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Abstract 

In this paper, the concepts of parametric well-posedness and parametric 
well-posedness in generalized sense for quasivariational-like inequalities 
problems are introduced. Some criteria and characterizations are derived 
for parametric well-posedness and parametric well-posedness in 
generalized sense.  

1. Introduction 

Well-posedness of optimization problems, variational problems and equilibrium 
problems, etc. is to study the property of approximating solutions. Specifically, it is 
investigated that whether the approximating solution sequence has a subsequence 
converging to a solution of the considered problems. The importance of this issue 
has been widely focused by many researchers in the field of computational theory. 
Well-posedness of scalar optimization problems was first introduced by Tykhonov 
[1] in 1966. Since then, people gave various concepts of well-posedness and 
extensively studied the scalar optimization problems [2-6] and the vector 
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optimization problems [7, 8]. Recently, the concepts of well-posedness have been 
generalized in variational inequalities problems [9-14], quasivariational inequalities 
problems [15-17], equilibrium problems [18, 19], and optimization problems with 
variational inequalities constraints [20, 21]. In 2006, Lignola [15] introduced 
and   investigated the concepts of well-posedness and L-well-posedness for 
quasivariational inequalities, and Ceng et al. [16] extended these concepts for mixed 
quasivariational-like inequalities. In 2007, Fang and Hu [12] considered the concept 
of parametric well-posedness for variational inequalities and gave some metric 
characterizations of parametric well-posedness. 

Inspired by the above works, in this paper, we introduce the parametric well- 
posedness and parametric well-posedness in generalized sense for quasivariational-
like inequalities. Some necessary and/or sufficient conditions of parametric well-
posedness and parametric well-posedness in generalized sense are obtained. Our 
results improve and extend some known results in the recent literatures. 

2. Preliminaries 

Let X, E be real Banach spaces and K be a nonempty subset of E. Let 
KKF 2: →  be a set-valued mapping, EKK →×η :  be a single-valued mapping 

and REKXf →××:  be a real-valued function. We consider the following 

parametric quasivariational-like inequality problem: 

( )xQVLI  Find Ku ∈0  such that ( )00 uFu ∈  and ( )( ) ,0,,, 00 ≤η vuuxf  

( ).0uFv ∈∀  

If ( ) ,, vuvu −=η  then the problem ( )xQVLI  reduces to the parametric 

quasivariational inequality problem, i.e., 

( )xQVI  Find Ku ∈0  such that ( )00 uFu ∈  and ( ) ,0,, 00 ≤− vuuxf  

( ).0uFv ∈∀  

Further, if ( ) ,KuF =  for all ,Ku ∈  then the problem reduces to the parametric 

variational inequality problem which is discussed in [12]. 

In this paper, we denote ( )xQ  as the solution set of ( ) .xQVLI  
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Let { }nT  be a sequence of subsets of E. We recall that the Painlevé-Kuratowski 

limits of sequence { }nT  are defined by: 

{ };lim with ,,:suplim uuTuNnnEuT kkk nknukknn =∈∃∈∞→∃∈=  

{ }.lim with ,:inflim uuNnTuEuT nnnnnn =∈∈∃∈=  

In the sequel, we recall some known concepts. 

Definition 2.1. Let E be a real Banach space, and K be a nonempty closed 

subset of E. Then a set-valued mapping kKF 2: →  is termed: 

  (i) closed if the graph ( ) ( ){ }uFvvuGF ∈= :,  is closed in ,KK ×  i.e., if 

Kun ∈  and ,uun →  then we get 

( ) ( );suplim uFuF nn ⊆  

 (ii) lower semicontinuous if for any fixed Ku ∈0  and any sequence { } Kun ⊆  

converging to ,0u  for all ( ),0uFv ∈  there exists a sequence of elements ∈nv  

( )nuF  converging to v, i.e., 

( ) ( );inflim nn uFuF ⊆  

(iii) upper semicontinuous if for any fixed Ku ∈0  and any open set KV ⊆  

such that ( ) ,0 VuF ⊆  there exists a neighborhood ( )0uN  of 0u  such that ( ) VvF ⊆  

for all ( ).0uNv ∈  

(iv) continuous if F is both lower semicontinuous and upper semicontinuous. 

Definition 2.2. Let E be a real Banach space, and K be a nonempty subset of E. 
Let EKK →×η :  be a single-valued mapping. Then a bifunction REKf →×:  

is said to be 

 (i) η-pseudomonotone, if for any ,, Kvu ∈  

( )( ) ( )( ) .0,,0,, ≤η⇒≤η vuvfvuuf  

(ii) η-monotone, if for any ,, Kvu ∈  

( )( ) ( )( ).,,,, vuvfvuuf η≥η  
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It is clear that f is η-monotone ⇒ f is η-pseudomonotone. 

Now, we give a notion of continuity of bifunction f and introduce some 
definitions of parametric well-posedness for quasivariational-like inequalities. 

Definition 2.3. Let E be a real Banach space, K be a nonempty convex subset of 
E and EKK →×η :  be a map. Then a bifunction REKf →×:  is said to be 

lower d-semicontinuous on K if for every ,, Kvu ∈  we have  

( )( ) ( ) ( )( ).,,inflim,,
0

vuuvtufvuuf
t

η−+≤η
+→

 

It is clear that the lower semicontinuity of f implies the lower d-semicontinuity 
of f, but the converse does not true in general. 

Definition 2.4. Let Xx ∈  and { } Xxn ⊆  with .xxn →  Then a sequence 

{ } Kun ⊆  is called an approximating sequence for ( )xQVLI  corresponding to { },nx  

if there exists a sequence { },nε  ,0>εn  decreasing to 0 such that ( )( ) nnn uFud ε≤  

and ( )( ) nnnn vuuxf ε≤η ,,,  for any ( ).nuFv ∈  

Definition 2.5. The family {( ) }XxQVLI x ∈:  is said to be parametrically 

well-posed, if for every ,Xx ∈  ( )xQVLI  has a unique solution ,xu  and for any 

{ } Xxn ⊆  with ,xxn →  every approximating sequence for ( )xQVLI  corresponding 

to { }nx  converges to .xu  

Definition 2.6. The family {( ) }XxQVLI x ∈:  is said to be parametrically well-

posed in generalized sense, if for every ,Xx ∈  the solution set ( )xQ  of ( )xQVLI  is 

nonempty, and for any { } Xxn ⊆  with ,xxn →  every approximating sequence of 

( )xQVLI  corresponding to { }nx  has a subsequence converging to a point of ( ).XQ  

Remark 2.1. It is easy to see that the solution set ( )xQ  is compact for every 

Xx ∈  when the family {( ) }XxQVLI x ∈:  is parametrically well-posed in 

generalized sense. In fact, if { } ( ),xQun ⊆  then we can see that { }nu  is an 

approximating sequence for ( )xQVLI  corresponding to { }nx  (where ,xxn =  

).Nn ∈  Then there exists a subsequence { }knu  converging to some point of ( ).xQ  
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3. Parametric Well-posedness for Quasivariational-like Inequalities 

In this section, we give some criteria and characterizations of parametric well-
posedness for {( ) }.: XxQVLI x ∈  Firstly, we introduce the set of approximating 

solutions of ( )xQVLI  as 

( ) ( )
( )
U

δ∈
ε

δ
ε =

,

,
xBy

yQxQ  

where  

( ) { }δ≤−∈=δ xyXyxB :,  

and  

( ) ( )( ) ( )( ) ( ){ }.,,,,,,: uFvvuuyfuFudKuyQ ∈∀ε≤ηε≤∈=ε  

We introduce Condition A motivated by the Mohan-Neogy’s work in [22]. We 
say that function EKK →×η :  satisfies Condition A, if for any Kvu ∈,  and 

( ) ( )( ) ( ).,,,1,0 vuuvuu λη=−λ+η∈λ  Obviously, η satisfies Condition A when 

( ) ., vuvu −=η  

Lemma 3.1. Let E be a real Banach space, and K be a nonempty convex subset 

of E. Let further KKF 2: →  be a set-valued mapping with nonempty convex 
value, and EKK →×η :  be a single-valued mapping satisfying Condition A. If 

the function REKf →×:  is η-pseudomonotone, lower d-semicontinuous and 

positively homogeneous in the second variable, then the following problems are 
equivalent: 

 (i) find Ku ∈0  such that 

( )00 uFu ∈  and ( )( ) ( );int,0,, 000 uFvvuuf ∈∀≤η  

(ii) find Ku ∈0  such that 

( )00 uFu ∈  and ( )( ) ( ).int,0,, 00 uFvvuvf ∈∀≤η  

Proof. If Ku ∈0  is a solution of the problem (i), then it is clear that Ku ∈0  is 

the solution of the problem (ii) by using the η-pseudomonotonicity of f. Conversely, 
assume that Ku ∈0  is a solution of the problem (ii). We only need to prove the 



HAI-JUN WANG and CAO-ZONG CHENG 36 

case of ( ) .int 0 ∅≠uF  Since KKF 2: →  is nonempty convex valued and η 

satisfies Condition A, for all ( )1,0∈λ  and ( ),int 0uFv ∈  we have ( )00 uvu −λ+  

( ),int 0uF∈  and so 

( ) ( )( )( )00000 ,,0 uvuuuvuf −λ+η−λ+≥  

( ) ( )( )vuuvuf ,, 000 λη−λ+=  

( ) ( )( ),,, 000 vuuvuf η−λ+λ=  

which shows ( ) ( )( ) 0,, 000 ≤η−λ+ vuuvuf  for all ( ).int 0uFv ∈  By letting 
+→λ 0  and using lower d-semicontinuity of f, we obtain that ( )( ) ,0,00 ≤η+ vuuf  

( ).int 0uFv ∈∀  Thus 0u  is a solution of the problem (i) and the proof is 

completed.  � 

Lemma 3.2 [23]. Let { } ( )NnKn ∈  be a sequence of nonempty convex subsets 

of the Banach space E such that 

 (i) ;inflim0 nn KK ⊆  

(ii) there exists an Nm ∈  such that I mn nK
≥

∅≠ .  

Then, for every ,int 00 Ku ∈  there exists a positive real number δ such that 

( ) .,,0 mnKuB n ≥∀⊆δ  

Theorem 3.1. Let X and E be Banach spaces, K be a nonempty closed convex 

subset of E. Let further KKF 2: →  be a closed and lower semicontinuous set-
valued mapping with nonempty convex values, EKK →×η :  be a single-valued 

continuous mapping satisfying Condition A, REKXf →××:  be a real valued 

function. Suppose that the following conditions hold: 

  (i) for every converging sequence { } ,Kun ⊆  there exists an Nm ∈  such that 

( )I mn nuF
≥

∅≠ ;int  

 (ii) ( )⋅⋅ ,, uf  is lower semicontinuous for all ;Ku ∈  

(iii) for every ,Xx ∈  the function ( )⋅⋅,,xf  is lower d-semicontinuous and 

η-monotone; 
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(iv) for all ( ) ( )⋅×∈ ,,,, uxfKXux  is positively homogeneous. 

Then {( ) }XxQVLI x ∈:  is parametrically well-posed if and only if for every 

,Xx ∈  

( ) ,0,, >δε∀∅≠δ
ε xQ   and  

( ) ( )
( ) .0diamlim

0,0,
=δ

ε
→δε

xQ  (3.1) 

Proof. “⇒” Assume that {( ) }XxQVLI x ∈:  is parametrically well-posed. It is 

clear that for every ,Xx ∈  the unique solution of ( )xQVLI  is in the ( )xQδ
ε  for all 

.0, >δε  We only need to show 

( ) ( )
( ) .0 diamlim

0,0,
=δ

ε
→δε

xQ  (3.2) 

Indeed, suppose that (3.2) is false. Then there exist positive number 0>α  and 

sequences { } { } ,, +⊆δε Rnn  nε  decreasing to 0 and nδ  converging to 0 such that 

( ) , diam α>δ
ε xQ n

n
 for all .Nn ∈  We can take ( ) ( ) ( )xQuu n

nnn
δ
ε∈21 ,  such that 

( ) ( ) .
2

21 α
>− nn uu  (3.3) 

Thus there exist ( ) ( ) ( )nnn xBxx δ∈ ,, 21  with ( ) ( ( ))11
nn xQu nε∈  and ( ) ( ( ) ),22

nn xQu nε∈  

.Nn∈  It is easy to see that the sequences { ( )}1
nu  and { ( )}2

nu  are approximating 

sequences of ( )xQVLI  corresponding to { ( )}1
nx  and { ( )},2

nx  respectively. It follows 

from the assumption that both of the sequences { ( )}1
nu  and { ( )}2

nu  converge to the 

unique solution of ( ) ,xQVLI  and so ( ) ( ) .0lim 21 →−
∞→

nn
n

uu  This contradicts (3.3). 

Thus, 
( ) ( )

( ) .0 diamlim
0,0,

=δ
ε

→δε
xQ  

“⇐” For every ,Xx ∈  suppose that ( ) ( )0, >δε∀∅≠δ
ε xQ  and 

( ) ( )
( ) .0 diamlim

0,0,
=δ

ε
→δε

xQ  Since every solution of ( )xQVLI  belongs to ( ),xQδ
ε  

there is at most one solution of ( ) .xQVLI  
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Let { } Xxn ⊆  with xxn →  and { }nu  be an approximating sequence of 

( )xQVLI  corresponding to { }.nx  Then there exists a sequence { },nε  ,0>εn  

decreasing to 0 such that ( )( ) nnn uFud ε≤,  and ( )( ) ,,,, nnnn vuuxf ε≤η  

( ).nuFv ∈∀  

We first show that { }nu  is a convergent sequence. In fact, let .xxnn −=δ  It 

is obvious that ( ).xQu n
nn
δ
ε∈  Since 0, →δε nn  and 

( ) ( )
( ) ,0 diamlim

0,0,
=δ

ε
→δε

xQ  it 

follows that { }nu  is a Cauchy sequence, and so converges to some .Kux ∈  

Next, we show that xu  is a solution of ( ) .xQVLI  For each ,Nn ∈  we can take 

( )nn uFu ∈′  such that ( )( ) .2,2 nnnnn uFuduu ε≤≤′−  Thus .xn uu →′  Since F 

is closed, we get ( ).xx uFu ∈  The lower semicontinuity of F implies that ( ) ⊆xuF  

( ).inflim nn uF  Further, we have that ( ) ∅≠xuFint  from condition (i) by taking 

xn uu =  for all .Nn ∈  Thus, from Lemma 3.2, it follows that, if ( ),int xuFv ∈  

then ( ),nuFv ∈  for n sufficiently large. By using conditions (ii) and (iii), we have 

that 

( )( ) ( )( )vuvxfvuvxf nn
n

x ,,,inflim,,, η≤η
∞→

 

( )( )vuuxf nnn
n

,,,inflim η≤
∞→

 

.0inflim =ε≤
∞→

n
n

 

By Lemma 3.1, we have that ( )( ) 0,,, ≤η vuuxf xx  for all ( ).int xuFv ∈  If 

( ) ( ),inf xx uFuFv −∈  then there exists a sequence { } ( )xn uFv int⊆  such that 

,vvn →  and so ( )( ) 0,,, ≤η vuuxf xx  from condition (ii) and the continuity of η. 

Hence, xu  is the solution of the ( ) .xQVLI  Thus, {( ) }XxQVLI x ∈:  is 

parametrically well-posed and the proof is completed. � 

When f is a lower semicontinuous function, the conditions associated with F and 
η can be weakened and we can obtain the succinct result as follows. 

Theorem 3.2. Let X and E be Banach spaces, K be a nonempty closed subset of 

E. Let further KKF 2: →  be a closed and lower semicontinuous set-valued 
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mapping with nonempty values, EKK →×η :  be a single-valued continuous 

mapping, and REKXf →××:  be a lower semicontinuous function. Then 

{( ) }XxQVLI x ∈:  is parametrically well-posed if and only if for every ,Xx ∈  

( ) ,0,, >δε∀∅≠δ
ε xQ  and 

( ) ( )
( ) .0diamlim

0,0,
=δ

ε
→δε

xQ  (3.4) 

Proof. The necessity can be shown as in the proof of Theorem 3.1. For the 
sufficiency, let Xx ∈  be fixed, { } Xxn ⊆  with xxn →  and { } Kun ⊆  be                    

an approximating sequence of ( )xQVLI  corresponding to { }.nx  Then there exists            

a sequence { } ,0, >εε nn  decreasing to 0 such that ( )( ) nnn uFud ε≤,  and 

( )( ) ( ).,,,, nnnnn uFvvuuxf ∈∀ε≤η  From (3.4), we know that the problem 

( )xQVLI  has at most one solution and nu  converges to some point ( ).xx uFu ∈  

The lower semicontinuity of F implies that for any ( ),xuFv ∈  there exists 

( )nn uFv ∈  such that nv  converges to v. In light of the lower semicontinuity of f 

and the continuity of η, we have that 

( )( ) ( )( ) .0inflim,,,inflim,,, =ε≤η≤η
∞→∞→

n
n

nnxn
n

xx vuuxfvuuxf  

Consequently, xu  is the unique solution of ( ) .xQVLI  Thus {( ) }XxQVLI x ∈:  is 

parametrically well-posed. � 

Remark 3.1. When ( ) vuvu −=η ,  and ( ) KuF =  for all ,Ku ∈  the above 

result implies Theorem 3.2 in [12]. It also generalized Proposition 2.3 in [11]. 

Now, we give the following examples to show the applications of Theorem 3.2. 

Example 3.1. Let ,REX ==  [ ],,1 ∞+=K  ( ) ,,, 2vuvuxf =  ( ) =η vu,  

22 vu −  and consider the set-valued mapping F defined by ( ) [ ].2,1 uuF =  We 

observe that the functions f, η and set-valued mapping F are continuous. We can 
calculate that the problem ( )xQVLI  has the unique solution 1=u  for all ,Xx ∈  

and the set ( ) .2
411,1











 ε++=δ
ε xQ  It follows that 

( ) ( )
( ) .0diamlim

0,0,
=δ

ε
→δε

xQ  

By Theorem 3.2, {( ) }XxQVLI x ∈:  is parametrically well-posed. 
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Example 3.2. Let ,REX ==  [ ],,1 ∞+=K  ( ) ,,, vevuxf u−=  ( ) =η vu,  
22 vu −  and consider the set valued function F defined by ( ) [ ].2,1 uuF =  We 

observe that the functions f, η and set-valued mapping F are continuous. We can 
calculate that the problem ( )xQVLI  has the unique solution 1=u  for all ,Xx ∈  

and the set ( ) { [ ] ( ) }.1:,1 2 ε≤−∞+∈= −δ
ε ueuxQ u  By Theorem 3.2, ( ) xQVLI x :  

X∈  is not parametrically well-posed since 
( ) ( )

( ) .0diamlim
0,0,

≠δ
ε

→δε
xQ  

When the subset K is compact, we can obtain the following conclusion that 
{( ) }XxQVLI x ∈:  is parametrically well-posed if and only if ( )xQVLI  has a 

unique solution for every .Xx ∈  

Theorem 3.3. Let X, E be Banach spaces and K be a nonempty compact subset 

of E. Let further KKF 2: →  be a closed and lower semicontinuous set-valued 
mapping with nonempty values, EKK →×η :  be a single-valued continuous 

mapping and REKXf →××:  be a real valued lower semicontinuous function. 

Then {( ) }XxQVLI x ∈:  is parametrically well-posed if and only if ( )xQVLI  has a 

unique solution for every .Xx ∈  

Proof. The necessity is trivial by the definition of parametric well-posedness of 
{( ) }.: XxQVLI x ∈  Conversely, let xu  be the unique solution of ( )xQVLI  and 

{ }nu  be an approximating sequence for ( )xQVLI  corresponding to { } ( ).xxx nn →  

Then there exists a sequence { },nε  ,0>εn  decreasing to 0 such that 

( )( ) nnn uFud ε≤,  and ( )( ) ( ).,,,, nnnnn uFvvuuxf ∈∀ε≤η  Suppose that { }knu  

is a convergent subsequence of { }nu  with limit .0u  We can take ∈′
kuu  

( ) ( )NkuF kn ∈  such that ,2 kkk nnn uu ε≤−′  and so .0uu kn →′  Since F is 

closed, we have that ( ).00 uFu ∈  The lower semicontinuity of F implies that for any 

( ),0uFv ∈  there exists a sequence { }knv  with ( )kk nn uFv ∈  such that knv  

converges to v. In light of the lower semicontinuity of f and the continuity of η, we 
have that 

( )( ) ( ( ))kkkk nnnn
k

vuvxfvuuxf ,,,inflim,,, 00 η≤η
∞→

 

( ).,0inflim 0uFvkn
k

∈∀=ε≤
∞→
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This means that 0u  is a solution of ( ) .xQVLI  Thus .0 xuu =  Since K is compact, 

we have that the sequence { }nu  converges to xuu =0  and the proof is completed. � 

Remark 3.2. In finite dimensional space, without the condition that K is 
compact, Fang and Hu in [12] (Theorem 5.1) proved that variational inequalities 
problem is parametrically well-posed if and only if it has a unique solution for every 
parameter. For infinite dimensional space and the quasivariational-like inequalities 
problem, the compactness of K in Theorem 3.3 is essential: if we drop it, the 
parametric well-posedness of {( ) }XxQVLI x ∈:  cannot be guaranteed, as Example 

3.2 shows. 

4. Parametric Well-posedness in Generalized Sense for 
Quasivariational-like Inequalities 

In this section, we consider the parametric well-posedness in generalized sense 
for {( ) }.: XxQVLI x ∈  

Let E be a complete metric space. Recall that the Kuratowski measure of 
noncompactness µ for a subset A of E is defined by 

( ) ,...,,1,diam,:0inf
1 











=ε≤⊆>ε=µ
≤≤
U

ni
ii niCCAA  

where iCdiam  is the diameter of .iC  

For given two nonempty subsets A and B of E, the Hausdorff distance between 
A and B is defined as 

( ) { ( ) ( )}.,sup,,supmax, AbdBadBAH
BbAa ∈∈

=  

Theorem 4.1. Let X and E be Banach spaces, K be a nonempty closed convex 

subset of E. Let further KKF 2: →  be a closed and lower semicontinuous set-
valued mapping with nonempty convex values, EKK →×η :  be a single-valued 

continuous mapping satisfying Condition A, REKXf →××:  be a real valued 

function. Suppose that the following conditions hold: 

  (i) for every converging sequence { } ,Kun ⊆  there exists an Nm ∈  such that 

( )I mn nuF
≥

∅≠ ;int  
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 (ii) ( )⋅⋅ ,, uf  is lower semicontinuous for all ;Ku ∈  

(iii) for every ,Kx ∈  the function ( )⋅⋅,,xf  is lower d-semicontinuous and 

η-monotone; 

(iv) for all ( ) ( )⋅×∈ ,,,, uxfKXux  is positively homogeneous. 

Then {( ) }XxQVLI x ∈:  is parametrically well-posed in generalized sense if and 

only if for every ,Xx ∈  

( ) ,0,, >δε∀∅≠δ
ε xQ  and 

( ) ( )
( ( )) .0lim

0,0,
=µ δ

ε
→δε

xQ  (4.5) 

Proof. “⇒” Assume that {( ) }XxQVLI x ∈:  is parametrically well-posed in 

generalized sense. For every ,Xx ∈  the solution set ( )xQ  of ( )xQVLI  is nonempty 

and ( ) ( )xQxQ δ
ε⊆  for all .0>δ  It follows that the set ( )xQδ

ε  is nonempty. Since 

( )xQ  is compact, we have 

( ( )) ( ( ) ( )) ( )( )xQxQxQHxQ µ+≤µ δ
ε

δ
ε ,2  

( ( ) ( ))
( )

( )( ).,sup2,2 xQudxQxQH
xQu δ

ε∈

δ
ε ==  

Assume that 
( ) ( )

( ) ( ) .0lim
0,0,

≠µ δ
ε

→δε
xQ  Then there exist 0>α  and the sequences of 

positive numbers nε  and nδ  decreasing to 0 such that ( ( )) ,α>µ δ
ε xQ n

n
 and so there 

is a sequence { } Kun ⊆  with ( )xQu n
nn
δ
ε∈  such that 

( )( ) .3, α>xQud n  (4.6) 

On the other hand, there exists { } Xxn ⊆  such that nn xx δ≤−  with 

( ).nn xQu nε∈  Then the sequence { }nu  is an approximating sequence of ( )xQVLI  

corresponding to { }.nx  Since {( ) }XxQVLI x ∈:  is parametrically well-posed in 

generalized sense, there exists a subsequence { }knu  converging to some point of 

( ),xQ  which contradicts (4.6). Thus (4.5) holds. 

“⇐” Assume that (4.5) holds. For every ,Xx ∈  let { }nu  be an approximating 

sequence of ( )xQVLI  corresponding to { } ( ).xxx nn →  Then there exists a sequence 
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{ },nε  ,0>εn  decreasing to 0 such that ( ),xQu n
nn
δ
ε∈  where .xxnn −=δ   

Without loss of generality, we suppose that nδ  is a decreasing sequence. Then 

{ ( )}xQ n
n
δ
ε  is a decreasing sequence. By using the similar method in [24, p. 4], we 

consider the decreasing sequence of sets { }.: nkuQ kn ≥=  Then ( ),xQQ n
nn
δ
ε⊆  

and so ( ) ( ) ( ( ))xQQQ n
nn
δ
εµ≤µ=µ 1  for all .Nn ∈  This shows that ( )1Qµ  ,0=  and 

so { }NnuQ n ∈= :1  is precompact. Thus there exists a subsequence { }knu  of { }nu  

converging to some point .Kux ∈  From the proof of Theorem 3.1, we know that 

( )xx uFu ∈  is a solution of ( ) .xQVLI  Therefore, {( ) }XxQVLI x ∈:  is 

parametrically well-posed in generalized sense. � 

When the continuity of f is strengthened, we can obtain the following theorem: 

Theorem 4.2. Let X and E be Banach spaces, K be a nonempty closed subset of 

E. Let further kKF 2: →  be a closed and lower semicontinuous set-valued 
mapping with nonempty values, EKK →×η :  be a single-valued continuous 

mapping, and REKXf →××:  be a lower semicontinuous function. Then 

{( ) }XxQVLI x ∈:  is parametrically well-posed in generalized sense if and only if 

for every ,Xx ∈  

( ) ,0,, >δε∀∅≠δ
ε xQ   and 

( ) ( )
( ( )) .0lim

0,0,
=µ δ

ε
→δε

xQ  (4.7) 

Proof. The necessity follows from Theorem 4.1. Conversely, assume that (4.7) 
holds. For every ,Xx ∈  let { }nu  be an approximating sequence of ( )xQVLI  

corresponding to { } ( ).xxx nn →  As the same discussion in Theorem 4.1, we have 

that { }nu  has subsequence { }knu  converging to some xu  and ( ).xx uFu ∈  Since F 

is lower semicontinuous, we get that for any ( ),xuFv ∈  there exists ( )kk nn uFv ∈  

such that knv  converges to v. In light of the lower semicontinuity of f and continuity 

of η, we have that 

( )( ) ( ( )) .0inflim,,,inflim,,, =ε≤η≤η
∞→∞→ kkkkk n

k
nnnn

k
xx vuuxvuuxf  
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Thus, xu  is a solution of ( )xQVLI  and {( ) }XxQVLI x ∈:  is parametrically well- 

posed in generalized sense. � 

Remark 4.1. When ( ) vuvu −=η ,  and ( ) ,KuF =  for all ,Ku ∈  the above 

result implies the Theorem 4.2 in [12]. 

Example 4.1. Let ,REX ==  [ ],,0 ∞+=K  ( ) ,,, 2vuvuxf =  ( ) =η vu,  
22 vu −  and consider the set valued function F defined by 

( )
[ ]

[ ]





>

≤≤
=

.1,2,1

,10,1,

uu

uu
uF  

We observe that the functions f and η are continuous, and that the set-valued 
mapping F is closed and lower semicontinuous with nonempty values. We can 

calculate that ( ) [ ]1,0=xQ  and ( ) .2
411,0











 ε++=δ
ε xQ  It follows that 

( ) ( )
( ( )) .0lim

0,0,
=µ δ

ε
→δε

xQ  By Theorem 4.2, {( ) }XxQVLI x ∈:  is parametrically 

well-posed in generalized sense. 

In the end, we will give some sufficient conditions for parametric well-
posedness in generalized sense of {( ) }.: XxQVLI x ∈  

Theorem 4.3. Let X and E be Banach spaces, K be a nonempty compact convex 

subset of E. Let further KKF 2: →  be a continuous set-valued mapping with 
nonempty convex closed values, EKK →×η :  be a single-valued continuous 

mapping with ( ) 0, =η uu  for all Ku ∈  and REKXf →××:  be a real valued 

continuous function satisfying that ( )( )⋅η ,,, uuxf  is concave and ( ) 00,, =uxf  

for all ( ) ., KXux ×∈  Then {( ) }XxQVLI x ∈:  is parametrically well-posed in 

generalized sense. 

Proof. Since K is compact and F is closed-valued, the set ( )uF  is compact for 

all .Ku ∈  For every fixed ,Xx ∈  we define the set-valued mapping K
x KT 2: →  

by 

( ) { ( )( )
( )

( )( )}.,,,max,,,: vuuxfwuuxfKwuT
uFv

x η=η∈=
∈
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Since the functions f and η are continuous and the set-valued mapping F is 
continuous with nonempty compact values, we have that the set-valued mapping xT  

is upper semicontinuous with nonempty compact values (see [25, p. 120]). Since 
( )( )⋅η ,,, uuxf  is concave and F has convex values, we deduce that ( )uTx  is 

convex set for all .Ku ∈  The Kakutani fixed-point theorem implies that there exists 
a point Ku ∈  such that ( ),uTu x∈  i.e., 

( )uFu ∈  and ( )( ) ( )( ) ( ).,0,,,,,, uFvuuuxfvuuxf ∈∀=η≤η  

This shows that the solution set ( )xQ  of ( )xQVLI  is nonempty. 

Now, let { } Kun ⊆  be an approximating sequence corresponding to { }nx  

( )xxn →  for ( ) .xQVLI  Then there exists a sequence { } ,0, >εε nn  decreasing to 0 

such that 

( )( ) nnn uFud ε≤,  and ( )( ) ( ).,,,, nnnnn uFvvuuxf ∈∀ε≤η  

Since K is compact, there exists a subsequence { }knu  converging to some point 

.0 Ku ∈  We can take a sequence of elements ( )kk nn uFu ∈′  such that kk nn uu −′  

( ( )) .2,2 kkk nnn uFud ε≤≤  It follows that .0uu kn →′  Since every upper 

semicontinuous set-valued mapping with closed values is closed, we have that 
( ).00 uFu ∈  The lower semicontinuity of F implies that for any ( ),0uFv ∈  there 

exist ( ) ( )...,2,1=∈ kuFv kk nn  such that the sequence { }knv  converges to v. By 

using the continuity of f and η, we have that 

( )( ) ( ( )) .0lim,,,lim,,, 00 =ε≤η=η
∞→∞→ kkkkk n

k
nnnn

k
vuuxfvuuxf  

Thus, ( )xQu ∈0  and the problem {( ) }XxQVLI x ∈:  is parametrically well-posed 

in generalized sense. � 
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