−= − xRvu 1
2
1  into ( ( ) ( ) )∫

∞
+

0
2 ,dtuxRxl  yields 

( ( ) ( ) )∫
∞

+
0

2 dtuxRxl  

( ) ( ) ( ) ( ) ( ) ( )∫
∞

− ⎟
⎠
⎞⎜

⎝
⎛ +β+−ψ−=

0

221
4
1 dtuxRxxRxNxCx  

( ) ( ) ( ) ( ) ( ) ( ) dtvxRvxxRxNxCx T
⎟
⎠
⎞+Ξ−⎜

⎝
⎛ β+−ψ−= ∫

∞
− 2

0

21
2
1  

( ) ( ) ( ) ( ) ( ) dtvxRvxRxNxCx TT
⎟
⎠
⎞+Ξ−⎜

⎝
⎛ ΞΞ+−ψ−= ∫

∞
− 2

0
1

2
1  

( ) ( ) ( ) ( ) ( )∫
∞

− ⎟
⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ −ΞΞ+−ψ−=

0

21
2
1 dtvxRvxRxNxCx T  

( ) ( ) ( )( ) ( ( ) )∫ ∫
∞ ∞

+β′++
∂
∂−≤

0 0

2 dtvxRdtuxxhxfx
V  

( ) ( ) ( ) .lim
0

2
0 ∫

∞

∞→
+−= dtvxRxVxV

t
 (4.4) 

Since u is chosen to stabilize the closed systems, it follows that ( )( ) 0lim =∞→ txt  

and then ( )( ) .0lim =∞→ txVt  Moreover, we obtain  

( ( ) ( ) ) ( ) ( )∫ ∫
∞ ∞

+≤+
0 0

2
0

2 .dtvxRxVdtuxRxl  
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Taking 0=v  then .0uu =  This implies that 

 ( ) ( )000 ,, xVxxuJ ≤  (4.5) 

for every nx R∈0  and admissible ( ).xh  Let 

( )

( ) ( )
( ) ( )

( ) ( )[ ] ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

=

≠
=δ

.0for 1

,0for 
0

xCxNxN
m

xCxC
xNxC

x
T

T

 

Then ( ) Γ∈δ x0  and ( ) ( ) ( ) ( ).0 xNxCxxC =δ  For every nx R∈0  and ( ),0 xδ  

V  can be integrated along the solution ( )tx  of the systems (2.1) and (3.18). Thus, 

for all :0≥T  

( ) ( )( ) ∫−=
T

dtdt
dVTxVxV

0
0  (4.6) 

( )( ) ( ) ( ) ( ) ( )( )∫ β′+δ+ψ−=
T

dtuxxxCxTxV
0

00  (4.7) 

( )( ) ( ) ( ) ( ) ( )( ) .
0

0∫ β′++ψ−=
T

dtuxxNxCxTxV  (4.8) 

Therefore, we obtain 

 ( ) ( )( ) ( ( ) ( ) ) .
0

2
00 ∫ +−=

T
dtuxRxlTxVxV  (4.9) 

Because ( )( ) 0→TxV  as ,∞→T  (4.9) becomes 

 ( ) ( ).,, 000 xxuJxV =  (4.10) 

Thus, using (4.5) and (4.10), we can conclude that 0u  is exactly the optimal solution 

to (3.14) for the ( )xR  and ( )xl  chosen as (4.1) and (4.3), respectively. This 

completes the proof. ~ 

5. Relations to Sliding Mode Control 

For general control designs, the way to obtain high accuracy is usually 
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connected with increasing gains in the feedback systems. Sliding mode control is an 
effective tool for achieving high accuracy without using any high gain approach 
[20]. Our proposed control law is in the class of first-order SMC, since it has a form 

 ( ) ( ),iii sfxzu =  (5.1) 

where ( ) ( )ii ssf  sign=  and ( ) ( ) .2
1 1

ii xRxz β′−= −  

From (5.1), each component of the sliding vector is  is defined as 

 ( ) ....,,2,1, mixs ii =β′=  (5.2) 

The control law above was shown to make the system global asymptotically 
stable in Section 4, so this implies that the reaching and sliding on the sliding 
manifold are also ensured. 

Based on the sliding mode control concept, instead of the formula of the control 
law (5.1), we can use other formulas, i.e., 

 ( ) ( ),1
iiii sfxzsu −

ρ
−=  (5.3) 

where 1>ρ  is a positive constant. 

Using the same function as (3.15), the stability of the control law above can be 
easily investigated by considering 

( ) ( ) ( )xVLuxVLxVLV hgf ++=  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ),

sign2
11

sign2
11

sign2
11

1

22
1

2

11
1

1

xNxC

sxRs

sxRs

sxRs

xxVL

mmm

f +

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

β′−
ρ

−

β′−
ρ

−

β′−
ρ

−

β+=

−

−

−

 (5.4) 

which can be further written as 

 ( ) ( ) ( ) ( )∑ ∑
= =

− +−
ρ

−=
3

1

3

1

212 .2
11

i i
iif xNxCsxRsxVLV  (5.5) 
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Using (2.5), we obtain 0<V  and this guarantees the reaching and sliding on the 
sliding manifold. However, since this control is designed using the first-order SMC 
concept similar to the controller (5.1), both (5.1) and (5.3) usually provide the same 
behaviors of system responses. 

Due to the chattering in the sliding mode controller design, the sign function of 
the control law (5.1) is replaced by 

 ( ) ,,2,1,tanh missf i
i =⎟

⎠
⎞

⎜
⎝
⎛
ε

=  (5.6) 

where ( )utanh  is the hyperbolic tangent function. 

6. Simulation Example 

Here an example of a rigid-body satellite [24] is presented with numerical 
simulations to verify the performance of our proposed controller. 

The dynamic equations of the rotational motion of a spacecraft [24] are 
described by 

 [ ] ( ),tGuJJ ξ++ω×ω−=ω  (6.1) 

where [ ]T321 ωωω=ω  is the angular velocity vector of the spacecraft, 

[ ]Tuuuu 321=  represents the control vector, [ ]T321 ξξξ=ξ  is bounded 

disturbance, J is the inertia matrix, and G is a 33 ×  input matrix for ( ).tξ  The skew-

symmetric matrix [ ]×ω  is 

 [ ] .
0

0
0

12

13

23

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ωω−
ω−ω
ωω−

=×ω  (6.2) 

The orientation of a rigid body with respect to the inertia frame using quaternion is 

considered. We define here the quaternion [ ]TT qqQ 4=  with 

[ ] .321
Tqqqq =  

Then the kinematic equations of the rigid body motion described in terms of the 
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attitude quaternion [25] is given by 

[ ]( ) ,2
1

334 ω+×= ×Iqqq  

,2
1

4 ω−= Tqq  (6.3) 

where 33×I  is a 33 ×  identity matrix and the elements of Q  are restricted by 

 1=Q  or .12
4

2
3

2
2

2
1 =+++ qqqq  (6.4) 

In this example, the spacecraft is assumed to have the inertia matrix =J  
( ).20,15,10diag  Then the control law (5.1) is considered with the presence of the 

external disturbance signal given by [24] 

 ( ) ( ),1 tGWt Tω=ξ −  (6.5) 

where 0>W  is a 33 ×  positive definite Hermitian matrix. We assumed that 
.33×= IG  ( )tξ  is used as the external disturbance and its gain matrix is =W  

( ).3,2,1diag  In the simulation, it is also assumed that 

( ) ( ) [ ] .0 33
1 TJxgxe ×
−==  

For the performance index (3.14), ( )xl  is chosen using (4.3). The initial 

conditions for the attitude quaternion are 

( ) [ ] .3320.07999.01915.04618.00 TQ =  

A rest-to-rest manoeuvre is considered and thus, the initial condition for ( )tω  is 

given as ( ) [ ]T0000 =ω rad/sec. 

Let a proper smooth function be chosen as [26] 

 ( ) [ ] .2
1

⎥⎦
⎤

⎢⎣
⎡ω

⎥⎦
⎤

⎢⎣
⎡ω=

qcbJ
bJaJ

qxV TT  (6.6) 

Clearly, the conditions for ( )xV  to be positive defined are given as [26] 

 ,,0 22JbacJc >>  (6.7) 
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where a, b and c are positive constants. Then it is straightforward to verify that 

( ) ( ) ,TT
g bqaxVLx +ω==β′  

( ) ( ) [ ] [ ]( )3342
1

×+×+ω×ω+ω−=ψ Iqqbqax TT  (6.8) 

and 

 ( ) ( ).xVLxC g=  (6.9) 

Figures 1 and 2 clearly show the performance of the developed controller. The 
responses of quaternion and angular velocity components reach zero after 60 
seconds. Obviously, the effect of external disturbances on quaternion and angular 
velocity is totally removed. As shown in Figure 3, the sliding vector remains on the 
sliding manifold in about 10 seconds. From Figure 4, it can be seen that the 
developed controller stabilizes the closed-loop system and provides smooth control 
torque responses. As shown in Figure 5, the external disturbances converge to the 
neighborhood of zero after 60 seconds. 

The developed control law seems to be a useful approach for general nonlinear 
models. The difficulty of using the inverse approach is how to find a suitable CLF. 
Once this function is already known, the inverse optimal control approach can be 
used to design the optimal controller that yields global asymptotic stability. 

 

 

Figure 1. Components of quaternion vector with external disturbances. 
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Figure 2. Components of angular velocity vector with external disturbances. 

 

Figure 3. Components of sliding vector with external disturbances. 

 

Figure 4. Control torques with external disturbances. 



CHUTIPHON PUKDEBOON 126 

 
Figure 5. Disturbance responses. 

7. Conclusion 

We have studied the bounded controller design for a class of nonlinear systems 
with structural uncertainty. Based on the CLF, with the SCP, the developed control 
law is a smooth feedback stabilizer and makes the system globally asymptotically 
stable. Furthermore, the bounded control based on the CLF and inverse optimal 
control approach has been successfully applied to nonlinear systems with a structural 
uncertainty. This control law has proven to actually minimize the derived 
performance index and has a formula similar to the first-order sliding mode control. 
An example of multiaxial attitude manoeuvres is presented and simulation results are 
given to verify the usefulness of the developed controller. 
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