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Abstract

In this paper, the concepts of parametric well-posedness and parametric
well-posedness in generalized sense for quasivariational-like inequalities
problems are introduced. Some criteria and characterizations are derived
for parametric well-posedness and parametric well-posedness in
generalized sense.

1. Introduction

Well-posedness of optimization problems, variational problems and equilibrium
problems, etc. is to study the property of approximating solutions. Specifically, it is
investigated that whether the approximating solution sequence has a subsequence
converging to a solution of the considered problems. The importance of this issue
has been widely focused by many researchers in the field of computational theory.
Well-posedness of scalar optimization problems was first introduced by Tykhonov
[1] in 1966. Since then, people gave various concepts of well-posedness and
extensively studied the scalar optimization problems [2-6] and the vector
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optimization problems [7, 8]. Recently, the concepts of well-posedness have been
generalized in variational inequalities problems [9-14], quasivariational inequalities
problems [15-17], equilibrium problems [18, 19], and optimization problems with
variational inequalities constraints [20, 21]. In 2006, Lignola [15] introduced
and investigated the concepts of well-posedness and L-well-posedness for
quasivariational inequalities, and Ceng et al. [16] extended these concepts for mixed
quasivariational-like inequalities. In 2007, Fang and Hu [12] considered the concept
of parametric well-posedness for variational inequalities and gave some metric

characterizations of parametric well-posedness.

Inspired by the above works, in this paper, we introduce the parametric well-
posedness and parametric well-posedness in generalized sense for quasivariational-
like inequalities. Some necessary and/or sufficient conditions of parametric well-
posedness and parametric well-posedness in generalized sense are obtained. Our

results improve and extend some known results in the recent literatures.
2. Preliminaries

Let X, E be real Banach spaces and K be a nonempty subset of E. Let
F : K — 2K be a set-valued mapping, 1 : K x K — E be a single-valued mapping
and f: X xKxE — R be a real-valued function. We consider the following
parametric quasivariational-like inequality problem:

(QVLI), Find uy € K such that uy € F(ug) and f(x, uy, n(ug, v)) <0,
Vv e F(ug).

If M(u, v) =u—v, then the problem (QVLI), reduces to the parametric
quasivariational inequality problem, i.e.,

(QVI), Find uy e K such that wuy e F(up) and f(x, ug, uy —v) <0,
Vv e F(ug).

Further, if F(u) = K, for all u € K, then the problem reduces to the parametric
variational inequality problem which is discussed in [12].

In this paper, we denote O(x) as the solution set of (QVLI),.
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Let {T,,} be a sequence of subsets of E. We recall that the Painlevé-Kuratowski

limits of sequence {7,,} are defined by:
limsup, 7, ={u € £ :3n; —> oo, m € N, 3, €T, withlimy u, =ul;
liminf, 7, = {u € E : 3u, € T,, n € N with lim,, u,, = u}.
In the sequel, we recall some known concepts.

Definition 2.1. Let £ be a real Banach space, and K be a nonempty closed

subset of £. Then a set-valued mapping F : K — 2k is termed:
(i) closed if the graph Gp = {(u, v): v € F(u)} is closed in K x K, i.e., if
u, € K and u, — u, then we get

limsup, F(u,) < F(u),

(ii) lower semicontinuous if for any fixed u, € K and any sequence {u,} < K
converging to ug, for all v € F(ug), there exists a sequence of elements v, €
F(u,) converging to v, i.e.,

F(u) < liminf, F(u,);
(iii) upper semicontinuous if for any fixed u, € K and any open set V < K

such that F(ug) < V, there exists a neighborhood N(uy) of uy such that F(v) ¢ V
forall v e N(uy).

(iv) continuous if F is both lower semicontinuous and upper semicontinuous.

Definition 2.2. Let £ be a real Banach space, and K be a nonempty subset of E.
Let n: K x K — E be a single-valued mapping. Then a bifunction /' : K x E — R

is said to be

(1) n-pseudomonotone, if for any u, v € K,

Sf(u, m(u, v)) <0 = f(v, n(u, v)) 0.

(i1) n-monotone, if for any u, v € K,

S, (s v)) = f(v, nu, v)).
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It is clear that f'is -monotone = f'is n-pseudomonotone.

Now, we give a notion of continuity of bifunction f and introduce some

definitions of parametric well-posedness for quasivariational-like inequalities.

Definition 2.3. Let £ be a real Banach space, K be a nonempty convex subset of
Eand n: K x K — E be a map. Then a bifunction f : K x £ — R is said to be

lower d-semicontinuous on K if for every u, v € K, we have
f(u, n(u, v)) < liminf f(u + t(v — u), n(u, v)).
t—0%

It is clear that the lower semicontinuity of f implies the lower d-semicontinuity

of f, but the converse does not true in general.

Definition 2.4. Let x € X and {x,} € X with x, —> x. Then a sequence
{u,} < K is called an approximating sequence for (QVLI), corresponding to {x,, },
if there exists a sequence {¢,}, &, > 0, decreasing to 0 such that d(u,F(u,)) < g,

and f(x,, u,, n(u,, v)) < ¢, forany v e F(u,).

Definition 2.5. The family {(QVLI), : x € X} is said to be parametrically
well-posed, if for every x € X, (QVLI), has a unique solution u,, and for any
{x,} € X with x, — x, every approximating sequence for (OVLI), corresponding

to {x,} converges to u,.

Definition 2.6. The family {(QVLI), : x € X} is said to be parametrically well-
posed in generalized sense, if for every x € X, the solution set Q(x) of (QVLI), is
nonempty, and for any {x,} < X with x, — x, every approximating sequence of

(QVLI), corresponding to {x,} has a subsequence converging to a point of Q(X).

Remark 2.1. It is easy to see that the solution set Q(x) is compact for every
x € X when the family {(QVLI), : x € X} is parametrically well-posed in
generalized sense. In fact, if {u,} < O(x), then we can see that {u,} is an
approximating sequence for (QVLI), corresponding to {x,} (where x, =x,

n € N). Then there exists a subsequence {u, } converging to some point of O(x).
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3. Parametric Well-posedness for Quasivariational-like Inequalities

In this section, we give some criteria and characterizations of parametric well-

posedness for {(QVLI), : x € X}. Firstly, we introduce the set of approximating
solutions of (QVLI), as
5
0= J aw.

yeB(x,8)

where
B(x,8)={ye X :|y-x|<8}
and

O.(y)={ueK:du, Flu)) <e, f(y, u, n(u, v)) <g, Vv e F(u)).
We introduce Condition A motivated by the Mohan-Neogy’s work in [22]. We
say that function n: K x K — E satisfies Condition A, if for any u, v € K and
L e (0, 1), n(u, u + AM(v — u)) = An(u, v). Obviously, n satisfies Condition A when

n(u, v) =u—v.

Lemma 3.1. Let E be a real Banach space, and K be a nonempty convex subset

of E. Let further F :K — 2K be a set-valued mapping with nonempty convex
value, and M : K x K — E be a single-valued mapping satisfying Condition A. If

the function f : K x E — R is n-pseudomonotone, lower d-semicontinuous and

positively homogeneous in the second variable, then the following problems are
equivalent:

(1) find uy € K such that

uy € Fug) and f(ug, n(ug, v)) <0, Vv eint F(ug);
(i1) find uy € K such that

ug € F(ug) and f(v, n(ug, v)) <0, Vv € int F(uy).

Proof. If u; € K is a solution of the problem (i), then it is clear that u, € K is

the solution of the problem (ii) by using the n-pseudomonotonicity of f. Conversely,

assume that u,; € K is a solution of the problem (ii). We only need to prove the
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case of int F(uy) # . Since F: K — 2K s nonempty convex valued and n
satisfies Condition A, for all A € (0, 1) and v e int F(ug), we have ug + AM(v — uq)
e int F(ug), and so
0= f(ug + My —up), nug, up + My —up)))
= f(ug + (v = ug), An(ug, v))
= }\'f(u() + }‘(V - uO)’ T](uos V))’
which shows f(uy + My — ug), n(ug, v)) <0 for all v e int F(uy). By letting

L — 0" and using lower d-semicontinuity of f, we obtain that f (i +n(u, v)) <0,
Vv e int F(ug). Thus ug is a solution of the problem (i) and the proof is

completed. O

Lemma 3.2 [23]. Let {K,,} (n € N) be a sequence of nonempty convex subsets

of the Banach space E such that

(1) Ky c liminf, K,;
(ii) there exists an m € N such that ﬂan K, .

Then, for every uy € int K, there exists a positive real number S such that
B(ug, 8) < K,, Vn=m.

Theorem 3.1. Let X and E be Banach spaces, K be a nonempty closed convex

subset of E. Let further F : K — 2K be a closed and lower semicontinuous set-

valued mapping with nonempty convex values, n: K x K — E be a single-valued
continuous mapping satisfying Condition A, f : X x K x E - R be a real valued

function. Suppose that the following conditions hold:

(i) for every converging sequence {u,} = K, there exists an m € N such that
int ﬂan F(u,) # J;
(i) f(, u, -) is lower semicontinuous for all u € K;

(iii) for every x € X, the function f(x,-, -) is lower d-semicontinuous and

n-monotone;
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(iv) for all (x, u) € X x K, f(x, u, -) is positively homogeneous.
Then {(QVLI), :x € X} is parametrically well-posed if and only if for every

xe X,

0%(x) # @, Ve, 5> 0, and  lim  diamQ®(x) = 0. 3.1)
(e,8)—(0,0)

Proof. “=” Assume that {(QVLI), : x € X} is parametrically well-posed. It is

clear that for every x € X, the unique solution of (QVLI), is in the QS (x) for all

g, 0 > 0. We only need to show

li diam Q2 (x) = 0. 3.2
oo™ o) iam O (x) (3.2)

Indeed, suppose that (3.2) is false. Then there exist positive number o > 0 and

sequences {¢,}, {8,} < R,, €, decreasing to 0 and §, converging to 0 such that

diam QS" (x) > a, forall n € N. We can take u,(,l), ul? e QSB” (x) such that

e e (3.3)

Thus there exist x,(11), xf,z) e B(x, §,)) with u,(ql) €0, (xﬁ,l)) and u,(f) €0, (x,(f)),
neN. It is easy to see that the sequences {u,gl)} and {u,(f)} are approximating
sequences of (QVLI), corresponding to {x,gl)} and {x,(f)}, respectively. It follows
from the assumption that both of the sequences {u,(11)} and {u,(f)} converge to the

unique solution of (QVLI),, andso lim || ) — ) | = 0. This contradicts (3.3).
n—»0

Thus, lim  diam Q% (x) = 0.

£,8)—(0,0)

113 2

<> For every xe X, suppose that QS (x)= D (Ve, 6 >0) and

lim  diam QS (x) = 0. Since every solution of (QVLI), belongs to QS (x),
(g,8)—(0,0)

there is at most one solution of (QVLI),.
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Let {x,} € X with x, > x and {u,} be an approximating sequence of
(QVLI), corresponding to {x,}. Then there exists a sequence {¢,}, &, >0,
decreasing to 0 such that d(u,, F(u,)) <eg, and f(x,,u,, n(u,,v) <s,,
Vv e F(u,).

We first show that {u,} is a convergent sequence. In fact, let 5, = || x, — x| It

is obvious that u, € QS” (x). Since ¢,, 8, > 0 and  lim  diam QS (x)=0, it
n ,0

(2,8)—(0,0)

follows that {u,} is a Cauchy sequence, and so converges to some u, € K.

Next, we show that u, is a solution of (QVLI),. For each n € N, we can take
uy, € F(u,) such that || u, —uy, | < 2d(u,, F(u,)) < 2¢,. Thus u,, - u,. Since F
is closed, we get u, € F(u,). The lower semicontinuity of F implies that F(u, ) <
liminf, F(u,). Further, we have that int F(u,) # & from condition (i) by taking
u, = u, for all n e N. Thus, from Lemma 3.2, it follows that, if v € int F(u,),
then v € F(u,), for n sufficiently large. By using conditions (ii) and (iii), we have

that

S v, g, v)) < liminf £ (x,, v, My, v))

< liminf f(x,, u,, n(u,, v))

n—>0

< liminfeg, = 0.
n—>0

By Lemma 3.1, we have that f(x, u,, n(u,, v)) <0 for all veintF(u,). If
v e F(u,)—inf F(u,), then there exists a sequence {v,} < int F(u,) such that
v, = v, and so f(x, u,, n(u,, v)) <0 from condition (ii) and the continuity of n.
Hence, u, is the solution of the (QVLI),. Thus, {(QVLI),:x e X} is

parametrically well-posed and the proof is completed. O

When f'is a lower semicontinuous function, the conditions associated with F and

1 can be weakened and we can obtain the succinct result as follows.

Theorem 3.2. Let X and E be Banach spaces, K be a nonempty closed subset of

E. Let further F :K — 2K be a closed and lower semicontinuous set-valued
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mapping with nonempty values, n: K x K — E be a single-valued continuous
mapping, and [ : X xKxE — R be a lower semicontinuous function. Then
{(QVLI), : x € X} is parametrically well-posed if and only if for every x € X,

03(x) # @, Ve, 8> 0, and lin} )diamQE(x) = 0. (3.4)
,0

(g,8)—(0

Proof. The necessity can be shown as in the proof of Theorem 3.1. For the
sufficiency, let x € X be fixed, {x,}c X with x, > x and {u,} c K be
an approximating sequence of (QVLI), corresponding to {x,}. Then there exists
a sequence {g,}, &, >0, decreasing to 0 such that d(u,, F(u,)) <, and
f(x,, u,, n(u,, v)) < e,, Vv e F(u,). From (3.4), we know that the problem
(QVLI), has at most one solution and u, converges to some point u, € F(u,).
The lower semicontinuity of F implies that for any v e F(u,), there exists
v, € F(u,) such that v, converges to v. In light of the lower semicontinuity of f

and the continuity of 1, we have that

f(x, uy, n(uy, v)) < liminf f(x,, u,, n(w,, v,)) < liminf g, = 0.
n—»oo n—»

Consequently, u, is the unique solution of (QVLI),. Thus {(QVLI), : x € X} is

parametrically well-posed. O

Remark 3.1. When n(u, v) = u—v and F(u) = K for all u € K, the above

result implies Theorem 3.2 in [12]. It also generalized Proposition 2.3 in [11].

Now, we give the following examples to show the applications of Theorem 3.2.

Example 3.1. Let X =E=R, K=[l, +0], f(x, u,v)=u?v, nu,v)=

u?> —v? and consider the set-valued mapping F defined by F(u) = [1, 2u]. We

observe that the functions f, n and set-valued mapping F are continuous. We can

calculate that the problem (QVLI), has the unique solution u =1 for all x € X,

1+ 1+ 4e

and the set Q%(x) = {1, 3

. It follows that lim  diamQ?(x) = 0.
} (2,8)—>(0,0) 0: ()

By Theorem 3.2, {(QVLI), : x € X} is parametrically well-posed.
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Example 3.2. Let X =E =R, K=[l, +o], f(x,u,v)=e"v, nu,v)=

u?> —v? and consider the set valued function F defined by F(u)=[l, 2u]. We

observe that the functions f, n and set-valued mapping F are continuous. We can
calculate that the problem (QVLI), has the unique solution u =1 for all x € X,

and the set 0°(x) = {u € [1, +»]: e “(u? —1) < &}. By Theorem 3.2, (QVLI), : x

€ X is not parametrically well-posed since  lim diang6 (x) = 0.
(g,8)—(0,0)

When the subset K is compact, we can obtain the following conclusion that
{(QVLI), : x € X} is parametrically well-posed if and only if (QVLI), has a

unique solution for every x € X.

Theorem 3.3. Let X, E be Banach spaces and K be a nonempty compact subset
of E. Let further F : K — 2K be a closed and lower semicontinuous set-valued
mapping with nonempty values, m: K x K — E be a single-valued continuous
mapping and f : X x K x E — R be a real valued lower semicontinuous function.

Then {(QVLI), : x € X} is parametrically well-posed if and only if (QVLI), has a

unique solution for every x € X.

Proof. The necessity is trivial by the definition of parametric well-posedness of
{(QVLI), : x € X}. Conversely, let u, be the unique solution of (QVLI,) and

{u,} be an approximating sequence for (QVLI,) corresponding to {x,} (x, — x).
Then there exists a sequence {g,}, €, >0, decreasing to 0 such that
d(u,, F(u,)) < e, and f(x,, u,, n(u,, v)) < &,, Vv € F(u,). Suppose that {u, }

is a convergent subsequence of {u,} with limit u;. We can take u, «

F(uy, ) (k € N) such that | u, -u, |<2e,, and so wu, — ug. Since F is

closed, we have that ug € F(ug). The lower semicontinuity of F implies that for any

ve F(up), there exists a sequence {v, } with v, e F(u, ) such that v,

converges to v. In light of the lower semicontinuity of f'and the continuity of n, we
have that

.f(xa Up, n(uo’ V)) < h]l;ri:gf f(xnk > Vnk > n(unk > Vnk ))

<liminfe, =0, Vve F(u).
k—o0
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This means that u, is a solution of (QVLI),. Thus uy = u,. Since K is compact,

we have that the sequence {u, } converges to uy = u, and the proof is completed. [

Remark 3.2. In finite dimensional space, without the condition that K is
compact, Fang and Hu in [12] (Theorem 5.1) proved that variational inequalities
problem is parametrically well-posed if and only if it has a unique solution for every
parameter. For infinite dimensional space and the quasivariational-like inequalities
problem, the compactness of K in Theorem 3.3 is essential: if we drop it, the

parametric well-posedness of {(QVLI), : x € X} cannot be guaranteed, as Example

3.2 shows.

4. Parametric Well-posedness in Generalized Sense for
Quasivariational-like Inequalities

In this section, we consider the parametric well-posedness in generalized sense
for {(QVLI), : x € X}.

Let £ be a complete metric space. Recall that the Kuratowski measure of
noncompactness p for a subset 4 of £ is defined by

wWA) = inf{s >0:4c U C;, diamC; <¢g,i=1, .., n},

1<i<n
where diamC; is the diameter of C;.

For given two nonempty subsets 4 and B of E, the Hausdorff distance between
A and B is defined as

H(A, B) = max{sup d(a, B), sup d(b, A)}.
acA beB

Theorem 4.1. Let X and E be Banach spaces, K be a nonempty closed convex

subset of E. Let further F : K — 2K be a closed and lower semicontinuous set-

valued mapping with nonempty convex values, n : K x K — E be a single-valued
continuous mapping satisfying Condition A, f : X x K x E — R be a real valued
function. Suppose that the following conditions hold:

(i) for every converging sequence {u,} = K, there exists an m € N such that

int ﬂan F(u,) = O;
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(ii) f(, u, -) is lower semicontinuous for all u € K;

(iii) for every x € K, the function f(x,-, -) is lower d-semicontinuous and
n-monotone;

(iv)forall (x,u) e X xK, f(x, u, -) is positively homogeneous.
Then {(QVLI), : x € X} is parametrically well-posed in generalized sense if and
only if for every x € X,

03(x) = @, Ve, 8 > 0, and (856)1131(0’0) n(0%(x)) = o. (4.5)

Proof. “=” Assume that {(OVLI), : x € X} is parametrically well-posed in
generalized sense. For every x € X, the solution set O(x) of (QVLI), is nonempty
and O(x) < 0%(x) forall &> 0. It follows that the set Q2(x) is nonempty. Since

O(x) is compact, we have
(02 (x)) < 2H(QZ (x), O(x)) + p(O(x))

= 2H(QZ(x), O(x)) =2 sup d(u, O(x)).
ueQ? (x)

Assume that  lim  p(Q%)(x) # 0. Then there exist o. > 0 and the sequences of
(£,8)—(0,0)

positive numbers ¢, and §, decreasing to 0 such that u(QS” (x)) > a, and so there
n

is a sequence {u,} = K with u, € QS" (x) such that
n

d(u,, O(x)) > 5. (4.6)

On the other hand, there exists {x,} < X such that ||x, — x| <38, with
u, € Qg (x,). Then the sequence {u,} is an approximating sequence of (QVLI),
corresponding to {x,}. Since {(QVLI), : x € X} is parametrically well-posed in

generalized sense, there exists a subsequence {unk} converging to some point of

O(x), which contradicts (4.6). Thus (4.5) holds.

“<" Assume that (4.5) holds. For every x € X, let {u,} be an approximating

sequence of (QVLI), corresponding to {x,} (x, — x). Then there exists a sequence



PARAMETRIC WELL-POSEDNESS FOR QUASIVARIATIONAL-LIKE ... 43

{e,}, €, >0, decreasing to 0 such that u, QSS: (x), where 8, =|x, —x|.
Without loss of generality, we suppose that §, is a decreasing sequence. Then

{QS” (x)} is a decreasing sequence. By using the similar method in [24, p. 4], we
n
consider the decreasing sequence of sets O, = {u; : k > n}. Then Q, < QS” (x),

and so p(Q;)=wQ,)< p(QS” (x)) forall n € N. This shows that u(Q;) =0, and

s0 Q1 = {uy, : n € N} is precompact. Thus there exists a subsequence {u,, } of {u,}

converging to some point #, € K. From the proof of Theorem 3.1, we know that
u, € F(u,) is a solution of (QVLI),. Therefore, {(QVLI), :xe X} is

parametrically well-posed in generalized sense. O
When the continuity of fis strengthened, we can obtain the following theorem:

Theorem 4.2. Let X and E be Banach spaces, K be a nonempty closed subset of

E. Let further F :K — 2% be a closed and lower semicontinuous set-valued

mapping with nonempty values, n: K x K — E be a single-valued continuous
mapping, and [ : X xK xE — R be a lower semicontinuous function. Then
{(QVLI), : x € X} is parametrically well-posed in generalized sense if and only if
forevery x € X,

03(x) # @, Ve, 5> 0, and (g,s}iin(o,o) n(0%(x)) = o. (4.7)

Proof. The necessity follows from Theorem 4.1. Conversely, assume that (4.7)
holds. For every x € X, let {u,} be an approximating sequence of (QVLI),
corresponding to {x,} (x, — x). As the same discussion in Theorem 4.1, we have

that {u,} has subsequence {u, } converging to some u, and u, € F(u,). Since F
is lower semicontinuous, we get that for any v € F(u,), there exists v, € F(u,, )
such that v, , converges to v. In light of the lower semicontinuity of f'and continuity

of 1, we have that

S(x, uy, n(uy, v)) < li;?l)igf(x”k’ Upy s Nty 5 Vi, )) < li;?liﬁ,f €y, = 0.
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Thus, u, is a solution of (QVLI), and {(QVLI), : x € X} is parametrically well-

posed in generalized sense. O

Remark 4.1. When n(u, v) = u—v and F(u) = K, for all u € K, the above
result implies the Theorem 4.2 in [12].

Example 4.1. Let X =E =R, K =[0, 4], f(x,u, v)=u>v, nu,v)=

u? —v? and consider the set valued function F defined by

[u, 1], 0<uc<l,

il {[1, 2ul, u>l.

We observe that the functions f and m are continuous, and that the set-valued
mapping F is closed and lower semicontinuous with nonempty values. We can

1+ V1+4e

calculate that O(x)=1[0,1] and Q(x) = {O, 3

} It follows that

lim ;,L(Qa8 (x)) = 0. By Theorem 4.2, {(QVLI), : x € X} is parametrically
(8,8)—(0,0)

well-posed in generalized sense.

In the end, we will give some sufficient conditions for parametric well-

posedness in generalized sense of {(QVLI), : x € X}.

Theorem 4.3. Let X and E be Banach spaces, K be a nonempty compact convex

subset of E. Let further F : K — 2K be a continuous set-valued mapping with

nonempty convex closed values, n: K x K — E be a single-valued continuous
mapping with 1(u, u) = 0 forall u € K and f : X x K x E — R be a real valued
continuous function satisfying that f(x, u, n(u, -)) is concave and f(x, u, 0) =0
for all (x,u) e X xK. Then {(QVLI), : x € X} is parametrically well-posed in
generalized sense.

Proof. Since K is compact and F is closed-valued, the set F(u) is compact for

all u € K. For every fixed x € X, we define the set-valued mapping T, : K — 2K
by
T.(u)={weK: f(x, u, n(u, w)) = max f(x, u, n(u, v))}.
veF(u)
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Since the functions f and m are continuous and the set-valued mapping F is

continuous with nonempty compact values, we have that the set-valued mapping T,

is upper semicontinuous with nonempty compact values (see [25, p. 120]). Since

f(x, u, n(u, -)) is concave and F has convex values, we deduce that T,(u) is
convex set for all # € K. The Kakutani fixed-point theorem implies that there exists

apoint u € K such that u € T,(u), i.e.,
ue Fu) and f(x, u, n(, v)) < f(x, u, n(u, u)) = 0, Vv & Flu).
This shows that the solution set Q(x) of (QVLI), is nonempty.

Now, let {u,} = K be an approximating sequence corresponding to {x,}
(x, — x) for (QVLI),. Then there exists a sequence {g,}, €, > 0, decreasing to 0
such that

d(u,, F(u,)) <, and f(x,, u,, n(u,, v)) < g,, Vv e F(u,).

Since K is compact, there exists a subsequence {unk} converging to some point

ug € K. We can take a sequence of elements u;, € F(u, ) suchthat |u, —u, |

< 2d(uy,, F(uy,, ) <2, . It follows that u;

n, — Uo- Since every upper

semicontinuous set-valued mapping with closed values is closed, we have that

ug € F(ug). The lower semicontinuity of F implies that for any v € F(ug), there

exist v, € F(uy, ) (k =1, 2,...) such that the sequence {vnk} converges to v. By

using the continuity of f'and 1, we have that

f(xs Up, T](”os V)) = khl;llo f(xnk$ unka T](”nk» Vnk )) < khl;llo gnk = 0.
Thus, uy € Q(x) and the problem {(QVLI), : x € X} is parametrically well-posed
in generalized sense. O
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