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Abstract 

Let [ ]δσ= ,;xDR  be an Ore extension over a commutative Dedekind 

domain D, where σ is an automorphism on D. Chamarie [2] implicitly 
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proved that R is a maximal order. In this paper, we give an explicit and 
simpler proof. Then we use that result to study the prime factor ring of 
[ ]δσ,;xD  over the prime ideals. 

1. Introduction 

This paper studies maximal order and factor rings of an Ore extension over the 
prime ideals. Ore extensions are widely used as the underlying rings of various 
linear systems investigated in the area Algebraic System Theory. These systems may 
represent systems coming from mathematical physics, applied mathematics and 
engineering sciences, which can be described by means of systems of ordinary or 
partial differential equations, difference equations, differential time-delay equations, 
etc. If these systems are linear, then they can be defined by means of matrices with 
entries in non-commutative algebras of functional operators such as the ring of 
differential operators, shift operators, time-delay operators, etc. An important class 
of such algebras is called Ore extensions (Ore Algebras). 

Chamarie [2] implicitly proved that R is a maximal order. In this paper, we give 
an explicit and simpler proof. Then we use that result to study the prime factor ring 
of [ ]δσ,;xD  over the prime ideals. 

2. Ore Extension as a Maximal Order 

2.1. Definitions and notation of Ore extension 

We recall some definitions, notation, and more or less well-known facts 
concerning. A (left) skew derivation on a ring D is a pair ( ) ,, δσ  where σ is a ring 

endomorphism of D and δ is a (left) σ-derivation on D; that is, an additive map from 
D to itself such that ( ) ( ) ( ) ( )babaab δ+δσ=δ  for all ., Dba ∈  For ( )δσ,  any 

skew derivation on a ring D, we obtain 

( ) ( ) ( )∑
−

=

−−δσ=δ
1

0

1
m

i

imim aaaa  

for all Da ∈  and ...,2,1=m  (see [3, Lemma 1.1]). 

Definition 2.1. Let D be a ring with identity 1 and let ( )δσ,  be a (left) skew 

derivation on the ring D. Then the Ore extension over D with respect to the skew 
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derivation ( )δσ,  is the ring consisting of all polynomials over D with an 

indeterminate x denoted by 

[ ] { ( ) }DaaxaxfxD i
n

n ∈|++==δσ 0,; L  

satisfying the following equation, for all :Da ∈  

( ) ( ).axaxa δ+σ=  

The notation [ ]σ;xD  stand for the particular Ore extensions, where 0=δ  and 

[ ]δ;xD  for σ the identity map. In this paper, we describe the Ore extension 

[ ],,; δσ= xDR  where D is a commutative Dedekind domain and σ is an 

automorphism. 

The Ore extension [ ]δσ,;xD  is a free left D-module with basis ....,,,1 2xx  To 

abbreviate the assertion, the symbol R stands for the Ore extension [ ]δσ,;xD  

constructed from a ring D and a skew derivation ( )δσ,  on D. The degree of a 

nonzero element Rf ∈  is defined in the obvious fashion. Since the standard form 

for elements of R is with left-hand coefficients, the leading coefficient of f is nf  if 

( ) n
n

n
n xfxfxffxf ++++= −
−

1
110 L  

with all Dfi ∈  and .0≠nf  If σ is an automorphism, then f can also be written 

with right-hand coefficients, but then its nx -coefficient is ( ).n
n f−σ  While a general 

formula for ,axn  where Da ∈  and N∈n  is too involved to be of much use, an 
easy induction establishes that 

( ) ( ) nnn
n

nn xaxaxaaax σ++++δ= −
−

1
11 L  

for some ....,, 11 Daa n ∈−  

In preparation for our analysis of the types of ideals occurred when prime ideals 
of an Ore extension [ ]δσ,;xD  are contracted to the coefficient ring D, we consider 

σ-prime, δ-prime, and ( )δσ, -prime ideals of D. 

Definition 2.2. Let ∑ be a set of maps from the ring D to itself. A ∑-ideal of D 
is any ideal I of D such that ( ) II ⊆α  for all .∑∈α  A ∑-prime ideal is any proper 
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∑-ideal I such that whenever J, K are ∑-ideals satisfying ,IJK ⊆  then either 

IJ ⊆  or .IK ⊆  

In the context of a ring D equipped with a skew derivation ( ) ,, δσ  we shall 

make use of the above definition in the cases { },σ=∑  { }δ=∑  and { };, δσ=∑  

and simplify the prefix ∑ to, respectively, ,, δσ  or ( )., δσ  

2.2. Ore extension as a maximal order 

Let [ ]δσ= ,;xDR  be an Ore extension, where σ is an automorphism and δ is a 

σ-derivative on D. By [6, Theorems 2.1.14 and 2.1.15], R has a right quotient 
division ring, denoted by ( )RQ  or Q for short. So, R is right order in Q, i.e., for all 

,Qq ∈  ( ) ( ) 1−= xbxaq  for some ( ) ( ) ., Rxbxa ∈  In this section, we show that R is 

a maximal order. We start with some easy lemmas. 

Lemma 2.1. Let I be an ideal of R and ( ) ( ) ., Rxbxa ∈  Then 

 (i) ( ) ( ) ( ) ( ).1 xIbxIaIxbxIa ⊆⇔⊆−  

(ii) ( ) ( ) ( )( ) ( )( ).xbderxaderxIbxIa ≥⇒⊆  

Proof. We get them by simple calculation.  

Lemma 2.2. Let I be an ideal of R. Set { dDdT |∈=  is a leading coefficient 

of ( )xf  for some ( ) ,Ixf ∈  where ( ) } { }.00 U≠xf  Then T is an ideal of D and 

( ) .TT =σ  

Proof. It is easy to see that T is an ideal of D and ( ) .TT ⊆σ  Using the facts 

that σ is an automorphism and T is an ideal in Dedekind domain D, we get 
( ) .TT =σ   

As T is an ideal in Dedekind domain D, T can be generated by two elements, say 

1s  and .2s  Since ,, 21 Tss ∈  there are two polynomials ( ) ( ) Ixpxp ∈21 ,  such that 

21, ss  are leading coefficients of ( ) ( ) ,, 21 xpxp  respectively, where ( )( ) =xpder 1  

( )( ) txpder =2  for some natural number t. Now, set { dDdS |∈=  is a leading 

coefficient of a polynomial ( ) ( ),2211 xpdxpd +  where ,02211 ≠+ sdsd  for some 

} { }.0, 21 UDdd ∈  It is easy to see that .ST =  Using S and t, we prove the 
following lemma. 
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Lemma 2.3. Let I be an ideal of R and ( ) ( ) ,, Rxbxa ∈  where ( ) m
m xaxa =  

0a++L  and ( ) .0bxbxb l
l ++= L  If ( ) ( ),xIbxIa ⊆  then ( )l

lm
m bca −σ=  for 

some .Dc ∈  

Proof. The proof is done in two steps. In the first step, it is shown that 

( ).l
lm

m bSSa −σ⊆  In the second step, it is shown that ( )l
lm

m bca −σ=  for some 

.Dc ∈  

Proof. Step I 

Let .Sv ∈  Then there exists Sw ∈  such that ( ) .vwt =σ−  The existence of w 

is guaranteed by automorphism of σ and ( ) .SS =σ  Since ,Sw ∈  there is a 

polynomial, say ( ) .Iwxxq t ∈+= L  By definition of S, ( )xq  has degree t. Using 

relation, ( ) ( ) ,xIbxIa ⊆  we get 

[ ] ( ) ( ) ( ) ( ).xIbxIaxawxawx mt
m

tt ⊆∈+σ=+ + LL  
So, 

( ) [ ] ( ) ( ) LLL +σ=+=+σ +−+−++ mt
l

lmtlmtmt
m

t xbqxbqxxaw  

for some ,Iqx lmt ∈+−+ L  where .STq =∈  From the last equation, we get 

( ) ( ),l
lmt

m
t bqaw −+σ=σ  

( ) ( ) ( ),l
lmt

m
t bqaw −−− σσ=σ  

( ) ( ).l
lmt

m bqva −− σσ=  

Since ( ) ,Sqt ∈σ−  it means that 

( )l
lm

m bSSa −σ⊆   or  [ ( )] SbSa l
lm

m ⊆σ −− 1   or  [ ( )] .Dba l
lm

m ∈σ −  

Proof. Step II 

Since S is an ideal in Dedekind domain D which is a maximal order, from the 
last relation we get 

(( ) [ ( )] ) SbaS l
lm

m ⊆σ −− 1   or  [ ( )] .1 Dba l
lm

m ∈σ −−  

This implies ( )l
lm

m bca −σ=  for some .Dc ∈   
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Lemma 2.4. Let I be an ideal in R and ( ) ( ) ., Rxbxa ∈  Then 

[ ( ) ( ) ] ( ) ( ) .11 RxbxaIxbxaI ∈⇒⊆ −−  

Proof. Let ( ) 0axaxa m
m ++= L  and ( ) .0bxbxb l

l ++= L  The proof is 

done by induction on .lm −  First, let .0=− lm  By Lemma 2.3, ( )l
lm

m bca −σ=  

for some .Dc ∈  We can find a polynomial ( ) ,Rxp ∈  where ( )( ) lmxpder =<  

such that ( ) ( ) ( ) ( ).xpxbcxxa lm += −  Moreover, 

( ) ( ) [( ) ( ) ( )] ( ) ( ) ( ) .111 −−−−− +=+= xbxpcxxbxpxbcxxbxa lmlm  

Since [ ( ) ( ) ] ,1 IxbxaI ⊆−  [ ( ) ( ) ] .1 IxbxpcxI lm ⊆+ −−  Therefore, ( ) ( ) 1−xbxIp  

.I⊆  Since ( )( ) ,lxpder <  by Lemma 2.1, we conclude that ( ) .0=xp  This leads to 

( ) ( ) .1 Rcxxbxa lm ∈= −−  

Now, let the statement 

[ ( ) ( ) ] ( ) ( ) RxbxaIxbxaI ∈⇒⊆ −− 11  

be true for .0 klm ≤−≤  Next, we prove that it is true for .1+=− klm  

From above, we have ( ) ( ) ,1 IxbxIp ⊆−  where ( )( ) .mxpder <  Since ( )( )xpder  

,m< ( )( ) .klxpder ≤−  So, using induction hypothesis, we conclude that ( ) ( ) 1−xbxp  

.R∈  Finally, 

( ) ( ) ( ) ( ) .11 Rxbxpcxxbxa lm ∈+= −−−   

Lemma 2.5. Let I be an ideal in R and ( ) ( ) ., Rxbxa ∈  Then 

[ ( ) ( ) ] ( ) ( ) .11 RxbxaIIxbxa ∈⇒⊆ −−  

Proof. Since Q is a quotient ring of an Ore extension [ ],,; δσ= xDR  where D 
is a commutative Dedekind domain, Q is two side quotient ring of R, by [4, p. 6]. It 

means, for all ( ) ( ) ( ) ( ) ( )xaxbxqRQxq 1, −=∈  for some ( ) ( ) ., Rxbxa ∈  Therefore, 
to prove this lemma, it is enough to prove the following: 

[ ( ) ( )] ( ) ( ) .11 RxaxbIIxaxb ∈⇒⊆ −−  
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Using the same technique as the proof of Lemma 2.4, the proof follows.  

For the theorem below, we need the following notation. Let I be an ideal of R. 
Then 

( ) { ( ) }IIqRQqIOr ⊆|∈=   and  ( ) { ( ) }.IqIRQqIOl ⊆|∈=  

Theorem 2.1. Let [ ]δσ= ,;xDR  be an Ore extension. Then [ ]δσ= ,;xDR  is 

a maximal order. 

Proof. Using Lemmas 2.4 and 2.5, we get, respectively, ( ) RIOr =  and 

( ) RIOl =  for all ideals I of R. So, [ ]δσ= ,;xDR  is a maximal order, by [6, 

Theorem 5.1.4].  

3. Factor Rings of Ore Extension 

Throughout this section, let D be a commutative Dedekind domain and σ be an 
automorphism of D. Let [ ]δσ= ,;xDR  be an Ore extension over D. 

In this section, we study the structure of the prime factor ring PR  for any 

prime ideal P of R, which is one of the ways to investigate the structure of rings. 
This investigation is described into three subsections. In the first and the second 
subsections, we study the structure of the prime factor ring ,PR  where P is a 

minimal prime ideal of R, while in the last subsection P is not a minimal prime ideal 
of R. 

3.1. Factor ring as a maximal order 

Let P be a minimal prime of R. In this subsection, we show that factor ring PR  

is a maximal order. 

Theorem 3.1. If P is a prime ideal of R, then PR  is a maximal order. 

Proof. In the first step, we show that 

( ) ( ) PRIOIO lr ==
~~  for all ideals I~  of .PR  

Let ( ).~~ IOq r∈  Then it means Qq ~~ ∈  and .~~~ IqI ⊆  This implies ,IIq ⊆  where 
I is the ideal of R and .Qq ∈  Since R is a maximal order, ( ) ( ) RIOIO lr ==  by [6, 

Theorem 5.1.4]. So, .IqI ⊆  This implies .~~~ IIq ⊆  So, ( ) ( ).~~ IOIO lr ⊆  With the 

similar technique, it is easy to show that ( ) ( )IOIO rl
~~

⊆  and ( ) .~ PRIOr =  
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Now, we have ( ) ( ) PRIOIO lr ==
~~  for all ideals I~  of .PR  So, using again 

[6, Theorem 5.1.4], we get PR  is a maximal order.  

3.2. Dedekind factor ring of Ore extension 

In this subsection, we study the structure of the prime factor ring ,PR  where P 

is a minimal prime ideal of R. 

Theorem 3.2. Let P be a minimal prime ideal of R with [ ],,; δσ= xP p  where 

p  is a ( )δσ, -prime ideal of D. Then PR  is a Dedekind domain if and only if 

( ).Spec D∈p  

Proof. 

⇐  

Since p  is a ( )δσ, -prime ideal of D, according to [3, p. 330], 

( ) ( ) [ ].,;~ δσ= xDRR pp  

Moreover, ( )RR Spec∈p  by [3, Theorem 3.1]. So, ,RP p=  since PR ⊆p  

and P is a minimal prime. It means, we are in the situation ( ) ( ) [ ].,;~ δσ= xDPR p  

On the other hand, if ( ),Spec D∈p  then pD  is a field. So, ( ) [ ]δσ,;xD p  is a 

principal ideal domain by [1, Theorem 1.3.2]. This implies ( ) [ ]δσ,;xD p  is a 

Dedekind domain and so, PR  is a Dedekind domain. 

⇒ 

Let PR  be a Dedekind domain. Then it is clear that PRD ⊆p  is also a 

Dedekind domain. Hence ( ).Spec D∈p   

3.3. Field factor rings of Ore extension 

In this subsection, we study the structure of the prime factor ring ,PR  where P 

is a prime ideal of R but not a minimal prime. For the case P is not a minimal prime 
ideal and p=DP I  is not a ( )δσ, -ideal of D, we show that PR  is a field. 

With the situations above, by [3, Theorem 3.1], we get the following: 

  (i) p  is a prime ideal of D. 
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 (ii) ( ) .pp ≠σ  

(iii) P is the unique prime ideal of R, where .p=DP I  

(iv) PR  is a commutative domain. 

From the above conditions, we get the following theorem: 

Theorem 3.3. PR  is a field. 

Proof. Let PS  be an ideal of .PR  Then PS  is contained in a maximal ideal, 

say .PM  Since PR  is a commutative domain, PM  also is a prime ideal. Hence 

M is a prime ideal of R such that .p=⊇ DPDM II  Since p  is a maximal ideal, 

.p=DM I  Using [3, Theorem 3.1], we get .PM =  So ( ) ( )0=PM  and 

( ).0=PS   

4. Concluding Remark 

In this paper, we studied the factor rings of [ ]δσ,;xD  over the prime ideals P, 

where .0≠= pDP I  Studying these results, it is expected that this identification 

can be used to study the structure of the corresponding factor rings of [ ]δσ,;xD  

over the minimal prime ideals P, where ,0=DP I  which is currently under 

investigation. 
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