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Abstract

Let S = {x1, xg, ..., x;;} be a subset of a lattice (P, <)= (P, A, V) and

let f: P — C be a function. We present two structure theorems for the

n x n matrix Mg,?,y,& = (myj), where

O fe ) v

v JERIENS

and o, B, v, 8 are appropriate real numbers. We also present formulae
for the determinant and the inverse of M g,?,y,é on meet-closed sets S
(e, x;, xj € S = x; Axj € S) and join-closed sets S (i.e., x;, xj € S
= x; Vxj€ S). These formulae are generalizations of those obtained
for meet matrices (S)f 2 M‘ls.”(l)jo’o and join matrices [S]f = Mg.’}’o’o

in the literature. We also present our results in a number-theoretic
setting, i.e., in the lattice (Z,,|)=(Z,, gcd, lem), where | is the usual

divisibility relation.
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1. Introduction

Let (P,<)=(P,A,v) be a locally finite lattice, let
S = {x;, x9, ..., x,} be a subset of Pand let f : P — C be a function. The

meet matrix (S)f and the join matrix [S]f on S with respect to f are

defined as ((S););; = f(x; A x;) and ([S]y); = f(x; v x;).

Haukkanen [6] introduced meet matrices and obtained formulae for
the determinant and the inverse of (S)f (see also [16] and [20]). Korkee

and Haukkanen [10] used incidence functions (see Section 2) in the study

of meet matrices. There we obtained new upper and lower bounds for

det(S); and a new formula for (S)}_c1 on meet-closed sets S (i.e., x;, x; €

J
S = x; nxj € S). Recently we introduced join matrices [11] and

presented formulae for det[S]f, new upper and lower bounds for det[S]f

and a new formula for [S]]?1 on join-closed sets S (i.e., x;, x; € S = x; v

x; € S). By assuming the semi-multiplicativity of f, formulae for det(S) /

and (S)}1 on join-closed sets and formulae for det[S]; and [S]}1 on

meet-closed sets are also presented in [11].

Define the n x n matrix Mg’g’y’a = (m;;), where

_ flag Axy)* flog v xj)B
f(xi)yf(xj)a

i (1.1)

and o, B, v, 8 are appropriate real numbers. Since (S)f = M}S’?;O’O and
_ 170,1,0,0 . o,B,y,8 - . ..
[S]y = Mg /" the matrix Mg w"® is a generalization of meet and join

matrices. We present two structure theorems for Mg’%y’s. Under

certain conditions we obtain formulae for the determinant and the

inverse of Mg’][%’y’s on meet-closed and join-closed sets S.
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It is well known that (Z,, |) = (Z,, ged, lecm) is a locally finite lattice,

where | is the usual divisibility relation and ged and lem stand for the
greatest common divisor and the least common multiple of integers. Thus

meet and join matrices are generalizations of GCD matrices ((S);); =
f(ged(x;, x;)) and LCM matrices ([S];); = f(lem(x;, x;)), see [11, Section
6]. The study of GCD and LCM matrices is considered to begun in
1875/76 when H. J. S. Smith presented his famous determinant
formulae, see [18]. For general accounts of GCD and related matrices, see

[7], [8] and [11].

We also present our results in a number-theoretic setting, i.e., for
combinations of GCD and LCM matrices. Our results are generalizations
of those obtained for power GCD matrices and power LCM matrices in
[1], [3], [4], [18], see also [9]. Our results also generalize results for GCD-
reciprocal LCM matrices and LCM-reciprocal GCD matrices presented in
[13], [14] and [19], see also [15]. Note that in the literature these results
are mostly obtained for the function N : Z, — C, N(n) = n.

2. Definitions

Let S be a subset of a lattice (P, <)= (P, A, v). We say that S is
lower-closed if (x € S,ye P, y<x)=yeS. We say that S is meet-
closedif x, ye S = x Ay € S. We define the dual concepts upper-closed

and join-closed analogously. It is clear that a lower-closed set is always
meet-closed but the converse does not hold, and dually, an upper-closed
set 1s always join-closed but the converse does not hold. The principal
order ideal of x € P is defined by {x = {z € P|z < x}.

Let f always be a complex-valued function on P and let S = {x;, xg,

.ws %, } be a subset of P such that x; < x; = i < ji.

Definition 2.1. The n x n matrix (S); = (s;;), where

sij = f(x; A xj), (2.1)

is called the meet matrix on S with respect to f. Similarly, the nxn
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matrix [S]; = (s;;), where

sij = f(x; v xj), (2.2)
is called the join matrix on S with respect to f.

Definition 2.2 [21, p. 190]. Let A and B be two matrices of the same
size. Then their Hadamard product (or Schur product) A o B is defined
by

(Ao B)ij = a;;b;;. (2.3)

Definition 2.3. We say that f is a semi-multiplicative function on P if

f()f(y) = flx A 9)flx v y) (2.4)
for all x, y € P.

We adapt the previous concept from number theory, see [17, p. 49].

Note that for arithmetical functions (i.e., for functions Z, — C)
multiplicativity implies semi-multiplicativity.

Let a, B, v, 8 denote real numbers. If [f(x)|* exists for all x € P, then
we define the function f* on Pas f*(x) = [f(x)]*. Thus by /™' we mean
f~(x) = 1/f(x). Note that f* is semi-multiplicative if and only if f is
semi-multiplicative.

Let g be a complex-valued function on P x P such that g(x, y) = 0
whenever x £ y. Then we say that g is an incidence function of P. If g
and h are incidence functions of P, their sum g+ h is defined by

(g +h)(x, y) = g(x, y) + h(x, y) and their convolution g *h is defined
by (gxh)(x, y) =D,

functions of P under addition and convolution forms a ring with unity,

<2<y g(x, 2)h(z, y). The set of all incidence
where the unity & is defined by 8(x, y) =1 if x = y, and 8(x, y) =0
otherwise. The zeta function ¢ of P is defined by {(x, y) =1 if x < y, and
C(x, y) = 0 otherwise. The Mobius function p of P is the inverse of ¢

under convolution. In this paper the inverse of f (if it exists) is denoted by

f'. We denote the restriction of an incidence function fon S xS by fg
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’

and we write f§ = (fg) if it exists. We denote the zeta function of S by
Cs andlet ug = L5 = (Cs) -

Remark 2.1. In this paper let (P, <) always be a finite lattice.

However, this is not a proper requirement, since we can always restrict

our examination, e.g., to the minimal sublattice of (P, <) generated by S,
see [2].

The method used in [11] requires the assumption of finiteness. Thus
we have the least and the greatest element of P, which we denote by
0 = min P and 1 = max P. We associate f with a “restricted” incidence

function fy of P by the formula f(z) = f4(0, z), where d means “down”.
The function f; can be used in the convolution of usual incidence
functions when the first argument is equal to 0 and fy is the left member

in the convolution. Similarly, we associate f with a “restricted” incidence

function f, of P by the formula f(z) = f,,(z, 1), where u means “up”. The
function f,, can be used in the convolution of usual incidence functions
when the second argument is equal to 1 and f, is the right member in

the convolution.
3. Two Structure Theorems

The first of two structure theorems is based on expressing the “join

part” of Mg,}l},y,& in terms of a certain meet matrix. In the second

structure theorem we express the “meet part” of M g’?’y’S in terms of a

certain join matrix. We prove only Theorem 3.1, since the proof of
Theorem 3.2 is similar. Note that we provide the factorizations with the

Hadamard product and also with the ordinary sum of matrices.

Remark 3.1. Finding the conditions for the existence of Mg’;”“’

(and G and H) in the following structure theorems is not a hard but a
laborious task. So for the sake of brevity we prefer not to write the

conditions down explicitly.
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Theorem 3.1 (Meet-oriented structure theorem). Let o, B, v, 8 be real

numbers such that Mg";’m exists. Then
MR = DPY((8)ap 0 G)DP® = DPY((S)pap + H)DP?, (3.1

where D = diag(f(xy), f(x9), ..., f(x,,)),

1 if x; <xjorx;<ux;,
(G)ij = 1P gx])fs(xl v xj) otherwise (3.2)
P ) P ()
and
if x; <xjorxj < x,
H); = 3.3
( )U {fa_ﬁ(xi A xj)((G)ij —1) otherwise, 3.3)

provided that the denominator in (3.2) and fo‘*ﬁ(xi AXj) in (3.3) are

nonzero.

Proof. First note that
(@) = [FP (i n )Pl v USP (i) £P ()] (3.4)
for all x;,x;€S. Thus if fP(x; Ax;)=0, then fPx;va;)=
(@) 1P (i) P ()P (i A ;) and
(MR =T (s A ) Py v ) /U () O )]
= PP ) (PP ey~ ) (@)y) FP0x;) (3.5)
(which obviously holds when fP(x; A x;) = 0). Furthermore,
(H)y = £*Ple; n ) (@) - 1) (3.6)
for all x;, x; € S. Therefore (G); =1+ (H);/f* P(x; A x;) and
(MERT0)y = P71 o) (PP (g A )+ (HD) P70 () (3.7)

This completes the proof.
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Theorem 3.2 (Join-oriented structure theorem). Let o, B, v, 8 be real

numbers such that Mg";’V’B exists. Then
MR = DU ([S]p-a o G)D*® = D*V([S]p-a + H)D*®,  (3.89)

where D = dlag(f(x1)> f(JC2), ceey f(xn))’

1 if % <xjorx; <,
(G)ij =1 f%x; A xj)f“(xi v xj) otherwise (3.9)
P ) (x;)
and
if x; <xjorxj <xy,
H)j = 3.10
( )U {fﬁ_a(xi v xj)((G)ij —1) otherwise, ( )

provided that the denominator in (3.9) and fB_“(xi v x;j) in (3.10) are
nonzero.

The structure of Mg?y8 is simple because D is a diagonal matrix
and G and H only affect those elements of (S)s«-p and [S]p-«, where x;
and x; are incomparable. The Hadamard product and the matrix sum in
(3.1) and (3.8) do not support calculating det Mg[;YS and (Mg:?’y’s)_l,

so we make some further assumptions. Consider the following conditions.

(1) Let f be a semi-multiplicative function on P (or on the set

{xi /\xj|xi, x] € S}U{xl vxj|xi, .X‘] € S})

(2) Let S be a chain.
(3) Let g = 0.

It is obvious that whenever at least one of the conditions (1), (2), (3)
holds, then G and H vanish in (3.1) (i.e., (G); =1 and (H); = 0 for all

1 <1, j < n). If we replace the condition (3) with

(4) let o = 0.

Then the similar arguments also hold for (3.8).
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4. The Determinant and the Inverse of Mg’?’y’s under

certain Conditions

If we replace f with f*P in [11, Propositions 3.2, 3.3, 3.8 and 3.9],

then we obtain formulae for the determinant and the inverse of power

meet matrix (S)fa—ﬁ on meet-closed and lower-closed sets. Similar
arguments also hold for power join matrix [S]fB—a on join-closed and

upper-closed sets, see [11, Theorems 4.1 and 4.5, Corollaries 4.1 and 4.2].
Applying these formulae and Theorems 3.1 and 3.2 we obtain Theorems
4.1-4.4 presented below.

In these four theorems, let f be a function and let a, B, y, & be real

numbers such that the matrix M g’ﬁ’y’s exists.

Theorem 4.1. Let at least one of the conditions (1), (2), (3) hold. If S

is a meet-closed set, then

det Mg P"° = det(DP~¥(S) u-p DP0)

=T D (P *wo2. @D
k=1

z<xp,

Furthermore, if det Mg’]@’y’6 % 0, then

- _ - (o, 2 ) (2, )
(g p oy Ny = PP Py Y 2 LI 4
SE ’ Z YW 2)

xj<xp z<xp,
zﬁxl,.“,xk_l

Theorem 4.2. Let at least one of the conditions (1), (2), (3) hold. If S

is a lower-closed set, then

n
det Mg:]E,Y,B - HfZﬁ—v—B(xk)(f(ft—ﬁ % 1) (0, x). (4.3)
k=1
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Furthermore, if det Mg’l'%’y’s = 0, then

MaBy 3 5—p %) f1™ B nxi, xp)ulx, xk)‘ A
( 7y = TG {Z;k (F2P + w)(0, xp) @

Xjsxk

Theorem 4.3. Let at least one of the conditions (1), (2), (4) hold. If S

is a join-closed set, then

det MR = det(D*V[S]pp-a D*°)

Hfga ) D fE). @h)

xXp<z
Xp4lses Xn¥2

Furthermore, if det MS’IE”Y’8 = 0, then

_ . . (o0, 27 ) (g5 %)
(G = ) 10 ) Y L. @)
Spo T Z S e

XR<Kj Xp<z

Theorem 4.4. Let at least one of the conditions (1), (2), (4) hold. If S

is an upper-closed set, then

det MG R T = T2 2 Cen) (w* f57*) (g, 1) 4.7)
k=1

Furthermore, if det Mg’]%’y’6 = 0, then

MaBVS _ 5 )1 Blg, Xi)u(p, © ]) (4.8)
(( ) )L] f ( f ( )Z (H*flli)) a)(xk,l)

Xp<X;
Xp<xj

If fis a semi-multiplicative function, i.e., if (1) holds, then det(S)fa—B
and (S);i—s are also known on join-closed and upper-closed sets, see [11,

Section 5.5]. By applying these results to (3.1) we obtain the formulae
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presented in (4.5)-(4.8). Similarly, if (1) holds, then det[S]fB—a and
[S]f_[.’}—(x are also known on meet-closed and lower-closed sets, see [11,

Section 5.3]. By applying these results to (3.8) we obtain the formulae
presented in (4.1)-(4.4).

As special cases of the results above we obtain formulae for a large
number of classes of matrices including, e.g., the Hadamard product of

power meet and power join matrices

(S)e o [S]yp = [f*(x; A x) P v x))). (4.9)

For the sake of brevity, we do not present these formulae here.
5. Results for Number Theory

We can adapt our results to the lattice (Z,, |) = (Z,, ged, lem). As

noted in Remark 2.1, we can restrict the examination to the finite
sublattice (Y lemS,|) of (Z,,|), where lem S is the least common

multiple of the elements of S, see [11, Section 6]. The concepts of meet-,
lower-, join- and upper-closed sets can be replaced with the concepts of
ged-, factor-, lem- and multiple-closed sets respectively. The following
table is based on some observations of [11].
Expression in (P,<) — Expressionin (Z,, |)
xi/\xj,xivxj g (xi,xj), [xi,xj]

ux, y) - uy/x)
MS(xb x]) - dei |xjidoc; [ 2y, X “(d) (ged-closed S)

us(x;, x;) — deilxj;dxi+1...,dxn}(xj uw(d) (Iem-closed S)
(fa*w0,2) - (f*p)(2)

Weh)D) > > O/,

For the number-theoretic Mébius function p(n) see [12, p. 300].
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In the following, let f be an arithmetical function and let o, B, v, & be
real numbers such that the matrix M g,[fi,y,& = (m;j) exists, where

G () (5.1)

v £ () ()

By Theorems 4.1-4.4 we obtain the following corollaries. Note that the
condition (2) for S means x| xy |-+ %,

Corollary 5.1. Let at least one of the conditions (1), (2), (3) hold.

Denote

dp= D, (Prw@, en= ), wd 62

dlxp, dx, | xp,

for 1 <k, r <n.IfSisaged-closed set, then
n
det M0 =TT (x4) s (5.3)
k=1
Furthermore, if det Mg }e 18 20, then
(g h ooy = 1P 1Py 3 (5.4)
x; | xp
xjlxp

Corollary 5.2. Let at least one of the conditions (1), (2), (3) hold. If S
is a factor-closed set, then

det MG = [T @) (P x @) 65)
k=1

Furthermore, if det MS’IE”Y’8 # 0, then

e ﬁ \5 5B P H(xk/xi)l’-(xk/xj). (5.6)
(OIS0 Dy = P06 2 S
xjlxp
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Corollary 5.3. Let at least one of the conditions (1), (2), (4) hold.
Denote

de= Y > oG ar= ). wd) G

xplz|x, 2| y|a, dxp |x,
Xhgls-Xpn |2 dxpi1,....dxy | xp

for 1 <k, r <n. If Sisan lcm-closed set, then
n
det MG P10 = TT 72772 (x)dp (5.8)
k=1
Furthermore, if det Mg’]e’y’8 # 0, then
(M Fro 1y = 1)) Y (5.9
Xk | %
xp | xj

Corollary 5.4. Let at least one of the conditions (1), (2), (4) hold. If S

is a multiple-closed set, then

det MgH"? = Hfz“ ) Y /). (B.10)

xp| ¥ |xn

Furthermore, if det Mg }e 18 40, then

MuﬁYS o= fo-o x;) ¢ i [ )l /) . (5.11)
(( Vg = £ ) 1 )kagL D )uly/x)

xklxj xp| y|xn

As examples we next present results that are already known in
number theory. In the literature the results mostly concern the

arithmetical function f(n) = N(n) = n, which is semi-multiplicative and

nonzero.
Example 5.1. Consider the power GCD matrix M g:?\}o,o = [(xj, ;)]

and the power LCM matrix M0 B 0.0 = [[x;, xj]B]. By Corollary 5.1 we

obtain the formulae presented in [4, Theorems 12 and 13] (note that the
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role of p in [4, Theorem 13] is unclear). Further, by Corollary 5.2 we
obtain the formulae presented in [3, Examples 1 (1) and 3 (1)]. By
Corollary 5.2 we also obtain formulae for [1/(x;, ;)] and [1/[x;, x;]]

presented in [1, Corollaries 1 and 3]. Note that Smith [18, (2)] already

presented formula for det Mg’?\’,o’o, where S =1{1,2, ..., n}. He also

mentioned the possibility to replace S with any factor-closed set S.

Example 5.2. Consider the matrix M}g’_z\l,’o’o = [(oj, )/ [, ;]]

(so-called GCD-reciprocal LCM matrix). By Corollaries 5.1 and 5.3 we
obtain the formulae presented in [14, Corollary 1 and Theorem 3] and
[13, Corollary 1 and Theorem 2]. Note that the formulae in [13] can be
written in terms of the new expressions due to [11]. Further, if

S=1{,2, .. n}, then by Corollary 5.2 we obtain formulae for
M;}}\lr’o’o =[[x;,x;]/(x;, x;)] (so-called LCM-reciprocal GCD matrix)
presented by [19, Corollary 1 and Theorem 2].

Remark 5.1. The structure (Z,, ||) is a meet-semilattice, where | is
the unitary divisibility relation defined by x| y < (x|y and (x, y/x) = 1),
see [5]. However, (Z,, |) is not a lattice, since the least common unitary

multiple of integers x and y does not always exist. Thus Corollaries 5.1-
5.4 do not necessarily hold for GCUD and LCUM matrices, see [7].
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