
w
w

w
.p

ph
m

j.c
om

JP Jour. Algebra, Number Theory & Appl. 5(1) (2005), 147-161

:tionClassifica jectSub sMathematic 2000 11A07, 11D04.

Key words and phrases: Frobenius number.

Received November 9, 2004

 2005 Pushpa Publishing House

THE LINEAR DIOPHANTINE PROBLEM OF

FROBENIUS

JOSEPH BAK

Department of Mathematics, City College of New York

138th Street and Convent Avenue, New York, N. Y. 10031, U.S.A.

Abstract

If { }naaaS ...,,, 21=  is a set of relatively prime positive integers, it is

well known that any sufficiently large integer can be expressed as a

nonnegative integral combination of the elements of S. The Frobenius

problem consists of determining how large is sufficiently large. That is,

find the smallest possible integer ( )naaaL ...,,, 21  with the property

that any number greater than or equal to it can be expressed as a

nonnegative integral combination of ....,,, 21 naaa  We review two

classical approaches to the problem, and offer a third one. We then apply

this latter approach to obtain simplified proofs for several known results

and to obtain some new results.

1. Introduction

Suppose a and b are relatively prime positive integers. We will say

that an integer is representable by a and b if it can be expressed in the

form ,ybxa +  where x and y are nonnegative integers. It has been known

for at least a century, and probably much longer, that all sufficiently

large positive integers are representable by a and b. (Thus, a post-office

with only two different stamps can still give exact postage as long as the
stamps have relatively prime values and the postage exceeds a certain
minimum.) To be more precise, and for future reference, let



w
w

w
.p

ph
m

j.c
om

JOSEPH BAK148

( ) =bag ,  the largest integer not representable by a and b;

( ) ( ) =+= bagbaL ,1,  the smallest number such that all numbers

greater than or equal to it are representable;

( ) =baN ,  the total number of positive integers not representable by

a and b.

Then
( ) ( ) ( )11, −−= babaL (1)

and
( ) ( ) ( ) .211, −−= babaN (2)

It is difficult to identify the first known proof of (1). Many authors
have credited Sylvester, citing [16, p. 21]. In the cited article, however,
Sylvester simply poses the question of proving (2), and a solution is given
by W. J. Curran Sharp. Neither the question nor the solution makes any
reference to (1), in spite of the obvious connection between the two
formulae. Still, (1) has been known for some time. In fact, Frobenius
(1849-1917) repeatedly raised in his lectures the question of generalizing
the result to a collection of relatively prime positive integers naaa ...,,, 21

with 2>n  [3, p. 215]. This has come to be known as the linear

diophantine problem of Frobenius.

We will indicate two proofs of (1) in Sections 3 and 4. We begin,
however, by reviewing some of the classical results regarding the
Frobenius problem.

Suppose then that { } ,2,...,,, 21 >= naaaS n  represents a set of

relatively prime integers. As before, we will say that m is representable
by S if there exist nonnegative integers nxxx ...,,, 21  such that 11axm =

.22 nnaxax +++ L  Based on the known result for ,2=n  it is fairly easy

to prove that all sufficiently large integers are representable by S. The
Frobenius problem consists of finding ( ),SL  the smallest integer such

that all integers greater or equal to it are representable by S.

We will refer to ( )SL  as the Frobenius number, although some

authors use this term to refer to ( ) ( ) ,1−= SLSg  the greatest integer not

representable by S.



w
w

w
.p

ph
m

j.c
om

THE LINEAR DIOPHANTINE PROBLEM OF FROBENIUS 149

Note that if any element of S can be expressed as a nonnegative

integral combination of the other elements, its presence in S has no effect

on the Frobenius number ( ).SL  For that reason, we will assume that S is

independent in the following sense:

Definition. { }naaaS ...,,, 21=  is independent if no element of S

can be expressed as a nonnegative integral combination of the other

elements.

The Frobenius problem has not been completely solved, and the

available results suggest that no simple formula may be possible, even

for .3=n  Still, there have been many partial results.

Several authors ([5], [17]) obtained upper and/or lower bounds for

( ).SL  Still others ([6], [14]) devised efficient algorithms to determine

( )SL  for a given set S. Finally, explicit formulae have been obtained for

( )SL  under certain additional hypotheses. In the next section, we

consider Johnson’s approach, which yields both a general algorithm and

certain explicit formulae for .3=n  We then consider the approach of

Brauer and Shockley, which has led to some of the most general results

to date for arbitrary n. Each of the two approaches hinges on a

characterization for ( ).Sg  The remainder of the paper deals with the

implications of a third approach, which rests on an extremely simple

characterization for ( ).SL

2. Johnson’s Algorithm for 3=n

Before obtaining his algorithm for ( ),Sg  Johnson first proved the

following lemma (adapted to our notation) [9, p. 391].

Lemma 1. Suppose { }321 ,, aaaS =  is relatively prime and ( )32, aa

,d=  so that ,, 3322 dbadba ==  and ( ) .1, 32 =bb  Then

( ) ( ) ( ) .1,, 1321 adbbadgSg −+=

By applying the lemma three times (at most) one can reduce the

problem of finding ( )Sg  for any set of relatively prime integers to the

corresponding problem for a set of pairwise relatively prime integers.
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To find ( )Sg  for independent, pairwise relatively prime sets S,

Johnson focused on the following characterization of ( ).Sg

Proposition 1. With S as above, there are at most two positive

integers, x, not representable by S, but such that iax +  is representable

for ,1=i  2 and 3. Hence, if 1g  and 2g  are those two integers, ( ) =Sg

{ }.,max 21 gg

Johnson also presented the following algorithm to find 1g  and :2g

For each ,1=i  2 and 3, let iiaL  be the smallest multiple of ia  which

is a nonnegative integral combination of the other two elements of S.
Find the unique coefficients iji xL ,  and ikx  satisfying

,kikjijii axaxaL +=  for ( ) =ijk  a cyclic permutation of (123). (3)

Then 1g  and 2g  are given by

,; 32123211 aaaaxaLgaaaaxaLg jkjiikjkii −−−+=−−−+= (4)

for any value of i.

As an example, suppose { } { }.24,11,7,, 321 == aaaS  Then the matrix

of nonzero coefficients for the system of equations (3), written in
homogeneous form, is

7 11 24
− 5 1 1

1 − 5 2
4 4 − 3

Applying (4) with ( ) { } { +−+=== 35,424835max,max,1 21 ggSgi

} .414244 =−  Note that the same result could have been obtained using

2=i  or .3=i

Johnson also described an efficient algorithm for finding all the
coefficients in equations (3).

Finally, Johnson noted that the algorithm described in (3) and (4) can
be applied to obtain explicit formulae for ( )Sg  in certain special cases. In

particular, he showed that if { },,1, baaaS ++=  and if the unique
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representation of a in the form buukba <≤−= 0,  has ,1+≤ ku  then

( )
( )
( )[ ] ( ) ( )




>−−+++

≤−−−+
=

1if131

1if12

uabbaba

uaubk
Sg

[9, p. 398]. This improved a similar result of Roberts [13], obtained under
stronger hypotheses.

3. The Approach of Brauer and Shockley

In place of Johnson’s characterization for ( ),Sg  given in Proposition

1, Brauer and Shockley offered the following: As before, assume that

{ }naaaS ...,,, 21=  is a set of relatively prime positive integers.

Proposition 2. For each residue class w modulo 1a  there are

numbers representable by { }.1aS −  Denote the minimum for each w by

,wr  and let r be the maximum of these minima. Then ( ) 1arSg −=  [3, p.

217].

The proof of the proposition is almost immediate. Numbers in each

residue class ( )1mod aw  are representable by S if and only if they are

greater than or equal to .wr  Hence the largest nonrepresentable number

is .1ar −

Brauer and Shockley also proved the following generalization of
Lemma 1:

Lemma 2. Suppose { }naaaS ...,,, 21=  is a set of relatively prime

integers and { },...,,,, 321 ncacacaaT =  with c relatively prime to .1a

Then

( ) ( ) ( ) 11 acScgTg −+=      [3, p. 216]. (5)

As in Proposition 2, 1a  does not necessarily have to be the smallest

element of S, although it is often applied to that situation. Also, while the

lemma was actually stated for the case where ( ) ,1...,,,gcd 32 =naaa

this is not a necessary hypothesis.

Interestingly, although Brauer and Shockley proved the above result
without any reference to Proposition 2, it can be derived as a corollary of
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that proposition. For suppose that the set of values wr  representing the

smallest members of each residue class mod 1a  are given by linear

combinations of the form ( )....,,3,2;1...,,2,1, 1 niawax iiw =−=∑  Then

the corresponding values using elements of { }1aT −  would be the set of

linear combinations of the form .iiwacx∑  Thus ( ) ( )[ ] .11 aaSgcTg −+=

In a truly seminal article, Selmer [15] showed how Proposition 2 can
be applied to obtain elegant derivations of the Frobenius number under a
variety of hypotheses. The following three examples show the wide range
of these applications.

(i) The fundamental result of formula (1): ( ) ( ) ( )11, −−= babaL

can be proven by observing that the minimum representatives of each
nonzero residue class mod a, expressible as positive integral
combinations of b, are obviously given by ( ) .1...,,2, babb −  Hence

( ) ( ) ,1 abaSg −−=  and ( ) ( ) ( ).11, −−= babaL

(ii) Johnson’s formula for ( ),SL  for { },,1, baaaS ++=  can be

extended to obtain explicit formulae for more general sets of three
elements [15, p. 4]. In fact, Selmer’s method serves as the foundation for
a very elegant algorithm which determines ( ),SL  for all sets of three

elements, and also provides simple explicit formulae under additional
hypotheses [14, pp. 172-173].

(iii) Suppose { } { }....,,2,,...,,, 10 kdmadmadmaaaaaS k +++==

Then ( ) ( )[ ]( ) ( ) ( ).1121 −−+−+= adkamaSL  This result, due originally

to Lewin [11], generalized earlier results regarding arithmetic sequences.
We offer an alternative proof and a further generalization in Section 5.

4. A Uniquely Simple Characterization of ( )SL

While Proposition 2 offers a simple and fruitful characterization of
( ),Sg  the following characterization of ( )SL  is even more obvious, and

offers an additional approach in the pursuit of the Frobenius number.

We will say that a number m, representable by S, is reducible if
1−m  is also representable by S. Then the following proposition is

immediately obvious:
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Proposition 3. ( )SL  is the largest integer representable by S which is

not reducible.

Surprisingly, this elementary proposition affords both simplified
proofs and extensions of solutions to the Frobenius problem in many
cases. Examples of these are given in the next three sections. First,
however, we will show how Proposition 3 leads to a straightforward proof
of the basic formula (1). To that end, we will also use what may be called
a “descent algorithm”, and the following variation of ordinary
mathematical induction:

Lemma 3. Suppose a proposition ( )nP  is true for an infinite number

of positive integers n. We will denote this as ( ).∞P  Suppose, moreover,

that for ( ) ( ).1,0 −⇒> nPnPnn  Then ( )nP  is true for all integers

.0nn ≥

To prove formula (1), suppose a and b are relatively prime, and let
( )nP  denote the proposition that n is representable by a and b. ( )∞P  is

obviously true. By the Euclidean algorithm, there exist integers j and k
such that

.1=+ kbja

Since j and k cannot both be positive (nor both negative), it follows that
there exist positive integers r, s, t, and u such that

asbrsbra <<<<=− 0,0;1 (6)

and

.0,0;1 buatuatb <<<<=− (7)

Note that the double inequality for r implies the corresponding one for s
and the double inequality for t implies the one for u. With the given
restrictions, it is easy to see that ,,, tsr  and u are uniquely determined.

Finally, note that (6) and (7) are equivalent. For example, (6) implies that
( ) ( ) ,1=−−− basabr  giving the following reformulation of (7):

( ) ( ) ;1=−−− arbbsa   r and s as in (6). (8)

Identities (6) and (8) can be viewed as equations for “trading down”.

Suppose we think of a and b as the denominations of certain stamps.
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Then (6) shows that ra-stamps can be exchanged for sb-stamps with a net

value exactly one cent less. Similarly (8) shows that ( )bsa − -stamps can

be traded down one cent for ( ) arb − -stamps.

To complete the proof of (1), let ( ) ( ),110 −−= ban  and assume ( )nP

for some ,0nn >  i.e., assume

.0,; ≥+= yxybxan

If ( )1, −≥ nPrx  follows from (6):

( ) ( ) .1 bsyarxn ++−=−

Similarly, if ( )1, −−≥ nPsay  follows from (8):

( ) ( ) .1 bsayarbxn +−+−+=−

Moreover, since ,0nn >  either rx ≥  or .say −≥  Otherwise,

( ) ( ) .11 0nbaabsbrabsaarybxan =−−+−=−−+−≤+=

Thus, by Lemma 3, ( )nP  is true for all .0nn ≥  Finally, to show that

( ),,0 baLn =  we need to show that 10 −n  is not representable by a and

b. Assuming then that

ybxan +=− 10

and subtracting from the identity

( ) ( )bsaarn 110 −−+−=

would yield

( ) ( ) ,111 bysaaxr −−−+−−=

which is impossible since the coefficients in (6) and (8) are unique.

5. Almost Arithmetic Sequences and Arithmetic

Sequences of Residues

One of the first sets, with more than 2 elements, for which the
Frobenius number was determined, was a set of consecutive integers



w
w

w
.p

ph
m

j.c
om

THE LINEAR DIOPHANTINE PROBLEM OF FROBENIUS 155

[2, p. 301]. This result was later extended to arithmetic sequences [1, 13].
Finally, a formula for the Frobenius number was given for all sets of the

form { },...,,2,, kdmadmadmaaS +++=  denoted almost arithmetic

sequences ([10], [15]). Using Proposition 3, we obtain a very

straightforward proof of this result, along with further extensions.

Theorem 1. Suppose { } { ...,,2,,...,,, 2110 damdamaaaaS k ++==

},kdamk +  where all the variables are positive integers such that

( ) ,1,gcd =da  1−≤ ak  and .21 kmmm ≤≤≤ L

  I. If jkmm jk <  for all ,kj <  and if k divides ,1−a  then

( ) ( ) .11 +−−= akaaSL k (9)

II. (Lewin) If ,21 mmmm k ==== L

( ) ( )[ ]( ) ( ) ( ).1121 −−+−+= adkamaSL (10)

Note that the condition ( ) 1,gcd =da  is necessary to insure that S

forms a set of relatively prime integers. The second condition: 1−≤ ak

is necessary to assure that S is independent [15, p. 2]. If j divides k, the

first condition in Case I is also necessary to insure that ka  is not

superfluous. Otherwise, we could obtain ka  as ( ) ( ) a++ jdamjk j

nonnegative integral multiple of a.

In Case I, our methods yield a simplified method for finding ( )SL

even if k does not divide ,1−a  but the condition is necessary to obtain

the very compact formula (9). This will be discussed in the examples

following the proof. In Case II, S forms an almost arithmetic sequence.

Proof of Theorem 1. Since ( ) ,1, =da  there exists ,0, acc <<

such that ( ).mod1 acd ≡  Suppose .1+= eacd  Then ,jjeacjd +=  for

kj ...,,2,1=  and if ,jj cab =

.jjeaacmb jj ++=

Let { }....,,, 1 kbbaT =  Since jb  is exactly one more than a1 +−jb

multiple of a if ,1>j  and 1b  is one more than ( ) ,1 aecm +  the only
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irreducible elements of T are multiples of a. Hence, ( )TL  is a multiple of

a, and ( )Tg  is the largest number congruent to ( )aa mod1−  which is

not representable by T. It follows that ( ) aTgh +=  is the smallest

number congruent to ( )aa mod1−  which is representable by T. To find

h, note that { ( )},mod1min aabxbxh jjjj −≡∑|∑=  or

{ ( ) ( )}.mod11min aajxjxeaxmcah jjjj −≡∑|∑++∑=

We now consider our two cases.

Case I. If k divides ,1−a  then h is obtained by taking

( ) ,1 kaxk −=  and all other .0=jx  This follows since ≡∑ jjx

( )aa mod1−  implies

,1−≥∑ ajx j

and because of the conditions on the coefficients ,jm

( ) ( ) ( ) .1 kamjxkmxmkjxm kjkjkjj −≥∑≥∑≥∑

Hence
( ) ( ) ( ) .11 akacaakabTg kk −−=−−=

According to (5), then, ( ) ( ) ( )[ ] ( ) ,11 akaacacTgSg k −−=−−=  and

Case I is proven.

Case II. In this case, since all the coefficients jm  are equal, h is

obtained by taking ,1−=∑ ajx j  with jx∑  as small as possible. Since

,1 ka ≥−

,1,0,1 ≥<≤+=− qkrrqka

and h is found by taking ( )[ ],1 kaqxk −==  ( )0if1 >= rxr  and all

other .0=ix  The case 0=r  has already been covered in Case I, so we

may assume .1>r  Hence

( ) ( ) ,111 −+−++= aaeamaqch

( ) ( ) ( ) aacdaqcmahTg −−++=−= 11

and, according to Lemma 2,

( ) ( ) ( ) .11 aadaqmSg −−++=
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Note, then, that since ,0,1 >+=− rrqka

( )[ ] ( )[ ]kakaq 21 −=−=

which establishes (10) in a form which, according to (9), is also valid if

.0=r  That is, if ( )[ ] ,12,1 −=−=− qkaqka  and if all ,mmj =  both

(9) and (10) give ( ) ( ) ( ),11 −−+= admaqSL  so that (10) is valid in all

cases.

Example 1. By a direct application of (9), if { },84,56,41,13=S

( ) ( ) .32412844 =−=SL

Example 2. Let { }.93,76,45,14=S  Note that in this case, k does

not divide .1−a  Nevertheless, since 3=d  and ( ) ( ),14mod135 ≡  we

consider ( ) ( ) ( ){ }.935,765,455,14=T  Using our previous ideas, then,

( )TL  is a multiple of 14 and ( ) ,14−= hTg  where

( ) ( ){ }.13323233271614min =++|+++++= zyxzyxzyxh

h is obtained by taking 4=z  and ,1=x  so that

( ) ( ) ( ) ( ) .144559354 −+=Tg

Finally, by Lemma 2, ( ) ( ) ,1445934 −+=Sg  and ( ) .404=SL

Example 3. Suppose S is any independent triple of the form

{ },,, cba  where a and b are relatively prime, ,cba <<  and

( ).mod2 abc ≡  If a is odd, then formula (9) is applicable, and if a is even,

we can use an analogous argument to obtain

( )
( )

( )[ ]



+−−+

+−−
=

.even isif,121

odd isif,121

aaacb

aaac
SL

We now consider sets more closely related to geometric sequences.

6. A Direct Calculation of ( ),SL  for { }4,2,1, +++= aaaaS

Dulmage and Mendelsohn proved several interesting results
concerning the relationship between the exponent of a primitive graph
and the Frobenius number for the lengths of its circuits [4]. As an
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application, using graph-theoretic methods, they determined ( )SL  when

S is of the form { };,2,1, kaaaa +++  ,4=k  5, or 6. The results were

later proven by purely number-theoretic arguments [15, pp. 7-9]. Again,
the method of Proposition 3 offers a uniquely simple proof. We include

the details for ,4=k  although analogous proofs can also be given for

5=k  and .6=k

Theorem 2 (Dulmage and Mendelsohn). If { ,2,1, ++= aaaS

},4+a  then

( ) [ ] ( ) ( )[ ] ( )[ ].4224114 +++++= aaaaSL (11)

Proof. Assume that n is representable by S and irreducible. Then, if

( ) ( ) ( )421 4321 ++++++= acacacacn (12)

it follows that

 (i) ,032 == cc  and

(ii) either 01 =c  or .04 =c

The latter derives from the observation that ( )4++ aa  can be

exchanged down for ( ) ( ).21 +++ aa  Hence n is either a multiple of a or

a multiple of ( ),4+a  and ( ) { },,max 21 nnSL =  where 1n  is the largest

irreducible multiple of a, and 2n  is the largest irreducible multiple of

( ).4+a

As in the previous section, 1n  and 2n  can be determined as

,3,1 2211 −−=+−= amnamn

where

1m  is the smallest representable number congruent to ( );mod1 aa −

2m  is the smallest representable number congruent to

( )( ).4mod3 ++ aa

According to (12), then,

( ) ( ) ( ){ }aaccccccacccm mod14242min 4324324321 −≡++|+++++=
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and, setting ( ) ,44 −+= aa  etc.,

{( ) ( ) ( ) |++−+++= 3213212 2344min cccacccm

( )}.4mod1234 321 +≡++ accc

Since all the coefficients ic  must be nonnegative, 1m  is found by

solving ( ),142 432 −=++ accc  with 4c  as large as possible. Similarly,

2m  is found by solving ( ),5234 321 +=++ accc  with 1c  as large as

possible. The results, for the different possible values of a mod 4 are
summarized in the chart below:

a
mod 4

1m  1n

11 +−= am
2m 2n

32 −−= am

( )SL

{ }21,max nn=

0 ( ) ( )21 +++ aa

 ( )( )( )444 +−+ aa

( ) 44+aa ( ) ( )14 ++ aaa

( )2++ a

( ) 44 aa + ( ) 44+aa

1 ( )( )( )441 +− aa ( ) 41−aa ( )( )aa 43+

( )2++ a

( )( ) 414 −+ aa ( )( ) 414 −+ aa

2 ( )1+a

 ( )( )( )442 +−+ aa

( ) 42+aa ( )( )aa 42+

( )1++ a

( )( ) 424 −+ aa ( ) 42+aa

3 ( )2+a

 ( )( )( )443 +−+ aa

( ) 41+aa ( )( )aa 45+ ( )( ) 434 −+ aa ( ) 41+aa

The expression for ( )SL  in (11) derives from graph-theoretic

considerations. Our formulae highlight the fact that ( )SL  is always an

integral multiple of either a or 4+a  (or both). A simple check shows,

however, that the two expressions are equal in all four cases, and the
proof is complete.

7. Sets of the form { } { }jjama 2+U  and of the form { } { }daa j2+U

Theorem 3. Let { },2...,,2,1, 10
k

kamamamaS +++=  and assume

that
1110 2 −− <≤+++ jjj mmmmm L   for ....,,1 kj = (13)

Then ( ) ( ) ,1100 ambmbmbSL kk+++= L  where [( ) ]k
k ab 21−=  and

021 bbb kk L−−  is the binary representation of ( ).2mod1 ka −
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Proof. Since ( ) ,12212 1 ++++= −jj L  it follows from the first

inequality in (13) that every element of S, other than a, is reducible.

Hence ( )SL  must be a multiple of a. It follows that

( ) ,1+−= amSL (14)

where { ( ) },122min −=∑|+∑= acamcm j
j

j
jj  or { +∑= amcm jjmin

}.121 −=∑|− aca j
j  According to the second inequality in (13), m is

found by taking the coefficients ,jc  for large j, as big as possible. Hence

=kc  ( )[ ]kabk 1−=  and jj bc =  for .kj <  According to (14), then, the

proof is complete.

Corollary. Let { },2...,,2,, dadadaaS k+++=  with ( ) .1,gcd =da

If ,kad ≥  then ( ) ( ) ( ) ,11 jbadaSL ∑+−−=  with jb  defined as above.

Proof. As before, choose c so that ( ),mod1 acd ≡  and assume =cd

.1+ea  Then, ( ) ( ) .222 jjj aecdac ++=+  Let .2 ecn j
j +=  Then <jn

12 −jn  and ( ) ( ) ( ) .11110 ckecjennnn jj −−≥−−=+++− −L  Since =ea

( ).1,1 acadcecd −=−  Hence if ,1, −≥≥ kcekad  and ( +≥ 0nnj

).11 −++ jnn L  According to Theorem 2, then, if

{ ( ) ( ) ( )},2...,,2,, dacdacdacaT k+++=

( ) ( ) [ ( )]aecbanbnbnbTL j
jkk 21100 +∑=+++= L

( ) ( ) ( ) ,11 cabcda j∑+−−=

( ) ( ) ( ) ( )[ ] ( ) ( ) ,1111 abadaacTLcSg j∑+−−=−−−=  and

( ) ( ) ( ) ( ) .11 abdaSL j∑+−−=

Example 1. If { },157,87,52,17=S  then a direct application of the

Corollary shows ( ) ( ) ( ) .6121743416 =+=SL

Example 2. Let { } { ( ) ( ) ,31411,1144,14429,157,57,14 ++==S

( ) }.91430 +  Then, arguing as in the proof of Theorem 3, ( ) 05714 cSg =+

,429157 21 cc ++  where 01213 ccc=  (base 3), and ( ) .630=SL
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