Far East Journal of Mathematical Sciences (FJMS)

This paper is available online at http://pphmj.com/journals/fjms.htm

© 2011 Pushpa Publishing House

PARAMETRIC WELL-POSEDNESS FOR QUASIVARIATIONAL-LIKE INEQUALITIES

HAI-JUN WANG and CAO-ZONG CHENG

Department of Mathematics Beijing University of Technology Beijing 100124, P. R. China

e-mail: wanghjshx@emails.bjut.edu.cn

czcheng@bjut.edu.cn

Abstract

In this paper, the concepts of parametric well-posedness and parametric well-posedness in generalized sense for quasivariational-like inequalities problems are introduced. Some criteria and characterizations are derived for parametric well-posedness and parametric well-posedness in generalized sense.

1. Introduction

Well-posedness of optimization problems, variational problems and equilibrium problems, etc. is to study the property of approximating solutions. Specifically, it is investigated that whether the approximating solution sequence has a subsequence converging to a solution of the considered problems. The importance of this issue has been widely focused by many researchers in the field of computational theory. Well-posedness of scalar optimization problems was first introduced by Tykhonov [1] in 1966. Since then, people gave various concepts of well-posedness and extensively studied the scalar optimization problems [2-6] and the vector $\overline{2010\,\mathrm{Mathematics\,Subject\,Classification:}\,49\mathrm{K}40,90\mathrm{C}31.}$

Keywords and phrases: parametric well-posedness, parametric well-posedness in generalized sense, quasivariational-like inequalities, set-valued mapping.

Received January 15, 2011

optimization problems [7, 8]. Recently, the concepts of well-posedness have been generalized in variational inequalities problems [9-14], quasivariational inequalities problems [15-17], equilibrium problems [18, 19], and optimization problems with variational inequalities constraints [20, 21]. In 2006, Lignola [15] introduced and investigated the concepts of well-posedness and *L*-well-posedness for quasivariational inequalities, and Ceng et al. [16] extended these concepts for mixed quasivariational-like inequalities. In 2007, Fang and Hu [12] considered the concept of parametric well-posedness for variational inequalities and gave some metric characterizations of parametric well-posedness.

Inspired by the above works, in this paper, we introduce the parametric well-posedness and parametric well-posedness in generalized sense for quasivariational-like inequalities. Some necessary and/or sufficient conditions of parametric well-posedness and parametric well-posedness in generalized sense are obtained. Our results improve and extend some known results in the recent literatures.

2. Preliminaries

Let X, E be real Banach spaces and K be a nonempty subset of E. Let $F: K \to 2^K$ be a set-valued mapping, $\eta: K \times K \to E$ be a single-valued mapping and $f: X \times K \times E \to R$ be a real-valued function. We consider the following parametric quasivariational-like inequality problem:

 $(QVLI)_x$ Find $u_0 \in K$ such that $u_0 \in F(u_0)$ and $f(x, u_0, \eta(u_0, v)) \le 0$, $\forall v \in F(u_0)$.

If $\eta(u, v) = u - v$, then the problem $(QVLI)_x$ reduces to the parametric quasivariational inequality problem, i.e.,

 $(QVI)_x$ Find $u_0 \in K$ such that $u_0 \in F(u_0)$ and $f(x, u_0, u_0 - v) \le 0$, $\forall v \in F(u_0)$.

Further, if F(u) = K, for all $u \in K$, then the problem reduces to the parametric variational inequality problem which is discussed in [12].

In this paper, we denote Q(x) as the solution set of $(QVLI)_x$.

PARAMETRIC WELL-POSEDNESS FOR QUASIVARIATIONAL-LIKE ... 33

Let $\{T_n\}$ be a sequence of subsets of E. We recall that the Painlevé-Kuratowski limits of sequence $\{T_n\}$ are defined by:

$$\limsup_{n} T_{n} = \{ u \in E : \exists n_{k} \to \infty, n_{k} \in N, \exists u_{u_{k}} \in T_{n_{k}} \text{ with } \lim_{k} u_{n_{k}} = u \};$$

$$\liminf_{n} T_n = \{ u \in E : \exists u_n \in T_n, n \in N \text{ with } \lim_{n} u_n = u \}.$$

In the sequel, we recall some known concepts.

Definition 2.1. Let E be a real Banach space, and K be a nonempty closed subset of E. Then a set-valued mapping $F: K \to 2^k$ is termed:

(i) closed if the graph $G_F=\{(u,\,v):v\in F(u)\}$ is closed in $K\times K$, i.e., if $u_n\in K$ and $u_n\to u$, then we get

$$\limsup_{n} F(u_n) \subseteq F(u);$$

(ii) lower semicontinuous if for any fixed $u_0 \in K$ and any sequence $\{u_n\} \subseteq K$ converging to u_0 , for all $v \in F(u_0)$, there exists a sequence of elements $v_n \in F(u_n)$ converging to v, i.e.,

$$F(u) \subseteq \liminf_{n} F(u_n);$$

- (iii) upper semicontinuous if for any fixed $u_0 \in K$ and any open set $V \subseteq K$ such that $F(u_0) \subseteq V$, there exists a neighborhood $N(u_0)$ of u_0 such that $F(v) \subseteq V$ for all $v \in N(u_0)$.
 - (iv) *continuous* if F is both lower semicontinuous and upper semicontinuous.

Definition 2.2. Let E be a real Banach space, and K be a nonempty subset of E. Let $\eta: K \times K \to E$ be a single-valued mapping. Then a bifunction $f: K \times E \to R$ is said to be

(i) η -pseudomonotone, if for any $u, v \in K$,

$$f(u, \eta(u, v)) \le 0 \Rightarrow f(v, \eta(u, v)) \le 0.$$

(ii) η -monotone, if for any $u, v \in K$,

$$f(u, \eta(u, v)) \ge f(v, \eta(u, v)).$$

It is clear that f is η -monotone \Rightarrow f is η -pseudomonotone.

Now, we give a notion of continuity of bifunction f and introduce some definitions of parametric well-posedness for quasivariational-like inequalities.

Definition 2.3. Let E be a real Banach space, K be a nonempty convex subset of E and $\eta: K \times K \to E$ be a map. Then a bifunction $f: K \times E \to R$ is said to be lower d-semicontinuous on K if for every $u, v \in K$, we have

$$f(u, \eta(u, v)) \le \liminf_{t \to 0^+} f(u + t(v - u), \eta(u, v)).$$

It is clear that the lower semicontinuity of f implies the lower d-semicontinuity of f, but the converse does not true in general.

Definition 2.4. Let $x \in X$ and $\{x_n\} \subseteq X$ with $x_n \to x$. Then a sequence $\{u_n\} \subseteq K$ is called an *approximating sequence* for $(QVLI)_x$ corresponding to $\{x_n\}$, if there exists a sequence $\{\varepsilon_n\}$, $\varepsilon_n > 0$, decreasing to 0 such that $d(u_nF(u_n)) \le \varepsilon_n$ and $f(x_n, u_n, \eta(u_n, v)) \le \varepsilon_n$ for any $v \in F(u_n)$.

Definition 2.5. The family $\{(QVLI)_x : x \in X\}$ is said to be *parametrically* well-posed, if for every $x \in X$, $(QVLI)_x$ has a unique solution u_x , and for any $\{x_n\} \subseteq X$ with $x_n \to x$, every approximating sequence for $(QVLI)_x$ corresponding to $\{x_n\}$ converges to u_x .

Definition 2.6. The family $\{(QVLI)_x : x \in X\}$ is said to be *parametrically well-posed* in generalized sense, if for every $x \in X$, the solution set Q(x) of $(QVLI)_x$ is nonempty, and for any $\{x_n\} \subseteq X$ with $x_n \to x$, every approximating sequence of $(QVLI)_x$ corresponding to $\{x_n\}$ has a subsequence converging to a point of Q(X).

Remark 2.1. It is easy to see that the solution set Q(x) is compact for every $x \in X$ when the family $\{(QVLI)_x : x \in X\}$ is parametrically well-posed in generalized sense. In fact, if $\{u_n\} \subseteq Q(x)$, then we can see that $\{u_n\}$ is an approximating sequence for $(QVLI)_x$ corresponding to $\{x_n\}$ (where $x_n = x$, $n \in N$). Then there exists a subsequence $\{u_{n_k}\}$ converging to some point of Q(x).

3. Parametric Well-posedness for Quasivariational-like Inequalities

In this section, we give some criteria and characterizations of parametric well-posedness for $\{(QVLI)_x : x \in X\}$. Firstly, we introduce the set of approximating solutions of $(QVLI)_x$ as

$$Q_{\varepsilon}^{\delta}(x) = \bigcup_{y \in B(x,\delta)} Q_{\varepsilon}(y),$$

where

$$B(x, \delta) = \{ y \in X : ||y - x|| \le \delta \}$$

and

$$Q_{\varepsilon}(y) = \{ u \in K : d(u, F(u)) \le \varepsilon, \ f(y, u, \eta(u, v)) \le \varepsilon, \ \forall v \in F(u) \}.$$

We introduce *Condition A* motivated by the Mohan-Neogy's work in [22]. We say that function $\eta: K \times K \to E$ satisfies *Condition A*, if for any $u, v \in K$ and $\lambda \in (0, 1)$, $\eta(u, u + \lambda(v - u)) = \lambda \eta(u, v)$. Obviously, η satisfies *Condition A* when $\eta(u, v) = u - v$.

Lemma 3.1. Let E be a real Banach space, and K be a nonempty convex subset of E. Let further $F: K \to 2^K$ be a set-valued mapping with nonempty convex value, and $\eta: K \times K \to E$ be a single-valued mapping satisfying Condition A. If the function $f: K \times E \to R$ is η -pseudomonotone, lower d-semicontinuous and positively homogeneous in the second variable, then the following problems are equivalent:

(i) find $u_0 \in K$ such that

$$u_0 \in F(u_0)$$
 and $f(u_0, \eta(u_0, v)) \le 0$, $\forall v \in \text{int } F(u_0)$;

(ii) find $u_0 \in K$ such that

$$u_0 \in F(u_0)$$
 and $f(v, \eta(u_0, v)) \le 0$, $\forall v \in \text{int } F(u_0)$.

Proof. If $u_0 \in K$ is a solution of the problem (i), then it is clear that $u_0 \in K$ is the solution of the problem (ii) by using the η -pseudomonotonicity of f. Conversely, assume that $u_0 \in K$ is a solution of the problem (ii). We only need to prove the

case of int $F(u_0) \neq \emptyset$. Since $F: K \to 2^K$ is nonempty convex valued and η satisfies *Condition A*, for all $\lambda \in (0, 1)$ and $v \in \text{int } F(u_0)$, we have $u_0 + \lambda(v - u_0)$ $\in \text{int } F(u_0)$, and so

$$0 \ge f(u_0 + \lambda(v - u_0), \, \eta(u_0, \, u_0 + \lambda(v - u_0)))$$

$$= f(u_0 + \lambda(v - u_0), \, \lambda \eta(u_0, \, v))$$

$$= \lambda f(u_0 + \lambda(v - u_0), \, \eta(u_0, \, v)),$$

which shows $f(u_0 + \lambda(v - u_0), \eta(u_0, v)) \le 0$ for all $v \in \text{int } F(u_0)$. By letting $\lambda \to 0^+$ and using lower d-semicontinuity of f, we obtain that $f(u_0 + \eta(u_0, v)) \le 0$, $\forall v \in \text{int } F(u_0)$. Thus u_0 is a solution of the problem (i) and the proof is completed.

Lemma 3.2 [23]. Let $\{K_n\}$ $(n \in N)$ be a sequence of nonempty convex subsets of the Banach space E such that

- (i) $K_0 \subseteq \liminf_n K_n$;
- (ii) there exists an $m \in N$ such that $\bigcap_{n \ge m} K_n \neq \emptyset$.

Then, for every $u_0 \in \text{int } K_0$, there exists a positive real number δ such that

$$B(u_0, \delta) \subseteq K_n, \forall n \ge m.$$

Theorem 3.1. Let X and E be Banach spaces, K be a nonempty closed convex subset of E. Let further $F: K \to 2^K$ be a closed and lower semicontinuous setvalued mapping with nonempty convex values, $\eta: K \times K \to E$ be a single-valued continuous mapping satisfying Condition A, $f: X \times K \times E \to R$ be a real valued function. Suppose that the following conditions hold:

- (i) for every converging sequence $\{u_n\} \subseteq K$, there exists an $m \in N$ such that int $\bigcap_{n \geq m} F(u_n) \neq \emptyset$;
 - (ii) $f(\cdot, u, \cdot)$ is lower semicontinuous for all $u \in K$;
- (iii) for every $x \in X$, the function $f(x, \cdot, \cdot)$ is lower d-semicontinuous and η -monotone;

(iv) for all $(x, u) \in X \times K$, $f(x, u, \cdot)$ is positively homogeneous.

Then $\{(QVLI)_x : x \in X\}$ is parametrically well-posed if and only if for every $x \in X$,

$$Q_{\varepsilon}^{\delta}(x) \neq \emptyset, \ \forall \varepsilon, \ \delta > 0, \ \ and \ \lim_{(\varepsilon, \delta) \to (0, 0)} \operatorname{diam} Q_{\varepsilon}^{\delta}(x) = 0.$$
 (3.1)

Proof. " \Rightarrow " Assume that $\{(QVLI)_x : x \in X\}$ is parametrically well-posed. It is clear that for every $x \in X$, the unique solution of $(QVLI)_x$ is in the $Q_{\varepsilon}^{\delta}(x)$ for all ε , $\delta > 0$. We only need to show

$$\lim_{(\varepsilon, \delta) \to (0, 0)} \operatorname{diam} Q_{\varepsilon}^{\delta}(x) = 0.$$
 (3.2)

Indeed, suppose that (3.2) is false. Then there exist positive number $\alpha > 0$ and sequences $\{\varepsilon_n\}$, $\{\delta_n\} \subseteq R_+$, ε_n decreasing to 0 and δ_n converging to 0 such that diam $Q_{\varepsilon_n}^{\delta_n}(x) > \alpha$, for all $n \in N$. We can take $u_n^{(1)}$, $u_n^{(2)} \in Q_{\varepsilon_n}^{\delta_n}(x)$ such that

$$\|u_n^{(1)} - u_n^{(2)}\| > \frac{\alpha}{2}.$$
 (3.3)

Thus there exist $x_n^{(1)}, x_n^{(2)} \in B(x, \delta_n)$ with $u_n^{(1)} \in Q_{\varepsilon_n}(x_n^{(1)})$ and $u_n^{(2)} \in Q_{\varepsilon_n}(x_n^{(2)})$, $n \in \mathbb{N}$. It is easy to see that the sequences $\{u_n^{(1)}\}$ and $\{u_n^{(2)}\}$ are approximating sequences of $(QVLI)_x$ corresponding to $\{x_n^{(1)}\}$ and $\{x_n^{(2)}\}$, respectively. It follows from the assumption that both of the sequences $\{u_n^{(1)}\}$ and $\{u_n^{(2)}\}$ converge to the unique solution of $(QVLI)_x$, and so $\lim_{n\to\infty} \|u_n^{(1)}-u_n^{(2)}\|\to 0$. This contradicts (3.3). Thus, $\lim_{(\varepsilon,\delta)\to(0,0)} \operatorname{diam} Q_{\varepsilon}^{\delta}(x) = 0$.

"\(\infty\)" For every $x \in X$, suppose that $Q_{\varepsilon}^{\delta}(x) \neq \emptyset$ ($\forall \varepsilon, \delta > 0$) and $\lim_{(\varepsilon, \delta) \to (0, 0)} \operatorname{diam} Q_{\varepsilon}^{\delta}(x) = 0$. Since every solution of $(QVLI)_x$ belongs to $Q_{\varepsilon}^{\delta}(x)$, there is at most one solution of $(QVLI)_x$.

Let $\{x_n\} \subseteq X$ with $x_n \to x$ and $\{u_n\}$ be an approximating sequence of $(QVLI)_x$ corresponding to $\{x_n\}$. Then there exists a sequence $\{\varepsilon_n\}$, $\varepsilon_n > 0$, decreasing to 0 such that $d(u_n, F(u_n)) \le \varepsilon_n$ and $f(x_n, u_n, \eta(u_n, v)) \le \varepsilon_n$, $\forall v \in F(u_n)$.

We first show that $\{u_n\}$ is a convergent sequence. In fact, let $\delta_n = ||x_n - x||$. It is obvious that $u_n \in Q_{\varepsilon_n}^{\delta_n}(x)$. Since ε_n , $\delta_n \to 0$ and $\lim_{(\varepsilon,\delta)\to(0,0)} \operatorname{diam} Q_{\varepsilon}^{\delta}(x) = 0$, it follows that $\{u_n\}$ is a Cauchy sequence, and so converges to some $u_x \in K$.

Next, we show that u_x is a solution of $(QVLI)_x$. For each $n \in N$, we can take $u'_n \in F(u_n)$ such that $\|u_n - u'_n\| \le 2d(u_n, F(u_n)) \le 2\varepsilon_n$. Thus $u'_n \to u_x$. Since F is closed, we get $u_x \in F(u_x)$. The lower semicontinuity of F implies that $F(u_x) \subseteq \liminf_n F(u_n)$. Further, we have that $\inf F(u_x) \ne \emptyset$ from condition (i) by taking $u_n = u_x$ for all $n \in N$. Thus, from Lemma 3.2, it follows that, if $v \in \inf F(u_x)$, then $v \in F(u_n)$, for n sufficiently large. By using conditions (ii) and (iii), we have that

$$f(x, v, \eta(u_x, v)) \leq \liminf_{n \to \infty} f(x_n, v, \eta(u_n, v))$$

$$\leq \liminf_{n \to \infty} f(x_n, u_n, \eta(u_n, v))$$

$$\leq \liminf_{n \to \infty} \varepsilon_n = 0.$$

By Lemma 3.1, we have that $f(x, u_x, \eta(u_x, v)) \le 0$ for all $v \in \operatorname{int} F(u_x)$. If $v \in F(u_x) - \operatorname{inf} F(u_x)$, then there exists a sequence $\{v_n\} \subseteq \operatorname{int} F(u_x)$ such that $v_n \to v$, and so $f(x, u_x, \eta(u_x, v)) \le 0$ from condition (ii) and the continuity of η . Hence, u_x is the solution of the $(QVLI)_x$. Thus, $\{(QVLI)_x : x \in X\}$ is parametrically well-posed and the proof is completed.

When f is a lower semicontinuous function, the conditions associated with F and η can be weakened and we can obtain the succinct result as follows.

Theorem 3.2. Let X and E be Banach spaces, K be a nonempty closed subset of E. Let further $F: K \to 2^K$ be a closed and lower semicontinuous set-valued

mapping with nonempty values, $\eta: K \times K \to E$ be a single-valued continuous mapping, and $f: X \times K \times E \to R$ be a lower semicontinuous function. Then $\{(QVLI)_x: x \in X\}$ is parametrically well-posed if and only if for every $x \in X$,

$$Q_{\varepsilon}^{\delta}(x) \neq \emptyset, \ \forall \varepsilon, \ \delta > 0, \ and \lim_{(\varepsilon, \delta) \to (0, 0)} \operatorname{diam} Q_{\varepsilon}^{\delta}(x) = 0.$$
 (3.4)

Proof. The necessity can be shown as in the proof of Theorem 3.1. For the sufficiency, let $x \in X$ be fixed, $\{x_n\} \subseteq X$ with $x_n \to x$ and $\{u_n\} \subseteq K$ be an approximating sequence of $(QVLI)_x$ corresponding to $\{x_n\}$. Then there exists a sequence $\{\varepsilon_n\}$, $\varepsilon_n > 0$, decreasing to 0 such that $d(u_n, F(u_n)) \le \varepsilon_n$ and $f(x_n, u_n, \eta(u_n, v)) \le \varepsilon_n$, $\forall v \in F(u_n)$. From (3.4), we know that the problem $(QVLI)_x$ has at most one solution and u_n converges to some point $u_x \in F(u_x)$. The lower semicontinuity of F implies that for any $v \in F(u_x)$, there exists $v_n \in F(u_n)$ such that v_n converges to v. In light of the lower semicontinuity of f and the continuity of f, we have that

$$f(x, u_x, \eta(u_x, v)) \le \liminf_{n \to \infty} f(x_n, u_x, \eta(u_n, v_n)) \le \liminf_{n \to \infty} \varepsilon_n = 0.$$

Consequently, u_x is the unique solution of $(QVLI)_x$. Thus $\{(QVLI)_x : x \in X\}$ is parametrically well-posed.

Remark 3.1. When $\eta(u, v) = u - v$ and F(u) = K for all $u \in K$, the above result implies Theorem 3.2 in [12]. It also generalized Proposition 2.3 in [11].

Now, we give the following examples to show the applications of Theorem 3.2.

Example 3.1. Let X = E = R, $K = [1, +\infty]$, $f(x, u, v) = u^2 v$, $\eta(u, v) = u^2 - v^2$ and consider the set-valued mapping F defined by F(u) = [1, 2u]. We observe that the functions f, η and set-valued mapping F are continuous. We can calculate that the problem $(QVLI)_x$ has the unique solution u = 1 for all $x \in X$,

and the set
$$Q_{\varepsilon}^{\delta}(x) = \left[1, \sqrt{\frac{1+\sqrt{1+4\varepsilon}}{2}}\right]$$
. It follows that $\lim_{(\varepsilon, \delta) \to (0, 0)} \operatorname{diam} Q_{\varepsilon}^{\delta}(x) = 0$.

By Theorem 3.2, $\{(QVLI)_x : x \in X\}$ is parametrically well-posed.

Example 3.2. Let X = E = R, $K = [1, +\infty]$, $f(x, u, v) = e^{-u}v$, $\eta(u, v) = u^2 - v^2$ and consider the set valued function F defined by F(u) = [1, 2u]. We observe that the functions f, η and set-valued mapping F are continuous. We can calculate that the problem $(QVLI)_x$ has the unique solution u = 1 for all $x \in X$, and the set $Q_{\varepsilon}^{\delta}(x) = \{u \in [1, +\infty] : e^{-u}(u^2 - 1) \le \varepsilon\}$. By Theorem 3.2, $(QVLI)_x : x \in X$ is not parametrically well-posed since $\lim_{(\varepsilon, \delta) \to (0, 0)} \operatorname{diam} Q_{\varepsilon}^{\delta}(x) \ne 0$.

When the subset K is compact, we can obtain the following conclusion that $\{(QVLI)_x : x \in X\}$ is parametrically well-posed if and only if $(QVLI)_x$ has a unique solution for every $x \in X$.

Theorem 3.3. Let X, E be Banach spaces and K be a nonempty compact subset of E. Let further $F: K \to 2^K$ be a closed and lower semicontinuous set-valued mapping with nonempty values, $\eta: K \times K \to E$ be a single-valued continuous mapping and $f: X \times K \times E \to R$ be a real valued lower semicontinuous function. Then $\{(QVLI)_x : x \in X\}$ is parametrically well-posed if and only if $(QVLI)_x$ has a unique solution for every $x \in X$.

Proof. The necessity is trivial by the definition of parametric well-posedness of $\{(QVLI)_x: x \in X\}$. Conversely, let u_x be the unique solution of $(QVLI_x)$ and $\{u_n\}$ be an approximating sequence for $(QVLI_x)$ corresponding to $\{x_n\}$ $(x_n \to x)$. Then there exists a sequence $\{\varepsilon_n\}$, $\varepsilon_n > 0$, decreasing to 0 such that $d(u_n, F(u_n)) \le \varepsilon_n$ and $f(x_n, u_n, \eta(u_n, v)) \le \varepsilon_n$, $\forall v \in F(u_n)$. Suppose that $\{u_{n_k}\}$ is a convergent subsequence of $\{u_n\}$ with limit u_0 . We can take $u'_{u_k} \in F(u_{n_k})$ $(k \in N)$ such that $\|u'_{n_k} - u_{n_k}\| \le 2\varepsilon_{n_k}$, and so $u'_{n_k} \to u_0$. Since F is closed, we have that $u_0 \in F(u_0)$. The lower semicontinuity of F implies that for any $v \in F(u_0)$, there exists a sequence $\{v_{n_k}\}$ with $v_{n_k} \in F(u_{n_k})$ such that v_{n_k} converges to v. In light of the lower semicontinuity of f and the continuity of g, we have that

$$f(x, u_0, \eta(u_0, v)) \leq \liminf_{k \to \infty} f(x_{n_k}, v_{n_k}, \eta(u_{n_k}, v_{n_k}))$$

$$\leq \liminf_{k \to \infty} \varepsilon_{n_k} = 0, \forall v \in F(u_0).$$

This means that u_0 is a solution of $(QVLI)_x$. Thus $u_0 = u_x$. Since K is compact, we have that the sequence $\{u_n\}$ converges to $u_0 = u_x$ and the proof is completed. \square

Remark 3.2. In finite dimensional space, without the condition that K is compact, Fang and Hu in [12] (Theorem 5.1) proved that variational inequalities problem is parametrically well-posed if and only if it has a unique solution for every parameter. For infinite dimensional space and the quasivariational-like inequalities problem, the compactness of K in Theorem 3.3 is essential: if we drop it, the parametric well-posedness of $\{(QVLI)_x : x \in X\}$ cannot be guaranteed, as Example 3.2 shows.

4. Parametric Well-posedness in Generalized Sense for Quasivariational-like Inequalities

In this section, we consider the parametric well-posedness in generalized sense for $\{(QVLI)_x : x \in X\}$.

Let E be a complete metric space. Recall that the Kuratowski measure of noncompactness μ for a subset A of E is defined by

$$\mu(A) = \inf \left\{ \varepsilon > 0 : A \subseteq \bigcup_{1 \le i \le n} C_i, \operatorname{diam} C_i \le \varepsilon, i = 1, ..., n \right\},\,$$

where $diamC_i$ is the diameter of C_i .

For given two nonempty subsets A and B of E, the Hausdorff distance between A and B is defined as

$$H(A, B) = \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\}.$$

Theorem 4.1. Let X and E be Banach spaces, K be a nonempty closed convex subset of E. Let further $F: K \to 2^K$ be a closed and lower semicontinuous setvalued mapping with nonempty convex values, $\eta: K \times K \to E$ be a single-valued continuous mapping satisfying Condition A, $f: X \times K \times E \to R$ be a real valued function. Suppose that the following conditions hold:

(i) for every converging sequence $\{u_n\} \subseteq K$, there exists an $m \in N$ such that int $\bigcap_{n \geq m} F(u_n) \neq \emptyset$;

- (ii) $f(\cdot, u, \cdot)$ is lower semicontinuous for all $u \in K$;
- (iii) for every $x \in K$, the function $f(x, \cdot, \cdot)$ is lower d-semicontinuous and η -monotone;
 - (iv) for all $(x, u) \in X \times K$, $f(x, u, \cdot)$ is positively homogeneous.

Then $\{(QVLI)_x : x \in X\}$ is parametrically well-posed in generalized sense if and only if for every $x \in X$,

$$Q_{\varepsilon}^{\delta}(x) \neq \emptyset, \ \forall \varepsilon, \ \delta > 0, \ and \lim_{(\varepsilon, \ \delta) \to (0, \ 0)} \mu(Q_{\varepsilon}^{\delta}(x)) = 0.$$
 (4.5)

Proof. " \Rightarrow " Assume that $\{(QVLI)_x : x \in X\}$ is parametrically well-posed in generalized sense. For every $x \in X$, the solution set Q(x) of $(QVLI)_x$ is nonempty and $Q(x) \subseteq Q_{\varepsilon}^{\delta}(x)$ for all $\delta > 0$. It follows that the set $Q_{\varepsilon}^{\delta}(x)$ is nonempty. Since Q(x) is compact, we have

$$\mu(Q_{\varepsilon}^{\delta}(x)) \leq 2H(Q_{\varepsilon}^{\delta}(x), Q(x)) + \mu(Q(x))$$

$$= 2H(Q_{\varepsilon}^{\delta}(x), Q(x)) = 2 \sup_{u \in Q_{\varepsilon}^{\delta}(x)} d(u, Q(x)).$$

Assume that $\lim_{(\varepsilon,\delta)\to(0,0)} \mu(Q_{\varepsilon}^{\delta})(x) \neq 0$. Then there exist $\alpha > 0$ and the sequences of positive numbers ε_n and δ_n decreasing to 0 such that $\mu(Q_{\varepsilon_n}^{\delta_n}(x)) > \alpha$, and so there is a sequence $\{u_n\} \subseteq K$ with $u_n \in Q_{\varepsilon_n}^{\delta_n}(x)$ such that

$$d(u_n, Q(x)) > \frac{\alpha}{3}. \tag{4.6}$$

On the other hand, there exists $\{x_n\} \subseteq X$ such that $||x_n - x|| \le \delta_n$ with $u_n \in Q_{\varepsilon_n}(x_n)$. Then the sequence $\{u_n\}$ is an approximating sequence of $(QVLI)_x$ corresponding to $\{x_n\}$. Since $\{(QVLI)_x : x \in X\}$ is parametrically well-posed in generalized sense, there exists a subsequence $\{u_{n_k}\}$ converging to some point of Q(x), which contradicts (4.6). Thus (4.5) holds.

" \Leftarrow " Assume that (4.5) holds. For every $x \in X$, let $\{u_n\}$ be an approximating sequence of $(QVLI)_x$ corresponding to $\{x_n\}$ $(x_n \to x)$. Then there exists a sequence

 $\{\varepsilon_n\},\ \varepsilon_n>0$, decreasing to 0 such that $u_n\in \mathcal{Q}^{\delta_n}_{\varepsilon_n}(x)$, where $\delta_n=\|x_n-x\|$. Without loss of generality, we suppose that δ_n is a decreasing sequence. Then $\{\mathcal{Q}^{\delta_n}_{\varepsilon_n}(x)\}$ is a decreasing sequence. By using the similar method in [24, p. 4], we consider the decreasing sequence of sets $Q_n=\{u_k:k\geq n\}$. Then $Q_n\subseteq \mathcal{Q}^{\delta_n}_{\varepsilon_n}(x)$, and so $\mu(Q_1)=\mu(Q_n)\leq \mu(\mathcal{Q}^{\delta_n}_{\varepsilon_n}(x))$ for all $n\in N$. This shows that $\mu(Q_1)=0$, and so $Q_1=\{u_n:n\in N\}$ is precompact. Thus there exists a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ converging to some point $u_x\in K$. From the proof of Theorem 3.1, we know that $u_x\in F(u_x)$ is a solution of $(\mathcal{Q}VLI)_x$. Therefore, $\{(\mathcal{Q}VLI)_x:x\in X\}$ is parametrically well-posed in generalized sense.

When the continuity of f is strengthened, we can obtain the following theorem:

Theorem 4.2. Let X and E be Banach spaces, K be a nonempty closed subset of E. Let further $F: K \to 2^k$ be a closed and lower semicontinuous set-valued mapping with nonempty values, $\eta: K \times K \to E$ be a single-valued continuous mapping, and $f: X \times K \times E \to R$ be a lower semicontinuous function. Then $\{(QVLI)_x : x \in X\}$ is parametrically well-posed in generalized sense if and only if for every $x \in X$,

$$Q_{\varepsilon}^{\delta}(x) \neq \emptyset, \ \forall \varepsilon, \ \delta > 0, \ \ and \ \lim_{(\varepsilon, \delta) \to (0, 0)} \mu(Q_{\varepsilon}^{\delta}(x)) = 0.$$
 (4.7)

Proof. The necessity follows from Theorem 4.1. Conversely, assume that (4.7) holds. For every $x \in X$, let $\{u_n\}$ be an approximating sequence of $(QVLI)_x$ corresponding to $\{x_n\}$ $(x_n \to x)$. As the same discussion in Theorem 4.1, we have that $\{u_n\}$ has subsequence $\{u_{n_k}\}$ converging to some u_x and $u_x \in F(u_x)$. Since F is lower semicontinuous, we get that for any $v \in F(u_x)$, there exists $v_{n_k} \in F(u_{n_k})$ such that v_{n_k} converges to v. In light of the lower semicontinuity of f and continuity of g, we have that

$$f(x, u_x, \eta(u_x, v)) \le \liminf_{k \to \infty} (x_{n_k}, u_{n_k}, \eta(u_{n_k}, v_{n_k})) \le \liminf_{k \to \infty} \varepsilon_{n_k} = 0.$$

Thus, u_x is a solution of $(QVLI)_x$ and $\{(QVLI)_x : x \in X\}$ is parametrically well-posed in generalized sense.

Remark 4.1. When $\eta(u, v) = u - v$ and F(u) = K, for all $u \in K$, the above result implies the Theorem 4.2 in [12].

Example 4.1. Let X = E = R, $K = [0, +\infty]$, $f(x, u, v) = u^2 v$, $\eta(u, v) = u^2 - v^2$ and consider the set valued function F defined by

$$F(u) = \begin{cases} [u, 1], & 0 \le u \le 1, \\ [1, 2u], & u > 1. \end{cases}$$

We observe that the functions f and η are continuous, and that the set-valued mapping F is closed and lower semicontinuous with nonempty values. We can

calculate that
$$Q(x) = [0, 1]$$
 and $Q_{\varepsilon}^{\delta}(x) = \left[0, \sqrt{\frac{1 + \sqrt{1 + 4\varepsilon}}{2}}\right]$. It follows that

 $\lim_{(\varepsilon,\,\delta)\to(0,\,0)}\mu(Q_\varepsilon^\delta(x))=0. \ \ \text{By Theorem 4.2, } \ \{(QVLI)_x:x\in X\} \ \ \text{is parametrically well-posed in generalized sense.}$

In the end, we will give some sufficient conditions for parametric well-posedness in generalized sense of $\{(QVLI)_x : x \in X\}$.

Theorem 4.3. Let X and E be Banach spaces, K be a nonempty compact convex subset of E. Let further $F: K \to 2^K$ be a continuous set-valued mapping with nonempty convex closed values, $\eta: K \times K \to E$ be a single-valued continuous mapping with $\eta(u, u) = 0$ for all $u \in K$ and $f: X \times K \times E \to R$ be a real valued continuous function satisfying that $f(x, u, \eta(u, \cdot))$ is concave and f(x, u, 0) = 0 for all $(x, u) \in X \times K$. Then $\{(QVLI)_x : x \in X\}$ is parametrically well-posed in generalized sense.

Proof. Since K is compact and F is closed-valued, the set F(u) is compact for all $u \in K$. For every fixed $x \in X$, we define the set-valued mapping $T_x : K \to 2^K$ by

$$T_x(u) = \{ w \in K : f(x, u, \eta(u, w)) = \max_{v \in F(u)} f(x, u, \eta(u, v)) \}.$$

Since the functions f and η are continuous and the set-valued mapping F is continuous with nonempty compact values, we have that the set-valued mapping T_x is upper semicontinuous with nonempty compact values (see [25, p. 120]). Since $f(x, u, \eta(u, \cdot))$ is concave and F has convex values, we deduce that $T_x(u)$ is convex set for all $u \in K$. The Kakutani fixed-point theorem implies that there exists a point $u \in K$ such that $u \in T_x(u)$, i.e.,

$$u \in F(u)$$
 and $f(x, u, \eta(u, v)) \le f(x, u, \eta(u, u)) = 0, \forall v \in F(u)$.

This shows that the solution set Q(x) of $(QVLI)_x$ is nonempty.

Now, let $\{u_n\} \subseteq K$ be an approximating sequence corresponding to $\{x_n\}$ $(x_n \to x)$ for $(QVLI)_x$. Then there exists a sequence $\{\varepsilon_n\}$, $\varepsilon_n > 0$, decreasing to 0 such that

$$d(u_n, F(u_n)) \le \varepsilon_n$$
 and $f(x_n, u_n, \eta(u_n, v)) \le \varepsilon_n, \forall v \in F(u_n)$.

Since K is compact, there exists a subsequence $\{u_{n_k}\}$ converging to some point $u_0 \in K$. We can take a sequence of elements $u'_{n_k} \in F(u_{n_k})$ such that $\|u'_{n_k} - u_{n_k}\| \le 2d(u_{n_k}, F(u_{n_k})) \le 2\varepsilon_{n_k}$. It follows that $u'_{n_k} \to u_0$. Since every upper semicontinuous set-valued mapping with closed values is closed, we have that $u_0 \in F(u_0)$. The lower semicontinuity of F implies that for any $v \in F(u_0)$, there exist $v_{n_k} \in F(u_{n_k})$ (k = 1, 2, ...) such that the sequence $\{v_{n_k}\}$ converges to v. By using the continuity of f and g, we have that

$$f(x,\,u_0,\,\eta(u_0,\,v)) = \lim_{k\to\infty} f(x_{n_k},\,u_{n_k},\,\eta(u_{n_k},\,v_{n_k})) \leq \lim_{k\to\infty} \varepsilon_{n_k} \,=\, 0.$$

Thus, $u_0 \in Q(x)$ and the problem $\{(QVLI)_x : x \in X\}$ is parametrically well-posed in generalized sense.

References

- [1] A. N. Tykhonov, On the stability of the functional optimization problem, USSR Comput. Math. Math. Phys. 6 (1966), 28-33.
- [2] J. P. Revalskt and N. V. Zhivkov, Well-posed constrained optimization problems in metric spaces, J. Optim. Theory Appl. 76 (1993), 145-163.

- [3] T. Zolezzi, Well-posedness and optimization under perturbations, Ann. Oper. Res. 101 (2001), 351-361.
- [4] T. Zolezzi, Extended well-posedness of optimization problems, J. Optim. Theory Appl. 91 (1996), 257-266.
- [5] X. X. Huang and X. Q. Yang, Generalized Levitin-Polyak well-posedness in constrained optimization, SIAM J. Optim. 17 (2006), 243-258.
- [6] J. P. Revalski, Hadamard and strong well-posedness for convex programs, SIAM J. Optim. 7 (1997), 519-526.
- [7] X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of constrained vector optimization problems, J. Global Optim. 37 (2007), 287-304.
- [8] S. Deng, Coercivity properties and well-posedness in vector optimization, RAIRO Oper. Res. 37 (2003), 195-208.
- [9] J. Y. Park and J. U. Jeong, Parametric generalized mixed variational inequalities, Appl. Math. Lett. 17 (2004), 43-48.
- [10] M. A. Noor, Well-posed variational inequalities, J. Appl. Math. Comput. 11 (2003), 165-172.
- [11] M. B. Lignola and J. Morgan, Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution, J. Global Optim. 16 (2000), 57-67.
- [12] Y. P. Fang and R. Hu, Parametric well-posedness for variational inequalities defined by bifunctions, Comput. Math. Appl. 53 (2007), 1306-1316.
- [13] C. S. Lalitha and M. Mehta, Vector variational inequalities with conepseudomonotone bifunctions, Optimization 54 (2005), 327-338.
- [14] X. X. Huang, X. Q. Yang and D. L. Zhu, Levitin-Polyak well-posedness of variational inequality problems with functional constraints, J. Global Optim. 44 (2009), 159-174.
- [15] M. B. Lignola, Well-posedness and L-well-posedness for quasivariational inequalities, J. Optim. Theory Appl. 128 (2006), 119-138.
- [16] L. C. Ceng, N. Hadjisavvas, S. Schaible and J. C. Yao, Well-posedness for mixed quasivariational-like inequalities, J. Optim. Theory Appl. 139 (2008), 109-125.
- [17] B. Jiang, J. Zhang and X. X. Huang, Levitin-Polyak well-posedness of generalized quasivariational inequalities with functional constraints, Nonlinear Anal. TMA 70 (2009), 1492-1503.
- [18] Y. P. Fang, R. Hu and N. J. Huang, Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints, Comput. Math. Appl. 55 (2008), 89-100.

PARAMETRIC WELL-POSEDNESS FOR QUASIVARIATIONAL-LIKE ... 47

- [19] X. J. Long, N. J. Huang and K. L. Teo, Levitin-Polyak well-posedness for equilibrium problems with functional constraints, J. Inequal. Appl. 2008 (2008), Article ID 657329, 14pp.
- [20] I. Del Prete, M. B. Lignola and J. Morgan, New concepts of well-posedness for optimization problems with variational inequality constraints, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003) Article 5, 18pp.
- [21] R. Lucchetti and F. Patrone, A characterization of Tyhonov well-posedness for minimum problems, with applications to variational inequalities, Numer. Funct. Anal. Optim. 3 (1981), 461-476.
- [22] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908.
- [23] M. B. Lignola and J. Morgan, Semicontinuity and episemicontinuity: equivalence and applications, Boll. Unione Mat. Ital. 8B (1994), 1-6.
- [24] J. Banas and K. Goebel, Measures of noncompactness in Banach spaces, Lecture Note in Pure and Applied Mathematics, Vol. 60, Marcel Dekker, New York, 1980.
- [25] J. P. Aubin, Applied Nonlinear Analysis, Wiley, New York, 1984.