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Abstract

Let { }nxxxS ...,,, 21=  be a subset of a lattice ( ) ( )∨∧=≤ ,,, PP  and

let C→Pf :  be a function. We present two structure theorems for the

nn ×  matrix ( ) ,,,,
, ijfS mM =δγβα  where

( ) ( )

( ) ( )δγ

βα ∨∧
=

ji

jiji
ij

xfxf

xxfxxf
m

and δγβα ,,,  are appropriate real numbers. We also present formulae

for the determinant and the inverse of δγβα ,,,
, fSM  on meet-closed sets S

( )SxxSxx jiji ∈∧⇒∈,.,i.e  and join-closed sets S ( Sxx ji ∈,.,i.e

).Sxx ji ∈∨⇒  These formulae are generalizations of those obtained

for meet matrices ( ) 0,0,0,1
, fSf MS =  and join matrices [ ] 0,0,1,0

, fSf MS =

in the literature. We also present our results in a number-theoretic

setting, i.e., in the lattice ( ) ( ) ,lcmgcd,,, ++ =| ZZ  where | is the usual

divisibility relation.
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1. Introduction

Let ( ) ( )∨∧=≤ ,,, PP  be a locally finite lattice, let

{ }nxxxS ...,,, 21=  be a subset of P and let C→Pf :  be a function. The

meet matrix ( )fS  and the join matrix [ ]fS  on S with respect to f are

defined as (( ) ) =ijfS  ( )ji xxf ∧  and ([ ] ) ( ).jiijf xxfS ∨=

Haukkanen [6] introduced meet matrices and obtained formulae for

the determinant and the inverse of ( )fS  (see also [16] and [20]). Korkee

and Haukkanen [10] used incidence functions (see Section 2) in the study

of meet matrices. There we obtained new upper and lower bounds for

( )fSdet  and a new formula for ( ) 1−
fS  on meet-closed sets S ( ∈ji xx ,.,i.e

).SxxS ji ∈∧⇒  Recently we introduced join matrices [11] and

presented formulae for [ ] ,det fS  new upper and lower bounds for [ ]fSdet

and a new formula for [ ] 1−
fS  on join-closed sets S ( ∨⇒∈ iji xSxx ,.,i.e

).Sx j ∈  By assuming the semi-multiplicativity of f, formulae for ( )fSdet

and ( ) 1−
fS  on join-closed sets and formulae for [ ]fSdet  and [ ] 1−

fS  on

meet-closed sets are also presented in [11].

Define the nn ×  matrix ( ),,,,
, ijfS mM =δγβα  where

( ) ( )

( ) ( )δγ

βα ∨∧
=

ji

jiji
ij

xfxf

xxfxxf
m (1.1)

and α, β, γ, δ are appropriate real numbers. Since ( ) 0,0,0,1
, fSf MS =  and

[ ] ,0,0,1,0
, fSf MS =  the matrix δγβα ,,,

, fSM  is a generalization of meet and join

matrices. We present two structure theorems for .,,,
,

δγβα
fSM  Under

certain conditions we obtain formulae for the determinant and the

inverse of δγβα ,,,
, fSM  on meet-closed and join-closed sets S.
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It is well known that ( ) ( )lcmgcd,,, ++ =| ZZ  is a locally finite lattice,

where | is the usual divisibility relation and gcd and lcm stand for the

greatest common divisor and the least common multiple of integers. Thus

meet and join matrices are generalizations of GCD matrices (( ) ) =ijfS

( ( ))ji xxf ,gcd  and LCM matrices ([ ] ) ( ( )),,lcm jiijf xxfS =  see [11, Section

6]. The study of GCD and LCM matrices is considered to begun in

761875  when H. J. S. Smith presented his famous determinant

formulae, see [18]. For general accounts of GCD and related matrices, see
[7], [8] and [11].

We also present our results in a number-theoretic setting, i.e., for
combinations of GCD and LCM matrices. Our results are generalizations
of those obtained for power GCD matrices and power LCM matrices in
[1], [3], [4], [18], see also [9]. Our results also generalize results for GCD-
reciprocal LCM matrices and LCM-reciprocal GCD matrices presented in
[13], [14] and [19], see also [15]. Note that in the literature these results

are mostly obtained for the function ( ) .,: nnNN =→+ CZ

2. Definitions

Let S be a subset of a lattice ( ) ( ).,,, ∨∧=≤ PP  We say that S is

lower-closed if ( ) .,, SyxyPySx ∈⇒≤∈∈  We say that S is meet-

closed if ., SyxSyx ∈∧⇒∈  We define the dual concepts upper-closed

and join-closed analogously. It is clear that a lower-closed set is always
meet-closed but the converse does not hold, and dually, an upper-closed
set is always join-closed but the converse does not hold. The principal

order ideal of Px ∈  is defined by { }.xzPzx ≤|∈=↓

Let f always be a complex-valued function on P and let { ,, 21 xxS =

}nx...,  be a subset of P such that .jixx ji <⇒<

Definition 2.1. The nn ×  matrix ( ) ( ),ijf sS =  where

( ),jiij xxfs ∧= (2.1)

is called the meet matrix on S with respect to f. Similarly, the nn ×
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matrix [ ] ( ),ijf sS =  where

( ),jiij xxfs ∨= (2.2)

is called the join matrix on S with respect to f.

Definition 2.2 [21, p. 190]. Let A and B be two matrices of the same

size. Then their Hadamard product (or Schur product) BA o  is defined

by

( ) .ijijij baBA =o (2.3)

Definition 2.3. We say that f is a semi-multiplicative function on P if

( ) ( ) ( ) ( )yxfyxfyfxf ∨∧= (2.4)

for all ., Pyx ∈

We adapt the previous concept from number theory, see [17, p. 49].

Note that for arithmetical functions (i.e., for functions )CZ →+

multiplicativity implies semi-multiplicativity.

Let α, β, γ, δ denote real numbers. If ( )[ ]αxf  exists for all ,Px ∈  then

we define the function αf  on P as ( ) ( )[ ] .αα = xfxf  Thus by 1−f  we mean

( ) ( ).11 xfxf =−  Note that αf  is semi-multiplicative if and only if f is

semi-multiplicative.

Let g be a complex-valued function on PP ×  such that ( ) 0, =yxg

whenever .yx ≤/  Then we say that g is an incidence function of P. If g

and h are incidence functions of P, their sum hg +  is defined by

( ) ( ) ( ) ( )yxhyxgyxhg ,,, +=+  and their convolution hg ∗  is defined

by ( ) ( ) ( ) ( )∑ ≤≤
=∗

yzx
yzhzxgyxhg .,,,  The set of all incidence

functions of P under addition and convolution forms a ring with unity,

where the unity δ is defined by ( ) 1, =δ yx  if ,yx =  and ( ) 0, =δ yx

otherwise. The zeta function ζ of P is defined by ( ) 1, =ζ yx  if ,yx ≤  and

( ) 0, =ζ yx  otherwise. The Möbius function µ of P is the inverse of ζ

under convolution. In this paper the inverse of f (if it exists) is denoted by

.f ′  We denote the restriction of an incidence function f on SS ×  by Sf
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and we write ( )′=′ SS ff  if it exists. We denote the zeta function of S by

Sζ  and let ( ) .′ζ=ζ′=µ SSS

Remark 2.1. In this paper let ( )≤,P  always be a finite lattice.

However, this is not a proper requirement, since we can always restrict

our examination, e.g., to the minimal sublattice of ( )≤,P  generated by S,

see [2].

The method used in [11] requires the assumption of finiteness. Thus

we have the least and the greatest element of P, which we denote by

Pmin0 =  and .max1 P=  We associate f with a “restricted” incidence

function df  of P by the formula ( ) ( ),,0d zfzf =  where d means “down”.

The function df  can be used in the convolution of usual incidence

functions when the first argument is equal to 0 and df  is the left member

in the convolution. Similarly, we associate f with a “restricted” incidence

function uf  of P by the formula ( ) ( ),1,u zfzf =  where u means “up”. The

function uf  can be used in the convolution of usual incidence functions

when the second argument is equal to 1 and uf  is the right member in

the convolution.

3. Two Structure Theorems

The first of two structure theorems is based on expressing the “join

part” of δγβα ,,,
, fSM  in terms of a certain meet matrix. In the second

structure theorem we express the “meet part” of δγβα ,,,
, fSM  in terms of a

certain join matrix. We prove only Theorem 3.1, since the proof of

Theorem 3.2 is similar. Note that we provide the factorizations with the

Hadamard product and also with the ordinary sum of matrices.

Remark 3.1. Finding the conditions for the existence of δγβα ,,,
, fSM

(and G and H) in the following structure theorems is not a hard but a

laborious task. So for the sake of brevity we prefer not to write the

conditions down explicitly.
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Theorem 3.1 (Meet-oriented structure theorem). Let α, β, γ, δ be real

numbers such that δγβα ,,,
, fSM  exists. Then

(( ) ) (( ) ) ,,,,
,

δ−βγ−βδ−βγ−βδγβα +== β−αβ−α DHSDDGSDM fffS o (3.1)

where ( ) ( ) ( )( ),...,,,diag 21 nxfxfxfD =

( ) ( ) ( )
( ) ( )







∨∧

≤≤

=
ββ

ββ
otherwise

xfxf

xxfxxf

xxorxxif

G

ji

jiji

ijji

ij

,1

(3.2)

and

( )
( ) (( ) )





−∧

≤≤
= β−α ,1

,0

otherwiseGxxf

xxorxxif
H

ijji

ijji
ij (3.3)

provided that the denominator in (3.2) and ( )ji xxf ∧β−α  in (3.3) are

nonzero.

Proof. First note that

( ) [ ( ) ( )] [ ( ) ( )]jijijiij xfxfxxfxxfG ββββ ∨∧= (3.4)

for all ., Sxx ji ∈  Thus if ( ) ,0≠∧β
ji xxf  then ( ) =∨β

ji xxf

( ) ( ) ( ) ( )jijiij xxfxfxfG ∧βββ  and

( ) [ ( ) ( )] [ ( ) ( )]jijijiijfS xfxfxxfxxfM δγβαδγβα ∨∧=,,,
,

( ) ( ( ) ( ) ) ( )jijjii xfGxxfxf δ−ββ−αγ−β ∧= (3.5)

(which obviously holds when ( ) ).0=∧β
ji xxf  Furthermore,

( ) ( ) (( ) )1−∧= β−α
ijjiij GxxfH (3.6)

for all ., Sxx ji ∈  Therefore ( ) ( ) ( )jiijij xxfHG ∧+= β−α1  and

( ) ( ) ( ( ) ( ) ) ( ).,,,
, jijjiiijfS xfHxxfxfM δ−ββ−αγ−βδγβα +∧= (3.7)

This completes the proof.
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Theorem 3.2 (Join-oriented structure theorem). Let α, β, γ, δ be real

numbers such that δγβα ,,,
, fSM  exists. Then

([ ] ) ([ ] ) ,,,,
,

δ−αγ−αδ−αγ−αδγβα +== α−βα−β DHSDDGSDM fffS o (3.8)

where ( ) ( ) ( )( ),...,,,diag 21 nxfxfxfD =

( ) ( ) ( )
( ) ( )







∨∧

≤≤

=
αα

αα
otherwise

xfxf

xxfxxf

xxorxxif

G

ji

jiji

ijji

ij

,1

(3.9)

and

( )
( ) (( ) )





−∨

≤≤
= α−β ,1

,0

otherwiseGxxf

xxorxxif
H

ijji

ijji
ij (3.10)

provided that the denominator in (3.9) and ( )ji xxf ∨α−β  in (3.10) are

nonzero.

The structure of δγβα ,,,
, fSM  is simple because D is a diagonal matrix

and G and H only affect those elements of ( ) β−αfS  and [ ] ,α−βfS  where ix

and jx  are incomparable. The Hadamard product and the matrix sum in

(3.1) and (3.8) do not support calculating δγβα ,,,
,det fSM  and ( ) ,1,,,

,
−δγβα

fSM

so we make some further assumptions. Consider the following conditions.

(1) Let f be a semi-multiplicative function on P (or on the set

{ } { }).,, SxxxxSxxxx jijijiji ∈|∨∈|∧ U

(2) Let S be a chain.

(3) Let .0=β

It is obvious that whenever at least one of the conditions (1), (2), (3)

holds, then G and H vanish in (3.1) (i.e., ( ) 1=ijG  and ( ) 0=ijH  for all

,1 i≤  ).nj ≤  If we replace the condition (3) with

(4) let .0=α

Then the similar arguments also hold for (3.8).
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4. The Determinant and the Inverse of δγβα ,,,
, fSM  under

certain Conditions

If we replace f with β−αf  in [11, Propositions 3.2, 3.3, 3.8 and 3.9],

then we obtain formulae for the determinant and the inverse of power

meet matrix ( ) β−αfS  on meet-closed and lower-closed sets. Similar

arguments also hold for power join matrix [ ] α−βfS  on join-closed and

upper-closed sets, see [11, Theorems 4.1 and 4.5, Corollaries 4.1 and 4.2].
Applying these formulae and Theorems 3.1 and 3.2 we obtain Theorems
4.1-4.4 presented below.

In these four theorems, let f be a function and let α, β, γ, δ be real

numbers such that the matrix δγβα ,,,
, fSM  exists.

Theorem 4.1. Let at least one of the conditions (1), (2), (3) hold. If S

is a meet-closed set, then

( ( ) )δ−βγ−βδγβα β−α= DSDM ffS detdet ,,,
,

( ) ( ) ( )∏ ∑
= ≤

β−αδ−γ−β

−≤/

µ∗=
n

k xz
k

kxxz
k

zfxf
1

d
2

1...,,1

.,0 (4.1)

Furthermore, if ,0det ,,,
, ≠δγβα
fSM  then

(( ) ) ( ) ( )
( ) ( )

( ) ( )∑ ∑
≤

−≤/

≤
≤

β−α
β−γβ−δ−δγβα

µ∗

µµ
=

kxjx
ki

kxxz
k

xx
xz

kjSkiS
jiijfS zf

xxxx
xfxfM .

,0

,,

1...,,1

d

1,,,
, (4.2)

Theorem 4.2. Let at least one of the conditions (1), (2), (3) hold. If S

is a lower-closed set, then

( ) ( ) ( )∏
=

β−αδ−γ−βδγβα µ∗=
n

k
kkfS xfxfM

1
d

2,,,
, .,0det (4.3)
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Furthermore, if ,0det ,,,
, ≠δγβα
fSM  then

(( ) ) ( ) ( )
( ) ( )
( ) ( )∑

≤
≤

β−α
β−γβ−δ−δγβα

µ∗

µµ
=

kxjx
ki xx k

kjki
jiijfS xf

xxxx
xfxfM .

,0

,,

d

1,,,
, (4.4)

Theorem 4.3. Let at least one of the conditions (1), (2), (4) hold. If S

is a join-closed set, then

( [ ] )δ−αγ−αδγβα α−β= DSDM ffS detdet ,,,
,

( ) ( ) ( )∏ ∑
= ≤

α−βδ−γ−α

≤/+

∗µ=
n

k zx
k

znxkx
k

zfxf
1

u
2

...,,1

.1, (4.5)

Furthermore, if ,0det ,,,
, ≠δγβα
fSM  then

(( ) ) ( ) ( )
( ) ( )

( ) ( )∑ ∑
≤

≤/+

≤
≤

α−β
α−γα−δ−δγβα

∗µ

µµ
=

jxkx
ik

znxkx
k

xx
zx

jkSikS
jiijfS zf

xxxx
xfxfM .

1,

,,

...,,1

u

1,,,
, (4.6)

Theorem 4.4. Let at least one of the conditions (1), (2), (4) hold. If S

is an upper-closed set, then

( ) ( ) ( )∏
=

α−βδ−γ−αδγβα ∗µ=
n

k
kkfS xfxfM

1
u

2,,,
, .1,det (4.7)

Furthermore, if ,0det ,,,
, ≠δγβα
fSM  then

(( ) ) ( ) ( )
( ) ( )
( ) ( )∑

≤
≤

α−β
α−γα−δ−δγβα

∗µ

µµ
=

jxkx
ik xx k

jkik
jiijfS xf

xxxx
xfxfM .

1,

,,

u

1,,,
, (4.8)

If f is a semi-multiplicative function, i.e., if (1) holds, then ( ) β−αfSdet

and ( ) 1−
β−αf

S  are also known on join-closed and upper-closed sets, see [11,

Section 5.5]. By applying these results to (3.1) we obtain the formulae



w
w

w
.p

ph
m

j.c
om

ISMO KORKEE84

presented in (4.5)-(4.8). Similarly, if (1) holds, then [ ] α−βfSdet  and

[ ] 1−
α−βf

S  are also known on meet-closed and lower-closed sets, see [11,

Section 5.3]. By applying these results to (3.8) we obtain the formulae
presented in (4.1)-(4.4).

As special cases of the results above we obtain formulae for a large
number of classes of matrices including, e.g., the Hadamard product of
power meet and power join matrices

( ) [ ] [ ( ) ( )].jijiff xxfxxfSS ∨∧= βαβα o (4.9)

For the sake of brevity, we do not present these formulae here.

5. Results for Number Theory

We can adapt our results to the lattice ( ) ( ).lcmgcd,,, ++ =| ZZ  As

noted in Remark 2.1, we can restrict the examination to the finite

sublattice ( )|↓ ,lcm S  of ( ),, |+Z  where lcm S is the least common

multiple of the elements of S, see [11, Section 6]. The concepts of meet-,

lower-, join- and upper-closed sets can be replaced with the concepts of
gcd-, factor-, lcm- and multiple-closed sets respectively. The following
table is based on some observations of [11].

Expression in ( )≤,P → Expression in ( )|+ ,Z

jiji xxxx ∨∧ , → ( ) [ ]jiji xxxx ,,,

( )yx,µ →  ( )xyµ

( )jiS xx ,µ →  ( )∑
−|/|
µ

11 ...,,; jiji xxdxxdx
d   (gcd-closed S)

( )jiS xx ,µ →  ( )∑ |/| +
µ

jniji xdxdxxdx
d

...,; 1
 (lcm-closed S)

( ) ( )zf ,0d µ∗ →  ( ) ( )zf µ∗

( ) ( )1,u zf∗µ →  ( ) ( ).
lcm∑ µ

Syz
zyyf

For the number-theoretic Möbius function ( )nµ  see [12, p. 300].
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In the following, let f be an arithmetical function and let α, β, γ, δ be

real numbers such that the matrix ( )ijfS mM =δγβα ,,,
,  exists, where

(( )) ([ ])
( ) ( )

.
,,

ji

jiji
ij

xfxf

xxfxxf
m

δγ

βα
= (5.1)

By Theorems 4.1-4.4 we obtain the following corollaries. Note that the

condition (2) for S means .21 nxxx |L

Corollary 5.1. Let at least one of the conditions (1), (2), (3) hold.

Denote

( ) ( ) ( )∑ ∑
−|/ −|/

|

β−α µ=µ∗=

1...,,1 1...,,1

|

,

kxxd
k

kxxrdx
krxd xdx

rkk dcdfd (5.2)

for .,1 nrk ≤≤  If S is a gcd-closed set, then

( )∏
=

δ−γ−βδγβα =
n

k
kkfS dxfM

1

2,,,
, .det (5.3)

Furthermore, if ,0det ,,,
, ≠δγβα
fSM  then

(( ) ) ( ) ( ) ∑
|
|

β−γβ−δ−δγβα =

kxjx
ki xx

k

jkik
jiijfS d

cc
xfxfM .1,,,

, (5.4)

Corollary 5.2. Let at least one of the conditions (1), (2), (3) hold. If S

is a factor-closed set, then

( ) ( ) ( )∏
=

β−αδ−γ−βδγβα µ∗=
n

k
kkfS xfxfM

1

2,,,
, .det (5.5)

Furthermore, if ,0det ,,,
, ≠δγβα
fSM  then

(( ) ) ( ) ( )
( ) ( )
( ) ( )∑

|
|

β−α
β−γβ−δ−δγβα

µ∗

µµ
=

kxjx
ki xx k

jkik
jiijfS xf

xxxx
xfxfM .1,,,

, (5.6)
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Corollary 5.3. Let at least one of the conditions (1), (2), (4) hold.

Denote

( ) ( ) ( )∑ ∑ ∑
|/+ |/+

|

α−β µ=µ=

znxkx
nk n

rxndxkdx
rkxzx xyz xdx

krk dczyyfd

...,,1 ...,,1

, (5.7)

for .,1 nrk ≤≤  If S is an lcm-closed set, then

( )∏
=

δ−γ−αδγβα =
n

k
kkfS dxfM

1

2,,,
, .det (5.8)

Furthermore, if ,0det ,,,
, ≠δγβα
fSM  then

(( ) ) ( ) ( ) ∑
|
|

α−γα−δ−δγβα =

jxkx
ik xx

k

kjki
jiijfS d

cc
xfxfM .1,,,

, (5.9)

Corollary 5.4. Let at least one of the conditions (1), (2), (4) hold. If S

is a multiple-closed set, then

( ) ( ) ( )∏ ∑
=

α−βδ−γ−αδγβα µ=
n

k xyx
kkfS

nk

xyyfxfM
1

2,,,
, .det (5.10)

Furthermore, if ,0det ,,,
, ≠δγβα
fSM  then

(( ) ) ( ) ( )
( ) ( )

( ) ( )∑ ∑
|
|

α−β
α−γα−δ−δγβα

µ

µµ
=

jxkx
ik

nk

xx
xyx

k

kjki
jiijfS xyyf

xxxx
xfxfM .1,,,

, (5.11)

As examples we next present results that are already known in
number theory. In the literature the results mostly concern the

arithmetical function ( ) ( ) ,nnNnf ==  which is semi-multiplicative and

nonzero.

Example 5.1. Consider the power GCD matrix [( ) ]αα = jiNS xxM ,0,0,0,
,

and the power LCM matrix [[ ] ].,0,0,,0
,

ββ = jiNS xxM  By Corollary 5.1 we

obtain the formulae presented in [4, Theorems 12 and 13] (note that the
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role of µ in [4, Theorem 13] is unclear). Further, by Corollary 5.2 we

obtain the formulae presented in [3, Examples 1 (iii) and 3 (i)]. By

Corollary 5.2 we also obtain formulae for [ ( )]ji xx ,1  and [ [ ]]ji xx ,1

presented in [1, Corollaries 1 and 3]. Note that Smith [18, (2)] already

presented formula for ,det 0,0,0,
,

α
NSM  where { }....,,2,1 nS =  He also

mentioned the possibility to replace S with any factor-closed set S.

Example 5.2. Consider the matrix [( ) [ ]]jijiNS xxxxM ,,0,0,1,1
, =−

(so-called GCD-reciprocal LCM matrix). By Corollaries 5.1 and 5.3 we

obtain the formulae presented in [14, Corollary 1 and Theorem 3] and

[13, Corollary 1 and Theorem 2]. Note that the formulae in [13] can be

written in terms of the new expressions due to [11]. Further, if

{ },...,,2,1 nS =  then by Corollary 5.2 we obtain formulae for

[[ ] ( )]jijiNS xxxxM ,,0,0,1,1
, =−  (so-called LCM-reciprocal GCD matrix)

presented by [19, Corollary 1 and Theorem 2].

Remark 5.1. The structure ( ),+Z  is a meet-semilattice, where  is

the unitary divisibility relation defined by ( )( ),1,and =|⇔ xyxyxyx

see [5]. However, ( ),+Z  is not a lattice, since the least common unitary

multiple of integers x and y does not always exist. Thus Corollaries 5.1-

5.4 do not necessarily hold for GCUD and LCUM matrices, see [7].
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