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THE LINEAR DIOPHANTINE PROBLEM OF
FROBENIUS

JOSEPH BAK
Department of Mathematics, City College of New York
138th Street and Convent Avenue, New York, N. Y. 10031, U.S.A.

Abstract

If S ={ay, ag, ..., a,} is a set of relatively prime positive integers, it is

well known that any sufficiently large integer can be expressed as a
nonnegative integral combination of the elements of S. The Frobenius
problem consists of determining how large is sufficiently large. That is,

find the smallest possible integer L(aq, ag, ..., a;) with the property

that any number greater than or equal to it can be expressed as a

nonnegative integral combination of ay, ag, ..., a,. We review two

classical approaches to the problem, and offer a third one. We then apply
this latter approach to obtain simplified proofs for several known results
and to obtain some new results.

1. Introduction

Suppose a and b are relatively prime positive integers. We will say
that an integer is representable by a and b if it can be expressed in the

form xa + yb, where x and y are nonnegative integers. It has been known

for at least a century, and probably much longer, that all sufficiently
large positive integers are representable by a and b. (Thus, a post-office
with only two different stamps can still give exact postage as long as the
stamps have relatively prime values and the postage exceeds a certain

minimum.) To be more precise, and for future reference, let
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g(a, b) = the largest integer not representable by a and b;

L(a, b) =1+ g(a, b) = the smallest number such that all numbers

greater than or equal to it are representable;

N(a, b) = the total number of positive integers not representable by
a and b.
Then
L(a, b) = (a-1)(b-1) (1)
and

N(a, b) = (@ —1)(b - 1)/2. @)

It is difficult to identify the first known proof of (1). Many authors
have credited Sylvester, citing [16, p. 21]. In the cited article, however,
Sylvester simply poses the question of proving (2), and a solution is given
by W. J. Curran Sharp. Neither the question nor the solution makes any
reference to (1), in spite of the obvious connection between the two
formulae. Still, (1) has been known for some time. In fact, Frobenius
(1849-1917) repeatedly raised in his lectures the question of generalizing
the result to a collection of relatively prime positive integers ay, ag, ..., @,
with n > 2 [3, p. 215]. This has come to be known as the linear
diophantine problem of Frobenius.

We will indicate two proofs of (1) in Sections 3 and 4. We begin,
however, by reviewing some of the classical results regarding the
Frobenius problem.

Suppose then that S ={q;, a9, ..., a,}, n > 2, represents a set of

relatively prime integers. As before, we will say that m is representable

by S if there exist nonnegative integers x1, x9, ..., X, such that m = x;0;
+ X9Q9 + - + x,a,. Based on the known result for n = 2, it is fairly easy

to prove that all sufficiently large integers are representable by S. The

Frobenius problem consists of finding L(S), the smallest integer such
that all integers greater or equal to it are representable by S.

We will refer to L(S) as the Frobenius number, although some
authors use this term to refer to g(S) = L(S) — 1, the greatest integer not
representable by S.
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Note that if any element of S can be expressed as a nonnegative
integral combination of the other elements, its presence in S has no effect

on the Frobenius number L(S). For that reason, we will assume that S is

independent in the following sense:

Definition. S = {a, ag, ..., a,} is independent if no element of S
can be expressed as a nonnegative integral combination of the other

elements.

The Frobenius problem has not been completely solved, and the
available results suggest that no simple formula may be possible, even

for n = 3. Still, there have been many partial results.

Several authors ([5], [17]) obtained upper and/or lower bounds for
L(S). Still others ([6], [14]) devised efficient algorithms to determine

L(S) for a given set S. Finally, explicit formulae have been obtained for
L(S) under certain additional hypotheses. In the next section, we

consider Johnson’s approach, which yields both a general algorithm and
certain explicit formulae for n = 3. We then consider the approach of
Brauer and Shockley, which has led to some of the most general results
to date for arbitrary n. Each of the two approaches hinges on a

characterization for g(S). The remainder of the paper deals with the

implications of a third approach, which rests on an extremely simple

characterization for L(S).

2. Johnson’s Algorithm for n = 3

Before obtaining his algorithm for g(S), Johnson first proved the
following lemma (adapted to our notation) [9, p. 391].
Lemma 1. Suppose S = {a;, a9, a3} is relatively prime and (ay, as)

= d, so that ay = dby, ag = dbs, and (by, b3) = 1. Then

g(8) = dg(ay, by, b3) + (d - 1)a;.

By applying the lemma three times (at most) one can reduce the
problem of finding g(S) for any set of relatively prime integers to the

corresponding problem for a set of pairwise relatively prime integers.
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To find g(S) for independent, pairwise relatively prime sets S,

Johnson focused on the following characterization of g(S).

Proposition 1. With S as above, there are at most two positive
integers, x, not representable by S, but such that x + a; is representable

for i =1, 2 and 3. Hence, if g, and gy are those two integers, g(S) =
max{gy, gz

Johnson also presented the following algorithm to find g; and go:

For each i =1, 2 and 3, let L;a; be the smallest multiple of a; which

1s a nonnegative integral combination of the other two elements of S.
Find the unique coefficients L;, x;; and x;;, satisfying

Lia; = xjaj + x;pay, for (ijk) = a cyclic permutation of (123). (3)

Then g; and g9 are given by
& = Lia; + xjpap, —ap —ag —ag; &9 = Lia; + xpja; —ay —ag — as, 4)
for any value of i.

As an example, suppose S = {a;, a9, ag} = {7, 11, 24}. Then the matrix

of nonzero coefficients for the system of equations (3), written in

homogeneous form, is

7 11 24
-5 1 1
1 -5 2
4 4 -3

Applying (4) with i =1, g(S) = max{g;, g9} = max{35 + 48 — 42, 35 +
44 — 42} = 41. Note that the same result could have been obtained using
i=2ori=3.

Johnson also described an efficient algorithm for finding all the
coefficients in equations (3).

Finally, Johnson noted that the algorithm described in (3) and (4) can
be applied to obtain explicit formulae for g(S) in certain special cases. In

particular, he showed that if S ={a, a +1, a +b}, and if the unique
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representation of a in the form ¢ = kb —u, 0 < u < b has u < k +1, then
(S) = (F+b-2-u)a-1 ifu<i
@a+1)bl(a+b)+(B-3)a-1 if u>1

[9, p. 398]. This improved a similar result of Roberts [13], obtained under
stronger hypotheses.

3. The Approach of Brauer and Shockley

In place of Johnson’s characterization for g(S), given in Proposition

1, Brauer and Shockley offered the following: As before, assume that

S ={ay, ag, ..., a,} is a set of relatively prime positive integers.

Proposition 2. For each residue class w modulo a; there are
numbers representable by S —{a;}. Denote the minimum for each w by
Iy, and let r be the maximum of these minima. Then g(S)=r—a; [3, p.
217].

The proof of the proposition is almost immediate. Numbers in each

residue class w(mod a;) are representable by S if and only if they are
greater than or equal to r,,. Hence the largest nonrepresentable number

is r—ay.

Brauer and Shockley also proved the following generalization of

Lemma 1:

Lemma 2. Suppose S = {a1, ag, ..., a,} is a set of relatively prime
integers and T = {a;, cas, cas, ..., ca,}, with c relatively prime to a;.
Then

8(T)=cg(S)+(c-1ay [3, p.216]. (5)
As in Proposition 2, a; does not necessarily have to be the smallest

element of S, although it is often applied to that situation. Also, while the

lemma was actually stated for the case where ged(ag, as, ..., a,) =1,

this is not a necessary hypothesis.

Interestingly, although Brauer and Shockley proved the above result

without any reference to Proposition 2, it can be derived as a corollary of
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that proposition. For suppose that the set of values r, representing the
smallest members of each residue class mod a; are given by linear
combinations of the form ¥ x;,a;, w=1,2,...,a; -1;i =2, 3, .., n). Then
the corresponding values using elements of 7' — {a;} would be the set of
linear combinations of the form ¥ cx;,a;. Thus g(T') = ¢[g(S) + a;] — a;.
In a truly seminal article, Selmer [15] showed how Proposition 2 can
be applied to obtain elegant derivations of the Frobenius number under a

variety of hypotheses. The following three examples show the wide range
of these applications.

(i) The fundamental result of formula (1): L(a, b) = (a -1)(b 1)

can be proven by observing that the minimum representatives of each
nonzero residue class mod a, expressible as positive integral
combinations of b, are obviously given by b, 2b, ..., (a —1)b. Hence

g(S)=(a-1)b-a, and L(a, b) = (a -1)(b - 1).
(i1) Johnson’s formula for L(S), for S ={a, a +1, a + b}, can be

extended to obtain explicit formulae for more general sets of three
elements [15, p. 4]. In fact, Selmer’s method serves as the foundation for
a very elegant algorithm which determines L(S), for all sets of three

elements, and also provides simple explicit formulae under additional
hypotheses [14, pp. 172-173].

(i) Suppose S = {ay, a;, ..., a;} = {a, ma +d, ma + 2d, ..., ma + kd}.
Then L(S) = ma(l + [(a — 2)/k]) + (d —1)(a — 1). This result, due originally

to Lewin [11], generalized earlier results regarding arithmetic sequences.
We offer an alternative proof and a further generalization in Section 5.

4. A Uniquely Simple Characterization of L(S)

While Proposition 2 offers a simple and fruitful characterization of
2(S), the following characterization of L(S) is even more obvious, and

offers an additional approach in the pursuit of the Frobenius number.
We will say that a number m, representable by S, is reducible if

m —1 1s also representable by S. Then the following proposition is

immediately obvious:
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Proposition 3. L(S) is the largest integer representable by S which is
not reducible.

Surprisingly, this elementary proposition affords both simplified
proofs and extensions of solutions to the Frobenius problem in many
cases. Examples of these are given in the next three sections. First,
however, we will show how Proposition 3 leads to a straightforward proof
of the basic formula (1). To that end, we will also use what may be called
a “descent algorithm”, and the following variation of ordinary
mathematical induction:

Lemma 3. Suppose a proposition P(n) is true for an infinite number
of positive integers n. We will denote this as P(»). Suppose, moreover,
that for n > ng, P(n) = P(n—1). Then P(n) is true for all integers
n = ng.

To prove formula (1), suppose a and b are relatively prime, and let
P(n) denote the proposition that n is representable by a and b. P(») is

obviously true. By the Euclidean algorithm, there exist integers j and &
such that

ja+ kb =1.
Since j and k cannot both be positive (nor both negative), it follows that
there exist positive integers r, s, £, and u such that
ra-sb=1, 0<r<b0<s<a (6)
and
tb—ua =1, 0<it<a, 0<u<x<hb. )
Note that the double inequality for r implies the corresponding one for s

and the double inequality for ¢ implies the one for u. With the given
restrictions, it is easy to see that r, s, ¢, and u are uniquely determined.

Finally, note that (6) and (7) are equivalent. For example, (6) implies that
(r-b)a - (s —a)b =1, giving the following reformulation of (7):
(a-—s)b—(b-r)a =1; rands asin (6). (8)

Identities (6) and (8) can be viewed as equations for “trading down”.

Suppose we think of ¢ and b as the denominations of certain stamps.
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Then (6) shows that ra-stamps can be exchanged for sb-stamps with a net
value exactly one cent less. Similarly (8) shows that (a — s)b -stamps can

be traded down one cent for (b — r)a -stamps.

To complete the proof of (1), let ng = (@ —1)(b — 1), and assume P(n)

for some n > ng, i.e., assume
n=uxa+yb, x,y>0.
If x > r, P(n —1) follows from (6):
n-1=(x-r)a+(y+s)b
Similarly, if y > a — s, P(n — 1) follows from (8):
n-1=(x+b-r)a+(y-a+s)b
Moreover, since n > ng, either x > r or y > a —s. Otherwise,
n=xa+yb<(r-l)a+(a-s-1)b=ra-sb+ab—a—->b=ny.

Thus, by Lemma 3, P(n) is true for all n > ny. Finally, to show that
ng = L(a, b), we need to show that ny —1 is not representable by a and
b. Assuming then that

ng —1=xa+ yb

and subtracting from the identity
ng=r-1a+(a-s-1)b
would yield
l=(r-1-x)a+(a-s-1-y)b,

which is impossible since the coefficients in (6) and (8) are unique.

5. Almost Arithmetic Sequences and Arithmetic
Sequences of Residues

One of the first sets, with more than 2 elements, for which the

Frobenius number was determined, was a set of consecutive integers
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[2, p. 301]. This result was later extended to arithmetic sequences [1, 13].
Finally, a formula for the Frobenius number was given for all sets of the

form S = {a, ma +d, ma + 2d, ..., ma + kd}, denoted almost arithmetic
sequences ([10], [15]). Using Proposition 3, we obtain a very
straightforward proof of this result, along with further extensions.
Theorem 1. Suppose S = {ag, a1, ..., a;.} = {a, ma + d, mga + 2d, ...,
mypa + kd}, where all the variables are positive integers such that

ged(a,d)=1, k<a-1and m; <mg <+ < my,

L If my,/m; < k/j forall j <k, and if k divides a -1, then

L(S) = ajpla-1)/k—a +1. 9)
II. (Lewin) If m; = mg = --- = my, = m,
L(S) = ma(l + [(a - 2)/k]) + (d = 1)(a - 1). (10)

Note that the condition gcd(a, d) =1 is necessary to insure that S

forms a set of relatively prime integers. The second condition: £ < a -1
is necessary to assure that S is independent [15, p. 2]. If j divides k, the

first condition in Case I is also necessary to insure that a; is not
superfluous. Otherwise, we could obtain a, as (k/j)(mja+ jd)+a

nonnegative integral multiple of a.

In Case I, our methods yield a simplified method for finding L(S)
even if &k does not divide a —1, but the condition is necessary to obtain

the very compact formula (9). This will be discussed in the examples

following the proof. In Case II, S forms an almost arithmetic sequence.
Proof of Theorem 1. Since (a, d) =1, there exists ¢, 0 < c¢ < a,
such that c¢d =1(mod a). Suppose cd = ea +1. Then cjd = jea + j, for

j=12,.., k andif bj = caj,

b

;= cmja+ jea + j.

Let T = {a, by, ..., by}. Since b; is exactly one more than b;_; +a

multiple of a if j > 1, and b; is one more than (c¢cm; +e)a, the only
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irreducible elements of 7' are multiples of a. Hence, L(T') is a multiple of
a, and g(T) is the largest number congruent to a —1(mod a) which is
not representable by 7. It follows that h = g(T)+ a is the smallest
number congruent to a —1(mod a) which is representable by 7. To find
h, note that h = min{Xx;b; | Xx;b; = a —1(mod a)}, or

h = minjca Xmjx; + (ea +1) X jx; | X jx; = a —1(mod a)}.

We now consider our two cases.

Case I. If £ divides a-1, then h 1is obtained by taking
xp = (a-1)/k, and all other x; =0. This follows since Xjx; =
a —1(mod a) implies

Z]xj > a— 1,
and because of the conditions on the coefficients m;,

Ymjxj > X(j/R)ympx; > (my, [R) Zjxj > my(a —1)/E.

Hence
g(T)="by(a-1)/k-a=cay(a-1)/k-a.

According to (5), then, g(S)=[g(T)-(c—1)al/c = aj(a —1)/k —a, and
Case I is proven.

Case II. In this case, since all the coefficients m j are equal, h 1s
obtained by taking Xjx; = a -1, with 2x; as small as possible. Since
a-12k,

a-1l=qk+r, 0<r<k,qz=1,
and A is found by taking x, = ¢ = [(a =1)/k], x, =1 (if r > 0) and all
other x; = 0. The case r = 0 has already been covered in Case I, so we
may assume r > 1. Hence
h=clg+1)ma+eala-1)+a-1,
gT)=h-a=cm(@+1)a+cdla-1)-a
and, according to Lemma 2,

g(S)=m(qg+1)a+d(a-1)-a.
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Note, then, that since a -1 =qk +r,r >0,
q = [(@ -1)/k] = [(a - 2)/k]
which establishes (10) in a form which, according to (9), is also valid if
r =0. That is, if a -1 = gk, [(a - 2)/k] = ¢ -1, and if all m; = m, both
(9) and (10) give L(S) = maq + (d —1)(a — 1), so that (10) is valid in all
cases.

Example 1. By a direct application of (9), if S = {13, 41, 56, 84},
L(S) = 4(84) - 12 = 324.

Example 2. Let S = {14, 45, 76, 93}. Note that in this case, k does
not divide a —1. Nevertheless, since d = 3 and 5(3) = 1(mod14), we
consider T = {14, 5(45), 5(76), 5(93)}. Using our previous ideas, then,
L(T) is a multiple of 14 and g(T') = h — 14, where

h = min{14(16x + 27y + 33z) + (x + 2y + 3z)|x + 2y + 3z = 13}.
h is obtained by taking z = 4 and x = 1, so that
g(T) = 4(5)(93) + 5(45) — 14.
Finally, by Lemma 2, g(S) = 4(93) + 45 - 14, and L(S) = 404.

Example 3. Suppose S is any independent triple of the form
{a, b, ¢}, where a and b are relatively prime, a <b<c¢, and
¢ = 2b(mod a). If a is odd, then formula (9) is applicable, and if a is even,
we can use an analogous argument to obtain
cla-1)/2-a+1, if @ isodd
)= {1

b+cl(a-1)/2]-a+1, if a iseven.

We now consider sets more closely related to geometric sequences.

6. A Direct Calculation of L(S), for S = {a, a+1, a + 2, a + 4}

Dulmage and Mendelsohn proved several interesting results
concerning the relationship between the exponent of a primitive graph
and the Frobenius number for the lengths of its circuits [4]. As an
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application, using graph-theoretic methods, they determined L(S) when
S is of the form {a, a +1, a +2, a + k}; k =4, 5, or 6. The results were

later proven by purely number-theoretic arguments [15, pp. 7-9]. Again,
the method of Proposition 3 offers a uniquely simple proof. We include

the details for & = 4, although analogous proofs can also be given for
k=5 and k = 6.

Theorem 2 (Dulmage and Mendelsohn). If S ={a, a+1,a+2,
a + 4}, then
L(S) = [a/4](a + 1) + [(a + 1)/4] + 2[(a + 2)/4]. (11)
Proof. Assume that n is representable by S and irreducible. Then, if
n=ca+cyla+1)+cg(a+2)+cyla+4) (12)
it follows that

(1) ¢g =c3 =0, and

(i1) either ¢; = 0 or ¢4 = 0.

The latter derives from the observation that a + (a +4) can be
exchanged down for (a + 1) + (a + 2). Hence n is either a multiple of a or
a multiple of (a +4), and L(S) = max{n;, ny}, where n; is the largest
irreducible multiple of a, and ng is the largest irreducible multiple of
(a+ 4).

As in the previous section, n; and ny can be determined as

n=m —a+l, ng=mg—-a-3,
where

m, is the smallest representable number congruent to a — 1 (mod a);

mg is the smallest representable number congruent to

a+3(mod (a +4)).
According to (12), then,

my = min{(cy + cg + ¢4)a + (cg + 2c3 + 4cy)|cg + 2¢3 + 4¢4 = (@ —1)mod a}
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and, setting a = (a + 4) — 4, etc.,
mg = min{(c; + ¢y + cg)(a +4) — (4¢; + 3¢y + 2¢3)|
4¢; + 3cg + 2¢3 = 1mod (a + 4)}.

Since all the coefficients ¢; must be nonnegative, m; is found by
solving cg + 2¢3 + 4¢4 = (a —1), with ¢, as large as possible. Similarly,
mq is found by solving 4c¢; + 3¢y + 2¢3 = (@ +5), with ¢; as large as

possible. The results, for the different possible values of a mod 4 are
summarized in the chart below:

a m n mg ng L(S)
mod 4 =m -a+l =mg —a-3 | =max{n,ne}
0 [(a+1)+(a+2) ala+4)/4 |(a/4)a+(a+1) (a+4)a/4 ala +4)/4

+((a-4)/4)(a+4) +(a+2)
1 |((a-1)/4)(a+4) ala-1)/4 |((a+3)/4)a (a+4)(a-1)/4 [(e+4)(a-1)/4
+(a+2)
2 (a+1) ala+2)/4 |(a+2)/4)a (a+4)(a-2)/4 ala +2)/4
+((@-2)/4)(a+4) +(a+1)
3 |(a+2) ala+1)/4 |((a+5)/4)a (a+4)(a-3)/4 ala+1)/4
+((@a-3)/4)(a+4)

The expression for L(S) in (11) derives from graph-theoretic
considerations. Our formulae highlight the fact that L(S) is always an

integral multiple of either a or a + 4 (or both). A simple check shows,
however, that the two expressions are equal in all four cases, and the
proof is complete.

7. Sets of the form {a} U {m;ja + 2/} and of the form {a} U {a + 2’ d}

Theorem 3. Let S = {a, mga +1, mya + 2, ..., mpa + 2k}, and assume

that
mo +my +--+mjy <mj <2mjy for j=1,.., k 13)

Then L(S) = (bgmo + bymy + -+ + bymy)a, where by, = [(a —1)/2%] and

bj,_1by,_o -+ by is the binary representation of a —1(mod 2).
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Proof. Since 2/ = T+2+-+ 2j_1) +1, it follows from the first

inequality in (13) that every element of S, other than a, is reducible.
Hence L(S) must be a multiple of a. It follows that

LS)=m-a+1, (14)
where m = min{Xc;(m;a + 2j)|ch2j =a-1}, or m=min{Xc;mja +
a —I\chZj = a -1}. According to the second inequality in (13), m is
found by taking the coefficients c;, for large j, as big as possible. Hence

¢, = by =[(a-1)/k] and c¢; = b; for j < k. According to (14), then, the

proof is complete.
Corollary. Let S = {a, a +d, a+2d, ..., a + 2"d}, with ged(a, d) = 1.
If d/a > k, then L(S) = (a —1)(d —1) + a £bj, with b; defined as above.
Proof. As before, choose ¢ so that c¢d =1(mod @), and assume cd =

.= c+2'e. Then n; <

ea +1. Then, c(a+2/d) = (c+2/e)a + 2/. Let n; i

2n;_; and nj —(ng +ny +--+nj_y)=e~(j-1)c>e~(k-1)c. Since ea =
cd -1, e/c = d/a —1/(ac). Hence if d/a > k, e/c > k-1, and n; > (ng +

ny +---+nj_;). According to Theorem 2, then, if
T ={a, c(a +d), c(a + 2d), ..., c(a + 2"d)},
L(T) = (byng + bymy + -+ bymy)a = [Xb;(c + 2 e)a
= (a~1)(cd ~1)+(Xb;)ca,
g(S) = (1/e)[L(T) -1~ (c - 1)a] = (@ - 1)d — a + (L b;j)a, and
L(S) = (a-1)(d 1)+ (Tb;)a.

Example 1. If S = {17, 52, 87,157}, then a direct application of the
Corollary shows L(S)=16(34)+ 4(17) = 612.

Example 2. Let S = {14, 57, 157, 429} = {14, 4(14) + 1, 11(14) + 3,
30(14) + 9}. Then, arguing as in the proof of Theorem 3, g(S) + 14 = 57¢,
+157¢; + 429¢9, where 13 = cgcicg (base 3), and L(S) = 630.
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