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ON CHEBYSHEYV VARIETIES, I: INTEGRAL POINTS

FUMIO HAZAMA
Department of Natural Sciences, College of Science and Engineering

Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan

Abstract

Two families of determinantal varieties V,,, Wy, n > 1, defined over Q,
are introduced and their integral points V,,(Z), W,,(Z) are determined

completely.
1. Introduction

The main purpose of this paper is to introduce two families of

determinantal varieties V,,, W, n 2 1, defined over Q and to determine
the sets V,(Z), W,,(Z) of their integral points completely. As a result we
will see that for any n, the whole V, (Z) (resp. W,(Z)) is contained in a

finite union of linear subvarieties of V), (resp. W,). Our result also

enables us to obtain a complete list of the n-tuples (ay, ..., a,,) of integers
such that the continued fraction a; — 1 1 vanishes.
a2 —_— e a B L
n-1 a,

Originally, these varieties arise in the course of our study of
generalized Chebyshev polynomials [1]. Moreover the diagonal

specialization of the defining equation of V,, (resp. W,)) is essentially

equal to the Chebyshev polynomial of the second (resp. the first) kind (see
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Proposition 2.7 and Proposition 4.4). For this reason we may be entitled
to call them Chebyshev varieties. In view of the fact that there are not so
many examples of higher-dimensional varieties defined over Q for which
the set of integral points is determined completely, the study in this

paper may be of some interest.

The plan of this paper is as follows. In Section 2 we give a definition
of Chebyshev variety of the second kind. The defining equation satisfies
quite a few identities. We restrict our attention on, and prove a part of
those identities which play some roles in our determination of their
integral points. In Section 3, we introduce three families of morphisms
between Chebyshev varieties of the second kind. They enable us to
construct any integral points on a Chebyshev variety from those on
lower-dimensional ones. Thus they provide us with an inductive
procedure which produces all integral points on the Chebyshev varieties

(Theorem 3.5), as well as a recursive procedure which decide whether a
point of Z" lies on V,, or not (Theorem 3.7). Section 4 is devoted to the
investigation of the Chebyshev varieties of the first kind W,,, and gives a

complete description of the sets of the integral points on them.

2. Polynomial Identities for the Defining Equations

For any n independent variables x;, %9, ..., x,, let
x -1 0 0 0
1 oxy -1 0 0
0 -1 x5 . 0 0
U(xl,xz,... ,xn)= . . . . - . s
0 0 0 L oxyq -1
o 0 0 - -1 x,
and let u(x, x9, ..., x,) = det U(xy, x9, ..., x,). One of the main

purposes of this article is to determine the set of integral points of the
variety V, = {u(x, x9, ..., x,) = 0} = A", which we call Chebyshev

variety of the second kind. In this preliminary section we derive some

polynomial identities which play important roles in the next section.
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Proposition 2.1.

Q) wl(xy, X9, oy ) = Xy, Xp_qy -er X7)-
1) wlxy, 29, .y x,) = x7u(xg, .., X,) — u(xg, ...y X,)-
(1) w(xy, X9, vy X,) = Xpu(X7, oy %5_1) — w(X1, ovy Xp_9)-

Proof. (i) Exchange the rows of U(x;, xg, ..., x,,) according to the

permutation p = (1 n)(2 n —1) ---, and apply it to the columns, then the

resulted matrix is U(x,,, X,,_1, ..., X1).
(il) Expanding the determinant wu(x;, xg, ..., x,) along the first row,
we have
xg -1 - 0 0 10 0 0
-1 X3 .0 0 -1 X3 .0 0
Wxy, .o x,)=x;detf: o T i |+det|: RS :
0 0 Xn-1 -1 0 0 Xn-1 -1
o o0 - -1 «x 0 O -1 x,
= xu(xg, X3, ..., X,,) — u(xs, ..., x,,).

(i11) Combine (i) and (i1).

Remark 2.2. We will use the simplified notation uli, j] to express

u(xj, Xi41, .-, Xj) when i < j. Moreover we employ the convention that
uli,il=x;, uli,i-1]=1, ufi,i-2]=0,

for any i > 1. This will enable one to describe various identities in a
unified way. The reader might be convinced of its usefulness by setting

n =1 in (i11) above.

The following proposition is entitled to be called a mother identity,
since this produces several other remarkable identities.

0
Proposition 2.3. Let A(x) denote the mairix (1 j Then we

X

have
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“u[2,n-1] -uft, n - 11) (2.1)

Alx, )A(x, 1) Alxy) =
(50 Ay ) AGer) = [ "
forany n > 1.

(Note that we are in the convention explained in Remark 2.2.)

Proof. When n =1, (2.1) holds by Remark 2.2. When n > 2, we

assume (2.1) holds for smaller n. Then we have

2, n-2] -, n- 2]}

A(xn)A(xnfl)"' A(xl) = A(xn)[ u[2 n— 1] u[l n— 1]

[0 —1} (—u[Z, n-2] -ufl,n- 2])

1 x, )\ u2, n-1] u[l, n —1]
B ( -u[2,n-1] ~u[l,n-1] j
N2, n-1]-u[2,n-2]  x,ull, n-1]-ufl, n-2]
B (—u[Z, n-1 -u[l, n- 1])
ul2, nj ull,n] )’
which shows that (2.1) holds for n too.
As an application, we derive the following.
Proposition 2.4. For any k with 1 < k < n —1, we have
ull, n] = ufl, kJulk + 1, n] - ull, & - 1]ulk + 2, n]. (2.2)
Proof. Divide the product on the left hand side of (2.1) into two:
Axp)A(xy-1) - Alxy) = (Alxy )+ Alxgs1)) (Alxg) - Alxg)). (2.3)
Then each product on the right hand side is expressed as follows by

Proposition 2.3:

~ulk+2,n-1] -u[k+1, n—l]j

Axy)- Alxpy) = ( ulk + 2, n] ulk +1, n]

—ul2, k1] —ufl, k-1]
Alwy) - Alxy) = [ ok o j

Comparing the lower right entries on the both sides of (2.3), we obtain

the desired equality.



ON CHEBYSHEV VARIETIES, I: INTEGRAL POINTS 93

Remark 2.5. When k=1 (resp. k =n—1), the equality (2.2) specializes
to Proposition 2.1 (ii) (resp. (ii1)). When k2 =0 or k = n, (2.2) still holds

by the convention in Remark 2.2.

Remark 2.6. The equality (2.2) as well as its generalization for the
determinant of band matrices has been known for a long time (see
[2, Formula (1), p. 518], for example). Several other identities described
in [2] can be, however, proved more easily if one uses the mother equality

(2.1) and its generalization

Cor alles an)La a0 o
“Cp1 )\~ Cp_g  Gp —c a1

—f12, n -1 —fl1 -1
(e ) 1)
fl2, n f[L, n]
where

a b 0 0 0
Cl a2 b2 0 0
0 0 0

flL, n] = det| . 2 ?3
0 0 0 “oa, b,
0 0 0 N N R

The following proposition reveals an intimate connection of our

function u and the Chebyshev polynomial of the second kind.

Proposition 2.7. Let U, (z) be the Chebyshev polynomial of the
second kind defined by

with z = cos0.

Then we have

u(x, x, ..., x) = U,(x/2).
\_q,_—l
n
Proof. Let u,(x)=u(x, x,..,x), and let x =--=x, =x in
\_ﬂ_—/

n

Proposition 2.1 (i1). Then we have
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un(x) = xun—l(x) - un—2(x)

and ug(x) = 1, u;(x) = x. On the other hand, if we put o = ¢, then we

have z = cos 0 = (o + & )/2, and hence

n+l a—(n+1)

Un(z): = -1
a— o

Therefore
22U, _4(2) - Up,_o(2)

(@ a ) ) - (@ - a0

C(a-oh)

a1 _ a—(n+1)

o—o !

=U,(2).

Moreover we have Uj(z) =1, Uj(z) = 2z. Hence the two sequences
{u,(x)} and {U,(z)} satisfy one and the same three-term recurrence
formula with common initial values if x = 2z. This completes the proof of

Proposition 2.7.

Remark 2.8. This proposition may justify our naming the variety

V,, = {u(x;, xg, ..., x,,) = 0} Chebyshev variety of the second kind.

Next we introduce three maps, called blow-up, splitting, and pasting.
These will play a crucial role to generate the whole integral solutions of

the Chebyshev varieties.

Definition 2.9. For any n > 1, we define three maps

(Blow-up) blup? AT S5 AL 1<i<n+1,

i;+)

(Splitting) split?i,c) A" 5> A2 1<i<n ceQ,

(Pasting) paste&;c) A" 5 A2 e Q,
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by the following rules:

(1) blupg;i)(‘xl’ ceey xn)

= (%g, ey Xj_9, X5y £ 1,21, 2 21, X549, .0, Xp), 251 < n,
blupa;i)(xl, o Xp) = (21, 27 £1, X9, oy Xp),
blup?nﬂ; i)(xl, vy %) = (%75 ey X1, X, £1, £1),
(i1) splitg.;c)(xl, ey X)) = (K15 ey X1, X5 — €, 0, €, Xji1s ey Xp ),

(iii) paste?_;c)(xl, e %) = (0, ¢, X1, ooy X)),

paste?+;c)(x1, ey X)) = (%1, .0y X, €, 0).

Remark 2.10. The map “blow-up” is related to the corresponding
notion in the geometry of algebraic surfaces in the following sense. Let X

be a projective surface and let D;,1 < i < n, be curves on X isomorphic
to P! with self-intersection numbers (D?)=-a;,1<i<n. Assume
furthermore that (D;.D;)=38;,;; for any i, j, and let D;; N D; =
{p;}, 2 <i<n Let m : X - X be the blow-up of X at the point p;- Let

Ei,l <i<n, denote the proper transforms of D;, and E denote the

exceptional curve. Then the self-intersection numbers of them are given
by

(512) =-ag, - (5i2—2) =-0i-2,
(DZ1) = ~(a_1 +1), (E®) = -1, (D?) = ~(a; +1),
(5i2+1 =041 (f)r%) =—Ap.
Thus the map blupz.; 5y 2 <i<n, defined above corresponds to the

transition of the self-intersection numbers under the blow-up.

A remarkable fact is that all of these maps restrict to maps between

the Chebyshev varieties as follows.
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Theorem 2.11. These three maps reserve (or reverse the sign) of the
value of the function u. More precisely, the following three formulas hold:

A

(@) u(blup?i, i)(xl, ey X)) = Fu(xg, o, X)), 1 <0< R+,

IA
IA

(i1) u(splitg;c)(xl, ey X)) = —ulxy, oy X5,), 1 n,ceQ,

(i1i) u(paste?i;c)(xl, ey X)) = —u(xy, ..y X, ) € € Q.
In particular, these maps restrict to morphisms between the Chebyshev
varieties: blup(ni,i) V>V, splitz.c) 'V, > V.9, paste(ni.c) 'V, >V,
Proof. (i) We will give a proof of the statement for blupg, oy since the

other is proved similarly. When 2 < i < n, we compute as follows:

u(blup$;+)(xl, ey X))

w(xy, vy X5 9, X1 + 1L, 1, 005 +1, 2,47, oy X))
= u(xq, .., Xj_9, Xj_1 + 1, Dulx; +1, 2541, 0y X5,)

—w(xy, -y Xj_9, x;_1 + Dul(x;sq, ..., X,) (by Proposition 2.4)

(wloqy oy Xj_9, 2,1 +1) = w2y, ooy Xj_9)ulox; +1, ;47,5 oy X))
(X1, ooy X;_9, X1 + D)u(x;41, ..., X, ). (by Proposition 2.1 (iii)) (2.4)

Here we need the following lemma, which can be easily derived from

Proposition 2.1 (i1), (i11):
Lemma 2.11.1. For any d € Q, we have
@) w(xy, ooy Xp_q, X +d) = w(xy, vy Xp_q, %)+ dulxy, ooy X,_1)
= u[l, n] + dull, n — 1],
1) w(x; +d, xg, ..., x,) = ulxq, X9, ..., x,,) + du(xg, ..., x,,)
= u[l, n] + du[2, n].

By using these formulas, we can continue the computation in (2.4) as

follows:
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u(blupg; +)(x1, ey X))

(1, i —1]+ul, i - 2] - u[1, i — 2]) (u[i, n] + ul[i +1, n))

— (W1, i —1]+ufl, i - 2)uli + 1, n]

ull, i = 1ufi, n] - ufl, i - 2Juli +1, n]

ull, nj,

the last equality coming from Proposition 2.4. When i =1, we can

compute as follows:

u(blupa; +)(x1, ey X))

u, x; +1, x9, ..., x,,)

u(xy +1, x9, ..., x,) — u(xy, ..., x,) (by Proposition 2.1 (ii))

u(xy, x9, ..., x,). (by Lemma 2.11.1 (ii))

Since we can compute similarly for i = n + 1, the proof of (i) is completed.
(1) This is seen to hold by the following computation:
u(split(ni;c)(xl, ey Xp))
= W(Xq,y vy X1, X — € 0, €, X1y ey X))
= w(Xy, vy X1, %; — €, 0)ulc, 2115 vy Xp)
—ulxq, ..., X;_1, %5 — C)ulxiy1, ..., x,) (by Proposition 2.4)
=-ull, i —1](cufi +1, n] - uli + 2, n]) - (u[1, i] - cu[1, i - 1))uli +1, n]

(by Lemma 2.11.1)
=ull, i —1]ufi + 2, n] - ufl, i]ufi + 1, n]

= -ufl, n].

(i11) These are easiest of all. We have only to apply Proposition 2.1 (ii)

or (iii):

u(paste?_;c)(xl, o X)) = (0, €, X1, ooy Xp) = —U(X], ey Xp),
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u(pastea;c)(xl, ey X)) = u(xq, oory Xy, €, 0) = —u(xq, ...y Xp,).
Thus the proof of Theorem 2.11 is finished.
3. Integral Points on the Chebyshev Varieties

In this section we see that any integral points on the Chebyshev

varieties V,, are constructed from those points on lower dimensional V,,

k < n through the three maps introduced in the previous section.
The following proposition plays a crucial role.

u(xy, ..., X,,) - 1
u(xg, ..., x,)

Lemma 3.1.

X9 —
x3 — e
Xn-1—

xn
Proof. This is a direct consequence of Proposition 2.1 (i1). For,
dividing the both sides of w(x;, xg, ..., x,,) = xu(xg, ..., X,) — u(xs3, ..., X,,)
by u(xg, ..., x,,), we have the equality
u(xy, ..., X,) . u(xs, ..., x,) 1

L T TR — =% - —
w(xg, oy ) 5 wu(xg, oy %) Y ulxg, .y x,) ]
u(xs, ..., x,)

which implies the desired continued fraction expansion by induction.
By using the lemma, we have the following non-vanishing result.

Proposition 3.2. Suppose that | x; | > 2,1 < i < n. Then we have
u(xq, ..., x,,) % 0. (3.1)

Proof. We prove this by induction on n. When n =1, this holds
trivially, since u(x;) = x;. We want to prove (3.1), assuming that (*)
u(xp, ., x,) # 0 with |x;| 22, k<i<n, forany k > 1. Let us use the
continued fraction expansion in Lemma 3.1. Note that

u(x;, ..., xp,)

>1
U1y o Xp)
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holds for any i > 1. For, we have

Uiy ey Xp) | o 1
(X1, s X5) You(xgq, e Xp)
u(xi+27 o0y xn)
1
>lo | |——+
> [ | u(x; 1y oo %)
u(x; 9, ey Xp)
1
>2-|—
(X415 enr %)
uis2, s Xn)

by downward induction. (Here we have used (*) implicitly.) In particular,

we have u(xq, ..., x,,) # 0, which completes the proof of Proposition 3.2.

The above proof also shows that the following estimate holds.

Corollary 3.2.1. If |x;|22, 1<i<n, then |u(xy,.. x,)|=
max{ x; |, | x, [}

Now we can prove one of the main theorems of this paper. For any
variety V defined over Q, we denote the set of integral points on V by
V(Z).

Theorem 3.3. The set of integral points on the Chebyshev variety V,
is given by the following:

@) V1(z) = {0},
(i) Va(2) = {1, 1), (-1, - 1)},

i) V,(2) = | | blupf (Vs @) U] | splitf: 3 (Vaa(2))
1<i<n 1<i<n-2
cel

U| [ pastel 2 (V2@ |
cel

forany n > 3.
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Proof. The statements (i) and (i1) are direct consequence of the
definitions u(x;) = x;, u(x;, x9) = x7x9 — 1. The inclusion (LHS) > (RHS)
of (ii1) i1s already proved in Theorem 2.11. To prove the converse, let
(%1, - x,) € V,,(Z). Then it follows from Proposition 3.2 that there exists

an [ with 1<i<n such that |x;|<1, namely x; =0,+1. When
x; = 1, Theorem 2.11 (i) implies that (xi, ..., x,,) € blup(L +)(Vn 1(2)).

When x; = 0 and 2 <i < n -1, we see that
(2075 vy 25) = (27, ey K15 0, Xjiqy ooy X))

= spht(l L, 1)(x1, vy Xj ] F Xy e X))

e split! 2 (V. 5(2)

by Theorem 2.11 (ii). When x; = 0, we have

(15 200y 2,) = (0, X9, oy X, ) = paste (x3, ey X ) € paste )(Vn 5(Z)),

furthermore when x,, = 0, we have
-2
(%15 weey %) = (%1, ooy X1, 0) = paste?ﬁxn_l)(xl, ey Xp_9)
€ paste )(V _9(Z)).

Thus we complete the proof of Theorem 3.3.

Remark 3.4. This theorem tells us that all of integral points on V,,
lie on a finite union of linear subvarieties.

The theorem provides us with an inductive procedure which produces
all the integral points on the whole family V,,, n > 1, of the Chebyshev

varieties as follows:
Theorem 3.5. For any n > 3, we obtain every integral point on V,, by

applying the maps blup( spht(l oy pastef’i;c) (c € Z) successively

i;+)’

starting from the set {0, (1, 1), (-1, —1)}.
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This together with Lemma 3.1 provides us with an interesting
by-product.

Corollary 3.5.1. For any n-tuple (ay, ..., a,,) of integers, the continued

fraction a; — !

1 vanishes if and only if (ap,...,a,) is
a2 [

1
p-1 ———

an
obtained from the inductive procedure stated in Theorem 3.5.

Example 3.6 (Determination of V5(Z)). By Theorem 3.3, we have

Vy(Z) = { | ptung, 4 (V2 (Z))J U {U split (. (V4 (Z))]

1<i<3 ceZ

u [U paste(. (V1 (z»}

ceZ

- [ | blup? , (0. 1), (-1, - 1)})} U (U spht}l;c)«o»J

1<i<3 ceZ
U (U paste%i; c)({O})]
ceZ
={1,21),(21,2),(-1,-2,-1), (-2, -1, - 2)}
Uf{(=¢, 0,c)ceZU{0,c 0)ceZ}.

On the other hand, Theorem 3.3 provides us with a recursive procedure
which decides whether a given point (xy, ..., x,) € Z" lies in V,(Z) or

not.

Theorem 3.7. For any (xq, ..., x,,) € Z", the algorithm below decides

whether it lies in V,,(Z) or not:
Q) if |x; | = 2 for any i, then (xq, ..., x,) & V,(Z),

2.1) if x; =1 for some I, then let

(75 oy Xp1) = (%15 o0 Xj_9, X571 — 1, x;41 — 1, Xj19, ..., X,,) and go to (1),
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(2.2) if x; = -1 for some i, then let (x1, ..., x;_1) = (X1, ..., Xj_9, Xj_1 +1,
Xj1 +1, %,9, ..., X,) and go to (1),

(2.3) if x; =0 with 2<i<n-1, then let (x], ..., x,_3) = (x1, ..,
Xi_9, Xi_1 + Xj41Xj42, -+ %) and go to (1),

(2.4) if x; = 0, then let (x{, ..., x,,_9) = (x3, ..., x,) and go to (1),

(2.5) if x,, = 0, then let (xi, ..., x;_9) = (%1, ..., X,_9) and go to (1).
If the algorithm ends with (0), (1, 1) or (-1, — 1), then (xq, ..., x,) € V,(Z),
otherwise (xy, ..., x,) & V,(Z).

Remark 3.8. The proof for Theorem 3.3 tells us another interesting

fact that for any integer m, there is an inductive procedure to create

infinitely many solutions to the Diophantine equation u(xy, ..., x,,) = m,
n > 3. Indeed, one has only to start with the trivial solution x; = m for
u(x;) = m and apply the three families of maps to it as much as one

likes.
4. Chebyshev Varieties of the First Kind

In this section we introduce another family of Chebyshev varieties,

and investigate what integral points lie on them.

For any n independent variables x;, %o, ..., x,,, let

X -1 0 -+ 0 1

-1 x9 -1 - 0 0

0 -1 .0 0

T(xl,xz,..., xn)z . . :X:‘S . - . ,n23,

0 0 Xn-1 -1

1 0 0 e =1 X,

X1 0

T(xl’x2)=[0 \J’
X9
T(xl) = (xl + 2), (4].)

and let t(xy, x9, ..., x,,) = det T'(x;, xq, -+-, x,,). As is the case for u, we
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write t[1, n] for #(xy, ..., x,). We call the zero locus W, = {¢(x;, x9,

103

ceey

x,) = 0} = A" Chebyshev variety of the first kind (see Proposition 4.4 for

the origin of the name). The defining polynomial #(x;, x9, ..., X, ) is

related to w(xy, xg, ..

., x,,) as follows.

Proposition 4.1. For any n, we have

121, X9, vy ) = (X1, X9, oy Xp,) — U(Xg, vy Xpy_p) + 2.

Proof. This is proved by appropriate expansion of the determinant as

follows:

t(xl, X9, .

X1 -1 0
-1 xy -1
0 -1
X)) = det|. : fS
0 0 0
1 0 0
X9 -1
-1 X3
= xy det|:
0 0
0 0
-1 0
-1 X3
+ det]| : B
0 0
0 0
-1
X2
+ (=1 det| :
0
0

0 1
0 0
0 0
Xn-1 -1
-1 Xp
0 0
0 0
.'X,'n_l 1
-1 X,
0
0
Xn-1 -1
-1 Xy,
0 0 1
-1 0 0
0 -1 0
0 xn_l — 1

(by the expansion along the first column)
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= xquf2, n]+ (- uf3, n]+ (1) (1)) + ()P ()T + (1) w2, n-1])
(by the expansion along the first rows of the last two determinants)

=u[l, n]-u[2, n-1]+2. (by Proposition 2.1 (ii))

This completes the proof.

0
Corollary 4.1.1. Let A(x) denote the matrix (1 ], introduced in

X

Proposition 2.3. Then we have
t(xy, xg9, .., x,) = tr(A(x, ) A(x,,_1) - A(xq)) + 2. (4.2)
Proof. Combine Proposition 4.1 with Proposition 2.3.
Corollary 4.1.2. The polynomial t(xq, ..., x,) remains invariant
under the cyclic permutation x; > Xg, X9 > X3, ..., Xp_1 B> X;,, X, > X1.
Proof. This is a direct consequence of Corollary 4.1.1.

Remark 4.2. The formula (4.2) was first pointed out to the author by
S. Sato. Actually his discovery of (4.2) was a great stimulus to the author
to begin the study of this paper.

Remark 4.3. The equality in Proposition 4.1 justifies the convention
we have employed in (4.1).

The following proposition reveals an intimate connection of our
polynomial ¢ and the Chebyshev polynomial of the first kind.

Proposition 4.4. Let T,(z) be the Chebyshev polynomial of the first
kind defined by

T, (z) = cos n® with z = cos 0.

Then we have

t(x, x, ..., x) = 2T, (x/2) + 2.
\_ﬂ_—d
n
Proof. Let ¢,(x) = ¢(x, x, ..., x), and let x; =---=x,, = x in Proposition
[N —1

n
4.1. Let a = eie, x=2z=a+0"},asin the proof of Proposition 2.7. Then

we have
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tn(x) = un(x) - un—2(x) +2
n+l —(n+1) ol a—(n—l)
1 1 +

[0

2

—-a
o-—o a-—o

=@ +a" 2+t o) = (@2t a2 12
=o' +a " +2

=2cosnb + 2

= 2T (x/2) + 2.

This completes the proof.

Remark 4.5. This proposition may justify our naming the variety
W, = {t(x;, x9, ..., x,,) = 0} “Chebyshev variety of the first kind.”

As opposed to the case for the Chebyshev varieties of the second kind,
we need only use two types of maps, blow-up’s, splitting, to deal with the
inductive structure of the sets of the integral points on the Chebyshev
varieties of the first kind. This is due to the cyclicity of the polynominal #.
The definitions of the maps are modified slightly accordingly. (Actually

n
(n+1;+

n

(1 4) and blup

only blup ) are modified.)

Definition 4.6. For any n > 1, we define two families of maps

(Blow-up) blup(;,) : A" > A" 1<i<n+l,
phitting) spht;. . : - ,1<1<n,ceQ,
(Splitting) split; o) : A" — A™"? ' Q
by the following rules:

@) blupz.;i)(xl, ey X ) = (0, ooy X, X £, 21,2 £ 1, X547, ey X))

2<1<n,
blupa,i)(xl, v Xp) = (£1, 21 £1, X9, ..., x, £1),
blupzlnﬂ;i)(xl, ey X)) = (%1 £1, X9, w0y X1, X, £1, £ 1),

(i1) split&c)(xl, vy X)) = (X7, ey X1, X5 — €, 0, €, X4y oy Xp)-
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This time the polynomial ¢ changes their values under these maps
through the following rules:

Theorem 4.7.
@) t(blupzli,+)(x1, o X)) = E(xy, oy xp), 1 ST <R+,
t(blupé, _)(xl, ey X)) = (2], ey X))+ 4,1 <P <R+,

(i1) t(split?i,c)(xl, ey X)) = (X1, o, X))+ 4,1<i<n,ceQ.

Proof. (i) By cyclicity we have only to give a proof for the case when
i = 1. By using Proposition 4.1, we can compute as follows:

t(blupa; +)(x1, ey X))

ul, x; +1, X9, vy X, +1)—wl(xg +1, x9, .., X,,_1) + 2

(wl(xy +1, x9, wy x, +1) = ulxg, ..., x, +1))

—u(x; +1, xg, ..., x,,1) + 2 (by Proposition 2.1 (ii))

= W[l, n]+ul, n - 1]+ w2, n]+ u[2, n =1] - u[2, n] - u[2, n - 1])
- (@1, n-1]+u[2, n-1])+2 (by Lemma 2.11.1)

=ull, n]-ul[2, n -1]+2

= {1, n]

which proves the first equality in (1). The second one can be proved

similarly. (The extra “+4” comes from the sign-change of u.)

(1) By cyclicity, we may assume that i = 1. Then we have

t(splita;c)(xl, ey X))

u(x; —¢, 0, ¢, X9, ..., X,,)
—u(0, ¢, X9, o, Xp_1)+ 2
= —u(xy, X9, ., ) + U9, oy Xp_1) + 2

(by Theorem 2.11 (ii) and Proposition 2.1 (ii))
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= —t(x1, .oy X,) + 4.
Thus we complete the proof.
Remark 4.8. At this point the reader might feel uneasy with “4”
appearing in the formulae above. If one modify ¢ through #'(xq, ..., x,,)

= t(xy, ..., X,) — 2, then the corresponding formulae just look like those

in Theorem 2.11, and the determination of the set of integral points goes
completely parallel to the argument given in Section 3. The reason why
we have chosen t as the main object of our concern is that it is expressed
as the determinant of a good-looking matrix, and that the very “4” makes
the structure of the set of integral points a little bit more fascinating
than that of the modified one.

The following proposition plays a crucial role to describe W, (Z).

Proposition 4.9. Suppose that | x; | 2 2,1 < i < n, and there exists

an index i such that | x; | > 3. Then we have
| t(o1, ooy ) — 2] > 2. (4.3)

Proof. By cyclicity, we may assume that the first coordinate has the
absolute value greater than or equal to 3. We prove (4.3) by induction on
n. When n =1, this holds trivially, since #(x;) = x; + 2. When n > 2, it

follows from Proposition 4.1 that

tf,n]-2  u[l,n] ul2, n-1] '

ul2, n]  ul2, n] ul2, n]

(Note that u[2, n] # 0 by Proposition 3.2.) This implies by Lemma 3.1
that

-2 1 ~ 1
m =X . . (44)

1
x3—..-—1 xn_l—-..—l

Y17 xS_E
n

Recall that we have assumed |x;|> 3, and note that the last two

denominators on the right hand side have absolute values greater than
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one by the proof for Proposition 2.3. Therefore we see that
|(t[1, n] - 2)/u[2, n]| > 1 and hence |¢[1, n] - 2| > |u[2, n]|. Since |u[2, n]|
> max{lxs|, |x,|} = 2 by Corollary 3.2.1, Proposition 4.9 is proved.

Thus in order to have a result like Theorem 2.11 for ¢, we must deal

with the case when |x;|=2,1<i<n.

Proposition 4.10. Suppose that |x;| =2,1<i<n, and not all the

coordinates have the same sign. Then |t(xy, ..., x,) — 2| > 2.

Proof. It follows from the assumption that there is an index i such
that x; >0, x;,1 <0 or x; <0, x;,; >0. Hence by cyclicity we may
assume that x; > 0, x9 <0 or x; > 0, x, < 0. In the first case, the sum

of the first two terms on the right hand side of (4.4) is greater than two,
hence |(¢[1, n] - 2)/u[2, n]| >1 by the same argument as in the proof of
Proposition 4.9. In the second case, the sum of the first and the third
terms on the right hand side is greater than two. Hence we finish the

proof.
Thus we are left with the case when

x; =2,1<1i<n, (4.5)

X =-2,1<i<n. (4.6)

Proposition 4.11. (i) If (4.5) holds, then t(x, ..., x,,) = 4.

(ii) If (4.6) holds, then t(xq, ..., x,) = 2(1 + (= 1)").
Proof. It follows from Proposition 4.4 that

(2, 2,..,2)=2T,1)+2 =2cos(n-0)+ 2 = 4.
O S

n

Moreover the same proposition implies that

(-2 -2 . —2) = 2T, (- 1) + 2 = 2 cos(nn) + 2 = 2(1 + (— 1))

n

This completes the proof.
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Summing up the results in Propositions 4.9-4.11, we obtain the

following.
Proposition 4.12. When |x; |22, 1<i<n, we have t(xq, ..., x,)
€ {0, 4} if and only if (xq, ..., x,,) € {(2, ..., 2), (-2, ..., — 2)}.

Now we can determine the set W,(Z) of the integral points on W,
completely. For ease of its description, we introduce some notation. For
any k e Z, let W,(k) = {(x1, ..., x,) € Z"; t(x;, ..., x,,) = k} and W(k) =
W, (k). For any pair (i, j) of integers, let W, (i, j) = W, (i) U W, ().

n>1

Furthermore let

Op" = U{blupg;+); 1<i<n+1},

n>2

Op = U{blupg,_); 1<i<n+1}U U{splitz._c); 1<i<n,cel}
n>2 n>1
Op = Op" UOp~,

Compositegye, = U{fl o--ofp; f; € Op,1 <i <k, the composite is well-
k>1

defined and # ({f;, ..., fx} N Op ) = 0(mod 2)},

Compositeygq = U{fl o--ofp; f; € Op,1 <i <k, the composite is well-
k21

defined and # ({f;, ..., fx} N Op ) = 1(mod 2)}.

Theorem 4.13. The set W, (0) of integral points on the Chebyshev
variety of the first kind and the set W, (4) are given by the following:

() W(0) = {2}, M(4) = {2},
(ii) W(0) = {(d, 0); d € Z} U {(0, d); d < Z},

W2(4) = {(4’ 1)’ (2’ 2)> (1’ 4)’ (_49 - 1)’ (_2’ - 2)’ (_1’ - 4)}’
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(iii) W, (0, 4)=(| |b1upg;j)(wn,1(o, 4))]U | Isplitgjg(wn,z(o, 1))
1<i<n 1<i<n-2
ceZ

U Wy (O)exceptional U Wy (4)exceptional ’

for any n > 3,

where
{(-2, ..., = 2)}, if nisodd,
Wn(o)exceptional = n
¢, if n is even,
{2, ..., 2)}, if nis odd,
(R —
. = n
Wn(esceptional {2, .., 2),(=2,..,—-2), if nis even.
-
n n

Moreover we have

W(0) = W1 (0) U W(0) U W(0)

exceptional

U U CD(VVI (0) U Wy (O) U W(O)exceptional )J

®eCompositeqyen

U U O(W; (4) U Wa(4) U W(4) xeeptional )],

®eCompositeyqq

W(4) = Wi (4)U Wa(4) U W(4)

exceptional

U U CD(VVl (4) U W2 (4) U W(4)exceptional )J

®eCompositegyen

U U (D(Vvl (O) U W2 (0) U W(O)exceptional )] ’
®eCompositeyqq
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where

W(O)exceptional = U Wn (O)exceptional’

n>1

W(4)exceptional = U Wn (4)exceptional'

n>1

Proof. The statements (1) and (11) are direct consequence of the
definitions #(x;) = x; + 2, t(x;, x9) = x1x9. The other statements can be
proved by a similar argument to that for Theorem 3.3, in view of
Propositions 4.6 and 4.12.

Remark 4.14. One can see that the sets W(1), W(2), and W(3) have
similar descriptions to the theorem, and details are left to the reader.
Moreover the above proof shows that for any £ > 3, there is an inductive

procedure to produce infinitely many elements of W(2 + k) together with

W(2 - k).
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