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Abstract 

In this paper, we use Energy Balance Method (EBM) to nonlinear 
vibration and oscillation equations to obtain the periodic solutions of a 
conservative nonlinear oscillator for which the elastic force term is 

proportional to .31X  The results show that the EBM is very effective and 
simple so that do not require linearization or small perturbation. 

1. Introduction 

The nonlinear vibration and oscillation equations have been considered in 
several papers [1-3]. Main model was introduced by Mickens [16] and has been 
studied by many investigators [17, 26, 29, 39]. Various methods have been used to 
solve them, for example, Homotopy Perturbation Method (HPM) and Harmonic 

Balance Method (HBM). Our purpose is to solve conservative 31X  force nonlinear 
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oscillator and oscillator and the Duffing equations by EBM, and the results of each 
of them will be compared with exact, HPM, HBM solutions, respectively. 

2. Solution Procedure 

We consider the following nonlinear oscillator: 
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with initial conditions: 

( ) ( ) .00,0 == dt
dXAx  (2) 

Equation (1) is a conservative nonlinear oscillator with a fractional power 
restoring force. We denote the angular frequency of these oscillations by ω and note 
that one of our major tasks is to determine ( ),Aω  the functional behavior of ω as a 

function of the initial amplitude. 

In order to assess the advantages and the accuracy of EBM, we will apply this 
method to (1) with initial conditions (2). 

Its formulation can easily be established by: 
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Its Hamiltonian can be written in the form: 
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with initial conditions: 

( ) ( ) .00,0 == dt
dXAX  (5) 

Therefore, 
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We will use the trial function to determine the angular frequency ω, that is, 

( ) ( ).cos tAtX ω=  (8) 

If we substitute (7) into (6), then we get the following residual equation: 
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If we use ,4
π=ωt  then we obtain: 
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If we compare our result with the exact solution given in [40], then we get: 

 

Figure (1-1) 
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Now, for second example, we consider the following nonlinear oscillator: 
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with initial conditions: 

( ) ( ) .00,0 == dt
dXAX  (13) 

We will apply EBM to solve (12). First, we establish its formulation by: 
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Thus, its Hamiltonian can be written in the form: 
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We will use the trial function 

( ) ( )tAtX ω= cos  (18) 

in (17) to determine the angular frequency ω. This leads to 
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If we put ,4
π=ωt  then we obtain: 
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Hence 
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So, if we compare our result with the result of HPM given in [2], then we get: 

 

Figure (1-2) 

Our third example is the Duffing oscillator: 

Consider 

( ) ( ) ( )32
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with initial conditions: 

( ) ( ) .00,0 == dt
dXAX  (23) 

We will apply EBM to solve (22). We establish again its formulation by: 
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Its Hamiltonian, therefore, can be written in the form: 
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We will use the trial function to determine the angular frequency ω, that is, 

( ) ( ).cos tAtX ω=  (28) 

In (27), the result will be 
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If we put ,4
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Once more, we compare our result with the result given in [3] and get: 
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Figure (1-3) 

3. Conclusion 

Results in this paper show the accuracy and efficiency of EBM in studying of 
nonlinear vibrating equations, and is a powerful mathematical tool to investigate 
them and can easily be extended to any such nonlinear equations. 

Results show that the solutions obtained by this method, are in a good 
agreement, with other results. 
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