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Abstract 

We approximate the Fermi-Dirac integral ∫
∞

− +0
,

1
dt

e
t

xt  by means of 

composite ten-point Gauss-Legendre quadrature, for values of x in the 
range [ ].100,100−∈x  For any x, the integral is approximated by 

composite quadrature on the interval ,1500 ≤≤ t  which is subdivided 

into a number of subintervals. We achieve a relative error of no more than 
310−  with 10 subintervals, and an error of no more than 1410−  with 89 

subintervals. On our computational platform, the real-time duration of the 
computation is faster than two milliseconds for any [ ].100,100−∈x  

1. Introduction 

Semiconductor device simulations typically require the evaluation of the Fermi-
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Dirac integral of order 2
1  
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This integral is used to determine the concentration of electrons in the conduction 
band (using the first definition of x in (2)), and the concentration of holes in the 
valence band (using the second definition of x in (2)), assuming a parabolic band 
structure [1]. In (2), FE  is the Fermi level, CE  is the bottom of the conduction 

band, VE  is the top of the valence band, Bk  is Boltzmann’s constant, and T is the 

absolute temperature. For semiconductors, the range of x is reasonably set at 
[ ],50,100−  although in this work, we will be somewhat more ambitious and 

consider the range [ ].100,100−  In any case, we will see that, for high accuracy, the 

efficiency of our approximation is limited by the negative values of x. 

Many approximation techniques for ( )x
2
1F  have been reported in the literature 

- series expansion [2], quadrature [3], interpolation of tabular data, and polynomial- 
and rational approximation [4, 5]. To the best of our knowledge, composite Gauss-
Legendre quadrature has not been used to approximate ( ),

2
1 xF  and it is such an 

approach that we wish to investigate here. 

2. Composite Gauss-Legendre Quadrature 

We briefly describe essentials relating to ten-point Gauss-Legendre quadrature 
and composite ten-point Gauss-Legendre quadrature (see Kincaid and Cheney [6] 
for a general discussion of GL quadrature). 

2.1. Ten-point Gauss-Legendre quadrature 

Ten-point Gauss-Legendre quadrature (GL10) on the interval [ ]1,1−  is given by 

( ) ( )∫ ∑−
=

≈
1

1

10

1

.~

i
ii tfcdttf  
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Here, the ten nodes it
~

 are the roots of the Legendre polynomial ( )tP10  on the 

interval [ ],1,1−  and ic  are appropriate weights. On an arbitrary interval [ ],, ba  

GL10 is 

( ) ( ) ( )∫ ∑
=

−≈
b

a
i

ii tfcabdttf
10

1

.2  (3) 

We have used the symbol it  for the nodes on [ ]ba,  to differentiate from the 

nodes it
~  on [ ];1,1−  the relationship between these two sets of nodes is given by the 

linear map 

[( ) ].~
2
1 abtabt ii ++−=  (4) 

For the sake of reference, the nodes it
~  and weights ic  for GL10 are given in 

the appendix. 

The approximation error in GL10 on [ ]ba,  is 

( )( ) ( )[ ]∫ξ=∆
b

a
dttPf ,!20

2
10

20
10  (5) 

where ( ) ,, ba∈ξ  and t is determined from the map (4). 

2.2. Composite GL10 

Consider now the integral 

( )∫
B

A
dttf ,  (6) 

where [ ]BA,  is a relatively large interval. Composite GL10 quadrature (CGL10) on 

this interval involves subdividing [ ]BA,  into N subintervals (let us use [ ]ba,  as a 

generic symbol for each of these subintervals), and then implementing GL10, as in 

(3), on each [ ]., ba  The integral (6) is then approximated by the sum of these N 

quadratures. The virtue of composite quadrature is, first, that the order of the 
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quadrature formula is fixed (ten, in this case), and the quality of the approximation is 
dictated exclusively by the number of subintervals N; and second, the value of N 
necessary for a desired accuracy can often be determined a priori. 

The approximation error in CGL10 can be shown to be 

[ ]
( )( ) ,max 20

,
20

10CGL xfD
BA

∝∆  (7) 

where D is the length of each of the N subintervals into which [ ]BA,  is subdivided 

(see appendix). We also note here that, for 

( ) ,
1

2 








+π
= −xte

ttf  

( )( )tf 20  contains a term proportional to 

( ) ( )
,

1
1

39 +−xtet
 (8) 

in addition to many other terms of similar character (in the sense of being inversely 

proportional to a power of ).t  

3. Transformation on [ ]1,0  

When using CGL10 to approximate ( ) ,
2
1 xF  there is an important point to 

consider. From (7), we see that as ,0→D  .010CGL →∆  However, on every 

subinterval on [ ) ,1,1,0 <t  so that on these subintervals, the terms in ( )( )tf 20  

such as that in (8) can be very large. This means that D has to be made very small to 
offset the large value of the derivative in (7). This naturally results in the first 
subinterval [ ]b,0  being very small. On such subinterval, because the right endpoint 

tends to zero as D is made smaller, even the smallest value of ( )( )tf 20  becomes 

very large. The net result is that a very large number of subintervals is necessary to 
achieve even a moderate level of accuracy in the approximation of the integral. 
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The remedy lies in making a suitable change of variable for which ( )20f  does 

not diverge on [ ].1,0  Such a transformation is given by 

vdvdtvtvt 2,,2 ===  (9) 

so that 
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The twentieth derivative of ( )vg  contains no terms inversely proportional to 

powers of v, and so does not diverge on [ ].1,0  

Thus, we have 
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as the integral that we seek to approximate. 

4. Determining the Cutoff 

We deal with the upper limit of ∞ in (10) by replacing it with a finite limit, 

which we refer to as a cutoff. The cutoff ct  is easily determined by numerical 

experimentation. For our computational platform (Matlab R13, Windows XP Pro, 

Intel Celeron M, machine precision ,)10~ 16−  we found that 150=ct  gave results 

identical (to 15 digits) with those obtained for ,200=ct  for all [ ],100,100−∈x  

and so we have chosen a cutoff of 150=ct  for our algorithm. In the numerical 

calculations used to find this cutoff, we used 300=N  subintervals on each of 

[ ]1,0  and [ ]ct,1  having determined that 300 subintervals on each of these intervals 

gave results identical to those obtained with greater numbers of subintervals (again, 
to 15 digits), for all [ ].100,100−∈x  It must be noted that 300=N  on each 

interval [ ]1,0  and [ ]ct,1  is not optimal and, as we shall see later, smaller values of 

N can be tolerated, even for high levels of accuracy. However, in determining ,ct  
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we chose to err on the side of caution; hence, the large value of N used in this 
numerical experiment. We must acknowledge that the cutoff we have determined is 
dependent on our machine precision; a machine of higher precision might require a 
larger cutoff. Also, the range of x-values could affect the cutoff, but we have not 
investigated this effect outside the interval [ ].100,100−∈x  

5. Numerical Calculations 

Let us denote our CGL10 approximations to the two integrals in (10) by 

[ ] ,
1

22;;
1

0

2
1 2∫

+π
≈

−
dv

e

vNgxQ
xv

 

[ ] ,
1

2;;
1

2 ∫ +π
≈ −

ct

xt dt
e

tNfxQ  

( ) [ ] [ ] [ ],,;;;;;; 2121
2
1 NNfgxQNfxQNgxQx +≡+≈F  

where 1N  and 2N  denote the number of subintervals used in each approximation, 

and we have defined [ ]21,;; NNfgxQ +  as our approximation to ( ).
2
1 xF  So the 

approximations used to find the cutoff ct  previously are [ ]300;; gxQ  and 

[ ].300;; fxQ  We will take these approximations as the most accurate we can 

achieve on our platform (we consider them accurate to 15 places, as discussed in the 
previous section), and we will use them to measure the accuracy in approximations 
with fewer subintervals. Indeed, the relative error in such an approximation, for any 

[ ],100,100−∈x  is determined from 

( ) [ ] [ ]
[ ] .300,300;;

300,300;;,;;,; 21
21 fgxQ

fgxQNNfgxQNNxR +
+−+

=∆  (11) 

We have determined 1N  and 2N  for various upper bounds (tolerances) on 

[ ]
( ) ,,;max 21

100,100
NNxR

x
M ∆≡∆

−∈
 

and these values are shown in Table 1. 
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Table 1. Minimum values of 1N  and 2N  such that M∆  is less than the indicated 

tolerance (first and fourth column) for all [ ]100,100−∈x  

( )M∆10log  1N  2N  ( )M∆10log 1N  2N  

–2 1 6 –9 1 32 

–3 1 9 –10 1 40 

–4 1 13 –11 1 49 

–5 1 16 –12 1 60 

–6 1 19 –13 1 72 

–7 1 23 –14 2 87 

–8 1 27  

The values of 1N  and 2N  in this table are the minimum values such that 

( )M∆10log  is not greater than the corresponding value in the first and fourth 

columns. It is clear that only one or two subintervals are required for [ ],;; 1NgxQ  

and that [ ]2;; NfxQ  requires an increasing amount of subintervals for stricter 

tolerances, as expected. Of course, it is also clear that higher accuracy would require 

more subintervals, but we have not considered tolerances beyond 1410−  because we 

consider [ ]300,300;; fgxQ +  to be the best approximation we can achieve on our 

computational platform, and it is accurate to about 1610−  in relative error. We feel 

that to use [ ]300,300;; fgxQ +  to attempt to measure relative errors smaller than 

1410−  would be unreliable, because such measurement would most likely be 

contaminated by the error present in [ ].300,300;; fgxQ +  Nevertheless, we 

regard the data in Table 1 to be reliable for any machine with precision .10~ 16−  In 
Figure 1, we show the relative errors (11) for the selected approximations 
[ ],,;; 21 NNfgxQ +  as functions of x. 

In the introduction, we stated that the efficiency of the approximation, for high 
accuracy, is limited by the negative values of x. This is in evidence in the lower plots 
in Figure 1, where we see that the indicated values of 1N  and 2N  give errors for 

positive values of x that are much less than the errors for negative values of x. 
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We have also been able to measure the physical time taken to compute 
[ ],,;; 21 NNfgxQ +  for any value of x, on our platform. Times relative to that for 

a tolerance of 210−  are shown in Figure 2. The actual time required at this tolerance, 

i.e., to compute [ ]6,1;; fgxQ +  is 1.02ms. For a tolerance of ,10 14−  approximately 

80% more computing time is required. Of course, computing times vary from 
platform to platform, and are also dependent on the structure and compilation of 
code, and so we present this result only for the sake of academic interest. 

 

Figure 1. Relative error R∆  vs x, for selected values of [ ],, 21 NN  as indicated in 

the brackets. 

 

Figure 2. Relative computing times for indicated values of ( ).log10 M∆  The solid 

line is merely a visual guide. 
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5.1. Structure of the program 

Here we give a brief sketch of our program, indicating its vectorized nature.     
Say we require [ ]21, NN  nodes for the approximation, for a given x. Let ,iV  

1...,,2,1 Ni =  denote the row vector of nodes on subinterval i of [ ].1,0  Of course, 

there are ten elements in each .iV  The row vector 

[ ]121 NVVV≡V  

thus contains all the nodes necessary for composite quadrature on [ ],1,0  in 

increasing order (there are 110N  nodes in V ). Compute the row vector 

( ).VG g≡  

This is simply the function ( )vg  evaluated at each node in V. 

Now, let iW  denote the row vector of quadrature weights appropriate to 

subinterval i on [ ],1,0  and let 

[ ]121 NWWW≡W  

be the row vector with all quadrature weights relevant on [ ]1,0  (there are 110N  

weights in W). 

The scalar product 
WG ⋅  

gives the CGL10 approximation to the integral ( )∫
1

0
.dvvg  

For the interval [ ],,1 ct  we define analogous quantities: 2...,,2,1, NiTi =  is 

the row vector of nodes on subinterval i on [ ].,1 ct  This allows the construction of 

[ ],221 NTTT≡T  

which has 210N  elements, and the computation of 

( ).TF f≡  

Let iC  denote the row vector of quadrature weights appropriate to subinterval i 

on [ ],,1 ct  and let 

[ ]221 NCCC≡C  
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be the row vector with all 210N  quadrature weights relevant on [ ].,1 ct  Then the 
scalar product 

CF ⋅  

gives the CGL10 approximation to the integral ( )∫ ct dttf
1

.  

Of course, we then have 

( ) .
2
1 CFWG ⋅+⋅≈xF  

6. Similar Integrals 

Other Fermi-Dirac integrals of importance are those of order 2
1−  and .2

3  

Higher derivatives of the integrands in both of these integrals exhibit divergence on 
[ ) ,1,0  as seen with ( ).

2
1 xF  As before, this pathology can be cured using the change 

of variable (9), which gives 

( )
( )

,
1

11

1

21 1

0 12
1 2∫ ∫
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−−− +π
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+π
= dt

et
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e
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( ) ( )∫ ∫
∞

−− +π
+

+π
=

1

0 1

34

2
3 .

13
4

1

2
3

4
2 dt

e
tdv

e

vx xtxv
F  

Since these integrals are not relevant to our other work in photovoltaic 
simulation, we have not approximated them here. Nevertheless, we believe that 
CGL10 will be just as successful for these integrals as it has proved to be for 

( ).
2
1 xF  

7. Conclusion 

We have used composite ten-point Gauss-Legendre quadrature to approximate 

the Fermi-Dirac integral of order 2
1  for [ ].100,100−∈x  It was necessary to 

transform the integral to deal with a divergence on the interval [ ],1,0∈t  and we 

replaced the infinite upper limit in the integral with a finite cutoff. We have 
determined the minimum number of subintervals necessary for the composite 
quadrature algorithm to yield approximations of various accuracies. For the most 
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accurate approximation (a relative error of no more than )10 14−  only 89 

subintervals were necessary. 

We have not investigated the use of higher-order CGL quadrature. Perhaps 
composite twenty-point GL quadrature would require fewer subintervals than 
CGL10; indeed, a rudimentary test has indicated that composite three-point GL 
quadrature requires far more subintervals than CGL10 to achieve similar accuracy. It 
is not clear to us which is more desirable - one or two subintervals, each with many 
nodes, or many subintervals, each with a few nodes? Our investigation here, with 
CGL10, has been performed in an attempt to study the nature of the approximation 
with what we believe is something of a compromise - not too many subintervals, 
each with not too many nodes. Exactly what the optimal case is, though, must be the 
subject of a future study. 

Physical computing times have been measured, and indicate that the algorithm is 
fast, even for high accuracy. We acknowledge that our data in this regard is 
platform-dependent, but it is not unreasonable to assume that similar speed would be 
obtained on other modern platforms. Indeed, since our code is interpreted (we work 
in the Matlab environment), and not compiled, it may well be possible to develop an 
executable version of the algorithm, that is, in fact, much faster. 

8. Appendix 

8.1. Nodes and weights for GL10 

Table 2. Nodes it
~  and weights ic  for ten-point Gauss-Legendre quadrature on 

[ ].1,1−  The high precision shown is due to these values having being determined 

using computer algebra software with 32-place accuracy 
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8.2. Derivation of (7) 

From (5), the approximation error in GL10 on [ ]ba,  is 

( )( ) ( )[ ]∫ξ=∆
b

a
dttPf 2

10
20

10 !20  

( )( ) ( )∫ ∏
=

−ξ=
b

a
i

i dtttf
10
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2
20
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where the it  are the nodes on [ ]ba,  determined from (4). If we make the 

substitutions 

,11
abh −≡  

,shat +=  

,hat ii σ+=  

where [ ]11,0∈s  is a continuous variable, iσ  is an appropriate constant for each i, 

and h is the average length of the 11 subintervals into which [ ]ba,  is subdivided by 

the ten nodes ,it  we have 

( )( ) ( )∫ ∏
=

σ−
ξ
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1

2
2120

10 !20
i

i dsshf  

for the approximation error on [ ]., ba  If, in CGL10, the interval of integration 

[ ]BA,  is subdivided into N subintervals of equal length D, then the total 

approximation error on [ ]BA,  is 

( )( )
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= =
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and, since hD 11=  and ,ABND −=  we have 

( ) [ ]
( )( )

( ) ,!20

max

11

11

0

10

1

2

20
,

21

20
10CGL ∫ ∏

=

σ−−≤∆
i

i
BA dss

xf
DAB  

indicating the proportionality referred to in (7). 
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