Advances in Fuzzy Sets and Systems

Volume 8, Number 1, 2011, Pages 35-42; Issue Date: June 2011 Published Online: July 22, 2011

This paper is available online at http://pphmj.com/journals/afss.htm © 2011 Pushpa Publishing House

MODIFIED REDUCTION AND ALTERNATIVE AXIOMATIZATIONS OF THE CORE OF FUZZY TU GAMES

YU-HSIEN LIAO

Department of Applied Mathematics National Pingtung University of Education Pingtung 900, Taiwan e-mail: twincos@ms25.hinet.net

Abstract

Different from the results of Hwang [4], we adopt the modified reduction proposed by Hwang [4] to characterize the core on the domain of all balanced fuzzy transferable-utility (TU) games and the domain of all fuzzy TU games, respectively.

1. Introduction

The theory of fuzzy games started with the work of Aubin [1, 2] where the notions of a fuzzy game and the core of a fuzzy game are introduced. In the meantime, many solution concepts have been developed. In the framework of fuzzy transferable-utility (TU) games, Hwang [4] first extended the max-reduced games to fuzzy TU games and offered axiomatizations of the core on the domain of all fuzzy TU games.

Inspired by Peleg [5], we adopt the modified reduction proposed by Hwang [4] to show that the core is the only solution satisfying non-emptiness, individually rationality, consistency and superadditivity on the domain of all balanced fuzzy TU games. Also, we introduce a weakening of non-emptiness by restricting its application to balanced fuzzy TU games. With its help, we extend the results of Peleg [5] to the domain of all fuzzy TU games.

2010 Mathematics Subject Classification: 91A.

Keywords and phrases: fuzzy TU games, reduction, the core.

Received January 10, 2011

2. Preliminaries

Let U be the universe of players. If $N \subseteq U$ is a set of players, then a fuzzy coalition is a vector $\alpha \in [0,1]^N$. The ith coordinate α_i of α is called the participation level of player i in the fuzzy coalition α . For all $T \subseteq N$, let |T| be the number of elements in T. Instead of $[0,1]^T$, we will write F^T for the set of fuzzy coalitions. A player-coalition $T \subseteq N$ corresponds in a canonical way to the fuzzy coalition $e^T(N) \in F^N$, which is the vector with $e_i^T(N) = 1$ if $i \in T$, and $e_i^T(N) = 0$ if $i \in N \setminus T$. The fuzzy coalition $e^T(N)$ corresponds to the situation where the players in T fully cooperate (i.e., with participation level 1) and the players outside T are not involved at all (i.e., they have participation level 0). Denote the zero vector in \mathbb{R}^N by 0_N . The fuzzy coalition 0_N corresponds to the empty player-coalition. Note that $e^T(N)$ will be denoted by e^T if no confusion arises.

A fuzzy TU game is a pair (N, v), where N is a non-empty and finite set of players and $v: F^N \to \mathbb{R}$ is a characteristic function with $v(0_N) = 0$. The map v assigns to each fuzzy coalition $\alpha = (\alpha_i)_{i \in N} \in F^N$ a number, telling what such a coalition can achieve in cooperation. Denote the class of all fuzzy TU games by \mathcal{FG} .

Let $(N, v) \in \mathcal{FG}$. A payoff vector of (N, v) is a vector $x = (x_i)_{i \in N} \in \mathbb{R}^N$. Then a payoff vector x of $(N, v) \in \mathcal{FG}$ is

- efficient (EFF) if $\sum_{i \in N} x_i = v(e^N)$,
- individually rational (IR) if for all $i \in N$ and for all $j \in [0, 1]$, $jx_i \ge v(je^{\{i\}})$.

Moreover, x is an *imputation* of (N, v) if it is EFF and IR. The set of *feasible payoff* vectors of (N, v) is denoted by

$$X^*(N, v) = \left\{ x \in \mathbb{R}^N \mid \sum_{i \in N} x_i \le v(e^N) \right\},\,$$

whereas

$$X(N, v) = \{x \in \mathbb{R}^N \mid x \text{ is EFF}\}$$

is the set of *preimputations* of (N, v) and the set of imputations of (N, v) is denoted by I(N, v).

Given $(N, v) \in \mathcal{FG}$, $x \in \mathbb{R}^N$, $\alpha \in F^N$ and $S \subseteq N$, we denote $x_S \in \mathbb{R}^S$ to be the restriction of x to S, and $x(\alpha) = \sum_{i \in N} \alpha_i x_i$.

A solution on \mathcal{FG} is a function σ which associates with each $(N, v) \in \mathcal{FG}$ a subset $\sigma(N, v)$ of $X^*(N, v)$. The core of a fuzzy TU game (N, v) (Aubin [1, 2]) is as follows.

Definition 1. The *core* C(N, v) of $(N, v) \in \mathcal{FG}$ consists of all $x \in X(N, v)$ that satisfy for all $\alpha \in F^N$, $x(\alpha) \ge v(\alpha)$.

3. Reduced Games and Axiomatizations

We say that the fuzzy TU game (N, v) is $balanced^1$ if $C(N, v) \neq \emptyset$. Let \mathcal{FG}_c denote the set of all balanced fuzzy TU games. Let $\mathcal{FG}' \subseteq \mathcal{FG}$ and σ be a solution on \mathcal{FG}' . σ satisfies non-emptiness (NE) if for all $(N, v) \in \mathcal{FG}'$, $\sigma(N, v) \neq \emptyset$. σ satisfies non-emptiness for balanced games (NEB) if for all $(N, v) \in \mathcal{FG}_c$, $\sigma(N, v) \neq \emptyset$. σ satisfies individually rationality (IR) if for all $(N, v) \in \mathcal{FG}'$, $\sigma(N, v) \subseteq I(N, v)$. σ satisfies one-person rationality (OPR) if for all $(N, v) \in \mathcal{FG}$ with |N| = 1, $\sigma(N, v) = I(N, v)$. σ satisfies efficience (EFF) if for all $(N, v) \in \mathcal{FG}'$, $\sigma(N, v) \subseteq X(N, v)$. σ satisfies superadditivity $(SUPA)^2$ if for all $(N, v) \in \mathcal{FG}'$, $\sigma(N, v + w) \supseteq \sigma(N, v) + \sigma(N, w)$, where for all $\alpha \in M^N$, $(v + w)(\alpha) = v(\alpha) + w(\alpha)$.

¹A characterization of balanced fuzzy games was given by Sharkey and Telser [7].

²If $N \subseteq U$ and $A, B \subset \mathbb{R}^N$, then $A + B = \{a + b \mid a \in A \text{ and } b \in B\}$.

Hwang [4] extended the reduction introduced by Davis and Maschler [3] to fuzzy TU games as follows.

Definition 2 (Hwang [4]). Let $(N, v) \in \mathcal{FG}$, $x \in \mathbb{R}^N$ and $S \subseteq N$, $S \neq \emptyset$. The *DM-reduced game with respect to S and x* is the game $(S, v_{S,x}^{DM})$, where

$$v_{S,x}^{DM}(\alpha) = \begin{cases} 0, & \text{if } \alpha = 0^S, \\ v(e^N) - x(e_{N \setminus S}^N), & \text{if } \alpha = e_S^N, \\ \sup\{v(\alpha, \beta) - x(\beta, 0_S) | \beta \in F^{N \setminus S}\}, & \text{otherwise.} \end{cases}$$

Consistency requires that if x is prescribed by σ for a game (N, v), then the projection of x to S should be prescribed by σ for the reduced game with respect to S and x for all S. Thus, the projection of x to S should be consistent with the expectations of the members of S as reflected by their reduced game. Let σ be a solution on \mathcal{FG} .

• *DM-consistency* (*DMCON*): If $(N, v) \in \mathcal{FG}$, $S \subseteq N$, $S \neq \emptyset$, and $x \in \sigma(N, v)$, then $(S, v_{S,x}^{DM}) \in \mathcal{FG}$ and $x_S \in \sigma(S, v_{S,x}^{DM})$.

Converse consistency requires that if the projection of an efficient payoff vector x to every proper S is consistent with the expectations of the members of S as reflected by their reduced game, then x itself should be recommended for whole game.

• Converse DM-consistency (CDMCON): If $(N, v) \in \mathcal{FG}$ with $|N| \ge 2$, $x \in X(N, v)$, and for all $S \subset N$, 0 < |S| < |N|, $(S, v_{S,x}^{DM}) \in \mathcal{FG}$ and $x_S \in \sigma(S, v_{S,x}^{DM})$, then $x \in \sigma(N, v)$.

The following axiom is a weakening of the previous axiom, since it requires that *x* to be individually rational as well.

• Weak converse DM-consistency (WCDMCON): If $(N, v) \in \mathcal{FG}$ with |N|

³From now on, we restrict our attention to bounded fuzzy TU games, defined as those games (N, ν) such that, there exists a real number M_{ν} such that for all $\alpha \in F^{N}$, $\nu(\alpha) \leq M_{\nu}$. We use it here in order to guarantee that, in Definition 2, $\nu_{S,x}^{DM}$ is well-defined.

$$\geq 2$$
, $x \in I(N, v)$, and for all $S \subset N$, $0 < |S| < |N|$, $(S, v_{S,x}^{DM}) \in \mathcal{FG}$ and $x_S \in \sigma(S, v_{S,x}^{DM})$, then $x \in \sigma(N, v)$.

Inspired by Serrano and Volij [6], Hwang [4] also proposed an extended reduced game on fuzzy TU games as follows.

Definition 3. Let $(N, v) \in \mathcal{FG}$, $x \in \mathbb{R}^N$ and $S \subseteq N$, $S \neq \emptyset$. The modified reduced game with respect to S and x is the game $(S, v_{S,x}^M)$, where

$$v_{S,x}^{M}(\alpha) = \begin{cases} 0, & \text{if } \alpha = 0_{S}, \\ \sup\{v(\alpha, \beta) - x(\beta, 0_{S}) | \beta \in F^{N \setminus S}\}, & \text{otherwise.} \end{cases}$$

The idea of the modified reduced game was first introduced by Serrano and Volij [6]. The only difference between this and the reduced game in Definition 1 is the fact that the coalition S is also allowed to imagine potential interaction with any of the subsets of $N \setminus S$. Informally, in order to reach the maximal benefit, all the coalitions comprised by the members of $N \setminus S$ should be considered to cooperate with S.

"Modified-reduction" instead of "DM-reduction", Hwang [4] introduced the *M-consistency (MCON)*, converse *M-consistency (CMCON)* and weak converse *M-consistency (WCMCON)*. Hwang [4] showed that the core is the only solution satisfying OPR, IR, DMCON (MCON) and WCDMCON (WCMCON). Next, we provide alternative axiomatizations by means of MCON.

Lemma 1 (Hwang [4]). Both on \mathcal{FG} and \mathcal{FG}_c , the core satisfies DMCON, WCDMCON, MCON and WCMCON.

Lemma 2. Let σ be a solution on FG. If σ satisfies IR and MCON, then it also satisfies EFF.

Proof. Assume that the solution σ satisfies IR and MCON. Let $(N, v) \in \mathcal{FG}$ with $|N| \ge 2$ and let $x \in \sigma(N, v)$,

$$\begin{split} v^{M}_{\{i\},\,x}(e^{N}_{\{i\}}) &= \sup\{v(e^{N}_{\{i\}},\,\beta) - x(\beta,\,0) | \beta \in F^{N\setminus\{i\}}\} \\ &\geq v(e^{N}) - x(e^{N}_{N\setminus\{i\}},\,0) \ \ (\text{Take } \beta = e^{N}_{N\setminus\{i\}}). \end{split}$$

By MCON of σ , $x_i \in \sigma(\{i\}, v^M_{\{i\}, x})$. By IR of σ , $x_i \geq v^M_{\{i\}, x}(e^N_{\{i\}}) = v(e^N) - x(e^N_{N\setminus\{i\}}, 0)$. Hence, $x(e^N) \geq v(e^N)$. Since σ is a solution, $\sigma(N, v) \subseteq X^*(N, v)$. Hence, $x(e^N) \leq v(e^N)$. Therefore, $x(e^N) = v(e^N)$.

Lemma 3. Let $\mathcal{FG}' \subset \mathcal{FG}$ and let σ be a solution on \mathcal{FG}' . If σ satisfies IR and MCON, then for all $(N, v) \in \mathcal{FG}'$, $\sigma(N, v) \subseteq C(N, v)$.

Proof. Let $(N, v) \in \mathcal{FG}'$. The proof proceeds by induction on the number |N|. If |N| = 1, then by IR of σ and C, $\sigma(N, v) \subseteq C(N, v)$. Assume that $\sigma(N, v) \subseteq C(N, v)$ if for $|N| \le k - 1$, where $k \ge 2$.

The case |N| = k:

Since σ satisfies IR and MCON, by Lemma 2, σ satisfies EFF. Hence, $\sigma(N, v) \subseteq I(N, v)$. Let $x \in \sigma(N, v)$. Since σ satisfies MCON, for all $S \subseteq N$ with 0 < |S| < |N|, $x_S \in \sigma(S, v_{S,x}^M)$. Hence, by the induction hypotheses, $x_S \in \sigma(S, v_{S,x}^M) \subseteq C(S, v_{S,x}^M)$. Since C satisfies WCMCON, $x \in C(N, v)$.

Theorem 1. (1) On \mathcal{FG}_c , the core is the only solution satisfying NE, IR, SUPA and MCON.

(2) Let $\mathcal{FG}' \subset \mathcal{FG}$. On \mathcal{FG}' , the core is the only solution satisfying NEB, IR, SUPA and MCON.

Proof. By Lemma 1, the core satisfies MCON. By definition of the core, it is easy to check that it satisfies IR and SUPA. Finally, for all $(N, v) \in \mathcal{FG}_c$, $C(N, v) \neq \emptyset$.

To prove the uniqueness of (1), assume that a solution σ satisfies NE, IR, SUPA and MCON on \mathcal{FG}_c . Let $(N, v) \in \mathcal{FG}_c$. Two cases may be distinguished:

Case 1. Assume that $|N| \ge 3$. Let $x \in C(N, v)$. Define $(N, w) \in \mathcal{FG}$ by the following rule:

$$w(t) = \begin{cases} v(je^{\{i\}}), & t = je^{\{i\}} \text{ for all } i \in \mathbb{N} \text{ and for all } j \in [0, 1], \\ x(t), & \text{otherwise.} \end{cases}$$

As the reader can easily verify that $C(N, w) = \{x\}$. Thus, by NE of σ and Lemma 3, $\sigma(N, w) = \{x\}$. Now let u = v - w. Clearly, for all $i \in N$ and for all $j \in [0, 1]$, $u(je^{\{i\}}) = 0$. And for all $t \in F^N$, $u(e^N) = 0$ and $u(t) \le 0$. Hence, $C(N, u) = \{0_N\}$. By NE of σ and Lemma 3, $\sigma(N, u) = \{0_N\}$. Since v = u + w and σ satisfies SUPA,

$$\sigma(N, v) \supset \sigma(N, u) + \sigma(N, w) = \{x\}.$$

Thus, $\sigma(N, v) \supseteq C(N, v)$. By Lemma 3, $\sigma(N, v) \subseteq C(N, v)$. Hence, $\sigma(N, v) = C(N, v)$.

Case 2. Assume that $|N| \le 2$. If |N| = 1, then by NE and IR, $\sigma(N, v) = C(N, v)$. Thus, let |N| = 2. Denote that $N = \{i, k\}$ and let $p \in U \setminus N$. Define $(H, u) \in \mathcal{FG}$ with $H = \{i, k, p\}$ in the following rule. For all $t \in F^H$, $u(t) = v(t_N)$. Let $x \in C(N, v)$. By definitions of u and $u_{N,x}^M$, it is easy to verify that $(x, 0_p) \in C(H, u)$ and $(N, u_{N,x}^M) = (N, v)$, where $0_p = 0$. Since |H| = 3, by Case 1, $\sigma(H, u) = C(H, u)$. Thus, $(x, 0_p) \in \sigma(H, u)$. By MCON of σ , $x = (x, 0_p)_N \in \sigma(N, u_{N,x}^M) = \sigma(N, v)$. Hence, $C(N, v) \subseteq \sigma(N, v)$. By Lemma 3, $\sigma(N, v) \subseteq C(N, v)$. Hence, $\sigma(N, v) = C(N, v)$.

This proof of uniqueness of (2) is a copy of (1) except "NEB and \mathcal{FG}' " instead of "NE and \mathcal{FG}_c "; hence, we omit it.

The following examples show that each of the axioms used in Theorem 1 is logically independent of the others. 4

Example 1. Let $\sigma(N, \nu) = \emptyset$ for all $(N, \nu) \in \mathcal{FG}_c$. Then σ satisfies IR, SUPA and MCON, but it violates NE (NEB).

Example 2. Let $\sigma(N, v) = X(N, v)$ for all $(N, v) \in \mathcal{FG}_c$. Then σ satisfies NE (NEB), SUPA and MCON, but it violates IR.

Example 3. Let $\sigma(N, v) = I(N, v)$ for all $(N, v) \in \mathcal{FG}_c$. Then σ satisfies NE (NEB), IR and SUPA, but it violates MCON.

⁴In order to show the logical independence of the used axioms, $|U| \ge 2$ is needed.

Example 4. For all $(N, v) \in \mathcal{FG}_c$, we define a solution σ on \mathcal{FG}_c to be

$$\sigma(N, v) = \begin{cases} C(N, v), & \text{if for all } x \in C(N, v) \text{ with } x_i \neq 0, \\ \{x \in C(N, v) | x_i = 0\}, & \text{otherwise.} \end{cases}$$

Then σ satisfies NE (NEB), IR and MCON, but it violates SUPA.

References

- [1] J. P. Aubin, Coeur et valeur des jeux flous á paiements latéraux, Comptes Rendus de l'Académie des Sciences 279 (1974), 891-894.
- [2] J. P. Aubin, Cooperative fuzzy games, Math. Oper. Res. 6 (1981), 1-13.
- [3] M. Davis and M. Maschler, The kernel of a cooperative game, Naval Research Logistics Quarterly 12 (1965), 223-259.
- [4] Y. A. Hwang, Fuzzy games: a characterization of the core, Fuzzy Sets and Systems 158 (2007), 2480-2493.
- [5] B. Peleg, On the reduced game property and its converse, Inter. J. Game Theory 15 (1986), 187-200.
- [6] R. Serrano and O. Volij, Axiomatizations of neoclassical concepts for economies, J. Math. Econom. 30 (1998), 87-108.
- [7] W. W. Sharkey and L. G. Telser, Supportable cost functions for the multiproduct firm, J. Econom. Theo. 18 (1978), 23-37.