JP Journal of Algebra, Number Theory and Applications

Volume 22, Number 2, 2011, Pages 155-174

Published Online: July 12, 2011

This paper is available online at http://pphmj.com/journals/jpanta.htm

© 2011 Pushpa Publishing House

2-CLASS GROUP OF QUADRATIC FIELDS

ALEJANDRO AGUILAR-ZAVOZNIK and MARIO PINEDA-RUELAS

Departamento de Matemáticas Universidad Autónoma Metropolitana-Iztapalapa Av San Rafael Atlixco No. 186, Col.Vicentina C.P.09340 Del. Iztapalapa, D.F., México

e-mail: aaz@xanum.uam.mx mpr@xanum.uam.mx

Abstract

We find explicitly the 2-class group of a quadratic field. We use this result to give a criterion to decide whether an ideal is principal if the exponent of $Cl_{\mathbb{F}}$ is 2.

1. Introduction

Let $\mathbb{F}=\mathbb{Q}(\sqrt{d})$ be a quadratic field, $\mathcal{O}_{\mathbb{F}}$ the ring of integers of \mathbb{F} , $Cl_{\mathbb{F}}$ the class group of \mathbb{F} , Cl_2 the 2-Sylow subgroup of $Cl_{\mathbb{F}}$ and $\delta_{\mathbb{F}}$ the discriminant of \mathbb{F} . It is well known that the rank of Cl_2 depends on the number and type of the prime factors of d. However, obtaining Cl_2 is not an easy task. In [1], [2], [4] and [6], the theory of quadratic forms is used to give an algorithm that computes Cl_2 . Given a class $\bar{I} \in Cl_2$, they give different methods to obtain, if possible, another class \bar{J} such that $\bar{J}^2 = \bar{I}$. It is easy to find representatives of all the ambiguous ideal classes (i.e., classes of order 2) and we can use any of the previous methods to construct Cl_2 . In this paper, we will give another procedure to compute Cl_2 , but instead of starting from the ambiguous classes, we will give elements $\alpha \in \mathcal{O}_{\mathbb{F}}$ such that $\langle \overline{\alpha} \rangle$ $\overline{2010}$ Mathematics Subject Classification: 11R11, 11R29, 11Y40.

Keywords and phrases: quadratic field, 2-class group.

Received January 27, 2011

is maximal in the set of cyclic subgroups of Cl_2 . If the exponent of $Cl_{\mathbb{F}}$ is 2, then we give a criterion to decide if an ideal of $\mathcal{O}_{\mathbb{F}}$ is principal or non-principal. With the aid of the computer programs KASH3 [3] and Sage [7], we solve some explicit examples.

2. Some Results on Finite Abelian Groups

We use C_n to denote the cyclic group of order n and for $a \in \mathbb{Z}$, we will write \overline{a} to denote the class of a in C_n , where we assume that $C_n = \mathbb{Z}/n\mathbb{Z}$. Let $G = \langle g_1, ..., g_r \rangle$ be a finite abelian group. We are interested in finding $h_1, ..., h_k \in G$ that satisfy

$$G = \langle h_1, ..., h_k \rangle \cong \langle h_1 \rangle \oplus \cdots \oplus \langle h_k \rangle.$$

Let $C_G = \{\langle a \rangle : a \in G\}$. Then

Proposition 1. Let $G = G_1 \oplus \cdots \oplus G_k$ be a finite abelian p-group where each G_j is a cyclic p-group. If $(\overline{a_1}, ..., \overline{a_k}) \in G$, then $\langle (\overline{a_1}, ..., \overline{a_k}) \rangle$ is a maximal element in C_G if and only if $\gcd(a_i, p) = 1$ for some i.

Proof. Suppose that $\langle (\overline{a_1},...,\overline{a_k}) \rangle$ is maximal in \mathcal{C}_G and $\gcd(a_i,p)=p$ for all i. If $b_i=a_i/p$, then we have

$$\langle (\overline{a_1}, ..., \overline{a_k}) \rangle = \langle (\overline{pb_1}, ..., \overline{pb_k}) \rangle = \langle p(\overline{b_1}, ..., \overline{b_k}) \rangle$$

Since

$$o(\langle(\overline{a_1},\,...,\,\overline{a_k})\rangle)=\frac{o(\langle(\overline{b_1},\,...,\,\overline{b_k})\rangle)}{n},$$

then

$$\langle (\overline{a_1}, ..., \overline{a_k}) \rangle \subsetneq \langle (\overline{b_1}, ..., \overline{b_k}) \rangle$$

so that $\langle (\overline{a_1}, ..., \overline{a_k}) \rangle$ is not a maximal element in C_G .

Conversely, we may assume without loss of generality that $\gcd(a_1, p) = 1$. Let $\langle (\overline{c_1}, ..., \overline{c_k}) \rangle \in \mathcal{C}_G$ be such that $\langle (\overline{a_1}, ..., \overline{a_k}) \rangle \subseteq \langle (\overline{c_1}, ..., \overline{c_k}) \rangle$. Let $n \in \mathbb{Z}$ be such that $\langle (\overline{a_1}, ..., \overline{a_k}) \rangle = \langle n(\overline{c_1}, ..., \overline{c_k}) \rangle$. We consider the projection $\phi : G \to G_1$. Since

 $gcd(a_1, p) = 1, \ \phi(\langle (\overline{a_1}, ..., \overline{a_k}) \rangle) = G_1.$ From the equality

$$o((\overline{a_1}, ..., \overline{a_k})) = \frac{o((\overline{c_1}, ..., \overline{c_k}))}{\gcd(n, o((\overline{c_1}, ..., \overline{c_k})))},$$

it follows that if $\gcd(n, o((\overline{c_1}, ..., \overline{c_k}))) > 1$, then $p \mid n$ and $\phi(\langle n(\overline{c_1}, ..., \overline{c_k}) \rangle) \neq G_1$, which is impossible. Therefore, $\gcd(n, o((\overline{c_1}, ..., \overline{c_k}))) = 1$ and from this it follows that $\langle (\overline{a_1}, ..., \overline{a_k}) \rangle$ is a maximal element in \mathcal{C}_G .

Next result is similar to the Fundamental Theorem of the Finite Abelian Groups.

Proposition 2. Let G be a finite abelian p-group, H a subgroup of G, $g \in G$ such that $G = \langle H, g \rangle$, $g \notin H$ and $o(g) \leq o(\langle h \rangle)$ for all $\langle h \rangle$ maximal in C_H . Then there is $g' \in G$ such that $G = \langle H, g' \rangle \cong H \oplus \langle g' \rangle$.

Proof. Let $\mu = sp^m$ be the smallest positive integer such that $\mu g \in H$ and $\gcd(s, p) = 1$. Since $\langle g \rangle = \langle sg \rangle$, we may assume that $\mu = p^m$. Now consider $h \in H$ with $\langle h \rangle$ maximal in \mathcal{C}_H , $p^m g \in \langle h \rangle$ and let $v = tp^n$ be the least positive integer such that $\gcd(t, p) = 1$ and $p^m g = vh$. As before, we can replace h with th and assume that $v = p^n$. It is clear that if $o(g) = p^{m+r}$, then $o(h) = p^{n+r}$. If e is the identity of G, then

$$e = p^{m+r}g = p^m p^r g = p^r (p^m g) = (p^r - 1)(p^m g) + (p^m g)$$
$$= (p^r - 1)(p^n h) + (p^m g) = p^m ((p^r - 1)p^{n-m}h + g).$$

Let $g' = (p^r - 1)p^{n-m}h + g$. It is clear that $g' \neq e$ and $o(g') \leq p^m$. Suppose that $o(g') = p^j$ and $1 \leq j < m$. Then

$$e = p^{j}g' = p^{j}((p^{r}-1)p^{n-m}h + g) = p^{j}((p^{r}-1)p^{n-m}h) + p^{j}g \in \langle h \rangle.$$

Therefore, $p^j g \in \langle h \rangle$ which is impossible. Thus j = m.

Since $g' = (p^r - 1) p^{n-m} h + g$, we obtain $G = \langle H, g' \rangle$. The assertion $\langle H, g' \rangle$ $\cong H \oplus \langle g' \rangle$ is a consequence of $H \cap \langle g' \rangle = \langle e \rangle$. Next, we will describe an algorithm that will help us modify the set of generators of a finite abelian group G so that the new set of generators decompose G as a direct sum.

Algorithm. Let $G = \langle g_1, ..., g_r \rangle$ be a finite abelian group and assume that $o(g_i)$ are known for i = 1, ..., r. First, we study the case when G is a p-group. In the process that we are describing, whenever we change some generator (if required), we will reindex the new elements so that

$$o(g_1) \ge o(g_2) \ge \cdots \ge o(g_r)$$
.

Let $G'=\langle g_1,\,g_2\rangle,\,H'=\langle g_1\rangle$ and $g=g_2$ as in Proposition 2. If $g_2\in H'$, then $G=\langle g_1,\,g_3,\,...,\,g_r\rangle$. So we can assume that $g_2\notin H'$. By using Proposition 2, there is $g_2'\in G'$ such that

$$G' = \langle H', g_2' \rangle \cong H' \oplus \langle g_2' \rangle$$
 and $\langle g_1, g_2, ..., g_r \rangle = \langle g_1, g_2', ..., g_r \rangle$.

It is possible that $o(g_2') < o(g_3)$. If this was the case, then we reindex and repeat the process until $g_2' = g_2$. Therefore, $G' \cong \langle g_1 \rangle \oplus \langle g_2 \rangle$. For the next step, we let $G' = \langle g_1, g_2, g_3 \rangle$, $H' = \langle g_1, g_2 \rangle \cong \langle g_1 \rangle \oplus \langle g_2 \rangle$ and $g = g_3$ as in Proposition 2. We may assume that $g_3 \notin H'$. Since $o(g_1) \geq o(g_2) \geq o(g_3)$, the order of any maximal cyclic subgroup of H' is greater or equal to $o(g_3)$ and therefore satisfies the hypothesis of Proposition 2. Let $g_3' \in G'$ such that $G' = \langle g_1 \rangle \oplus \langle g_2 \rangle \oplus \langle g_3' \rangle$. If $o(g_3') < o(g_4)$, then repeat the process until we obtain $g_3' = g_3$ and $G' = \langle g_1 \rangle \oplus \langle g_2 \rangle \oplus \langle g_3' \rangle$. Continuing with this, we can construct explicitly a basis $\{g_1, ..., g_t\}$ of G such that $G \cong \langle g_1 \rangle \oplus ... \oplus \langle g_t \rangle$. In general, if G is a finite abelian group, then we apply the Algorithm to each g-Sylow subgroup of G.

We will refer to the procedure that we have described previously as the Algorithm.

Example 1. Let $G = C_{16} \oplus C_8 \oplus C_8 \oplus C_4$ and $H = \langle g_1, g_2, g_3, g_4, g_5 \rangle$, where $g_1 = (\overline{1}, \overline{1}, \overline{1})$, $g_2 = (\overline{3}, \overline{1}, \overline{1}, \overline{1})$, $g_3 = (\overline{7}, \overline{3}, \overline{0}, \overline{2})$, $g_4 = (\overline{3}, \overline{0}, \overline{1}, \overline{1})$, $g_5 = (\overline{12}, \overline{6}, \overline{3}, \overline{1}) \in G$. Using the Algorithm, we will find the representation of H as a direct sum of cyclic subgroups of H. Note that

$$o(g_1) = o(g_2) = o(g_3) = o(g_4) = 16, o(g_5) = 8,$$

so, according to the Algorithm, they are arranged already in a proper way. We apply Proposition 2 to $G' = \langle g_1, g_2 \rangle$, $H' = \langle g_1 \rangle$ and $g = g_2$. The minimal positive integers m and n such that $\mu g_1 = \nu g_2$ are $\mu = 12$ and $\nu = 4$. Since $12 = 3 \cdot 4$, we replace g_1 with $3g_1$, and call g_1 again the new element. With this notation, we have $g_1 = (\overline{3}, \overline{3}, \overline{3}, \overline{3})$. If $h = g_1$, then we have $4g \in \langle h \rangle$ and the minimal positive integers μ and ν such that $\mu g = \nu h$ are $\mu = \nu = 2^2$. Note that $2^{2+2}g = 2^{2+2}h = e$. Therefore, the values we need to construct g' as in Proposition 2, are r = m = n = 2 and

$$g' = (2^2 - 1)(2^{2-2})h + g = 3h + g = 3(\overline{3}, \overline{3}, \overline{3}) + (\overline{3}, \overline{1}, \overline{1}, \overline{1}) = (\overline{12}, \overline{2}, \overline{2}, \overline{2}).$$

Since o(g') = 4, we replace g_2 with g' and arrange the generators so that $o(g_1) \ge \cdots \ge o(g_5)$. We have

$$g_{1} = (\overline{1}, \overline{1}, \overline{1}, \overline{1}),$$

$$g_{2} = (\overline{7}, \overline{3}, \overline{0}, \overline{2}),$$

$$g_{3} = (\overline{3}, \overline{0}, \overline{1}, \overline{1}),$$

$$g_{4} = (\overline{12}, \overline{6}, \overline{3}, \overline{1}),$$

$$g_{5} = (\overline{12}, \overline{2}, \overline{2}, \overline{2}).$$

We repeat the process with $g = g_2$, $h = g_1$, 8g = 8h, 16g = 16h = e, m = n = 3, r = 1 and

$$g' = (2^1 - 1)(2^0)h + g = (\overline{1}, \, \overline{1}, \, \overline{1}, \, \overline{1}) + (\overline{7}, \, \overline{3}, \, \overline{0}, \, \overline{2}) = (\overline{8}, \, \overline{4}, \, \overline{1}, \, \overline{3}).$$

We replace g_2 with g' and reorder. Thus, we obtain a new list of generators of H:

$$g_{1} = (\overline{1}, \overline{1}, \overline{1}, \overline{1}),$$

$$g_{2} = (\overline{3}, \overline{0}, \overline{1}, \overline{1}),$$

$$g_{3} = (\overline{12}, \overline{6}, \overline{3}, \overline{1}),$$

$$g_{4} = (\overline{8}, \overline{4}, \overline{1}, \overline{3}),$$

$$g_{5} = (\overline{12}, \overline{2}, \overline{2}, \overline{2}).$$

We repeat the procedure with the new $g = g_2$, $H' = \langle g_1 \rangle$, $h = g_1$, 8g = 8h, 16g = 16h = e, m = n = 3, r = 1. Therefore,

$$g' = (2^1 - 1)(2^0)h + g = (\overline{1}, \overline{1}, \overline{1}, \overline{1}) + (\overline{3}, \overline{0}, \overline{1}, \overline{1}) = (\overline{4}, \overline{1}, \overline{2}, \overline{2}).$$

Thus, we obtained a new list of generators of H:

$$g_{1} = (\overline{1}, \overline{1}, \overline{1}, \overline{1}),$$

$$g_{2} = (\overline{4}, \overline{1}, \overline{2}, \overline{2}),$$

$$g_{3} = (\overline{12}, \overline{6}, \overline{3}, \overline{1}),$$

$$g_{4} = (\overline{8}, \overline{4}, \overline{1}, \overline{3}),$$

$$g_{5} = (\overline{12}, \overline{2}, \overline{2}, \overline{2}).$$

We note that, if we apply the process again, then there will be no change since $16g_1 = 8g_2 = e$ and r = 0. Continuing with $g = g_3$, $H' = \langle g_1, g_2 \rangle$ and $h = g_1$, we observe that 8g = 16h = e and r = 0. Therefore, there is no need to change g_3 .

In the next step, we apply the Algorithm with $g = g_4$, $H' = \langle g_1, g_2, g_3 \rangle$. In this case, we have $g_4 = 12g_1 + 6g_2 + 3g_3 \in H'$. Therefore,

$$g_1=(\overline{1},\ \overline{1},\ \overline{1},\ \overline{1}),\quad g_2=(\overline{4},\ \overline{1},\ \overline{2},\ \overline{2}),\quad g_3=(\overline{12},\ \overline{6},\ \overline{3},\ \overline{1}),\quad g_4=(\overline{12},\ \overline{2},\ \overline{2},\ \overline{2}).$$

As in the previous step, $g = g_4 \in H' = \langle g_1, g_2, g_3 \rangle$. Therefore, the generators that we are looking for are g_1 , g_2 , g_3 and

$$H=\left\langle (\overline{1},\ \overline{1},\ \overline{1},\ \overline{1}),\ (\overline{4},\ \overline{1},\ \overline{2},\ \overline{2}),\ (\overline{12},\ \overline{6},\ \overline{3},\ \overline{1})\cong C_{16}\oplus C_{8}\oplus C_{8},\right.$$

where $o(g_1) = 16$, $o(g_2) = o(g_3) = 8$.

3. 2-class Groups of Real Quadratic Fields

As an application of the Algorithm, we are going to construct generators of the 2-Sylow subgroup of the ideal class group of a real quadratic field. Next theorem is well known ([5, Theorem 3.70]).

Theorem 3 (Gauss's Theorem on the 2-rank of $Cl_{\mathbb{F}}$). Let \mathbb{F} be a quadratic field and t the number of distinct factors of $\delta_{\mathbb{F}}$. If there is some prime $p \equiv 3 \pmod{4}$ such that $p \mid \delta_{\mathbb{F}}$ and d > 0, then the rank of Cl_2 is t - 2. In any other case, the rank is t - 1.

Let $a, b \in \mathbb{Z}$, b > 1. We will use the following notation:

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} = \begin{cases} 1, & \text{if } x^2 \equiv a \pmod{b} \text{ solvable,} \\ -1, & \text{if } x^2 \equiv a \pmod{b} \text{ is not solvable.} \end{cases}$$

If b is a prime number and gcd(a, b) = 1, then $\left[\frac{a}{b}\right]$ is just Legendre's symbol $\left(\frac{a}{b}\right)$.

As consequence of the Chinese Remainder Theorem, we have:

Lemma 4. Let $a, b = b_1 \cdots b_t > 1$ be integers such that $gcd(b_i, b_j) = 1$ for $i \neq j$. Then $\left[\frac{a}{b}\right] = 1$ if and only if $\left[\frac{a}{b_i}\right] = 1$ for i = 1, ..., t.

Lemma 5. Let $b_1, ..., b_t \in \{-1, 1\}$, $a, n, p_1, ..., p_t \in \mathbb{Z}^+$, $a < 2^n$ odd and where p_i is an odd prime number for i = 1, ..., t. Then there is a rational prime q such that

$$q \equiv a \pmod{2^n}, \quad \left(\frac{q}{p_1}\right) = b_1, ..., \left(\frac{q}{p_t}\right) = b_t.$$

Proof. Let $c_1, ..., c_t \in \mathbb{Z}$ such that $\left(\frac{c_i}{p_i}\right) = b_i$. Using the Chinese Remainder Theorem, there is $c \in \mathbb{Z}$ satisfying

$$c \equiv a \pmod{2^n}$$

$$c \equiv c_1 \pmod{p_1}$$

$$\vdots$$

$$c \equiv c_t \pmod{p_t}.$$

Since $p_i \nmid c_i$, $\gcd(c, 2^n p_1 \cdots p_t) = 1$ and by Dirichlet's Theorem, there are infinite primes $q \equiv c \pmod{2^n p_1 \cdots p_t}$.

Lemma 6. Let $d = p_0 p_1 \cdots p_g$ be a square free positive integer, $p_i \equiv 1 \pmod{4}$ for $0 \le i \le g$. Then there are primes $q_1, ..., q_g$ such that

$$\left(\frac{d}{q_i}\right) = 1$$
 and $\left[\frac{q_i}{d}\right] = \left[\frac{-q_i}{d}\right] = -1$.

Proof. It follows from Lemma 5, Quadratic Reciprocity Law and Lemma 4.

From the first assertion of Lemma 5, we note that the primes $q_1, ..., q_g$ can be chosen in such a way that $q_i \equiv 1 \pmod{4}$. The choosing of such kind of primes will be relevant in the next results.

Lemma 7. Let $d=2p_1\cdots p_g$ be a square free positive integer with $p_i\equiv 1\ (\text{mod }4)$ for $1\leq i\leq g$. There are $q_1,...,q_g$ primes that satisfy

$$\left(\frac{4d}{q_i}\right) = 1$$
 and $\left\lceil \frac{q_i}{d} \right\rceil = \left\lceil \frac{-q_i}{d} \right\rceil = -1$.

Proof. By Lemma 5 and the Quadratic Reciprocity Law, we choose $q_1 \equiv 5 \pmod{8}$ such that

$$\left(\frac{p_1}{q_1}\right) = -1$$
 and $\left(\frac{p_j}{q_1}\right) = 1$, $2 \le j \le g$.

Therefore,

$$\left(\frac{d}{q_1}\right) = \left(\frac{2}{q_1}\right)\left(\frac{p_1}{q_1}\right)\left(\frac{p_2}{q_1}\right)\cdots\left(\frac{p_g}{q_1}\right) = (-1)(-1)(1)\cdots(1) = 1.$$

Finally, $\left(\frac{4d}{q_1}\right) = \left(\frac{d}{q_1}\right)$. As in the proof of the previous lemma, it follows that

$$\left[\frac{q_1}{d}\right] = \left[\frac{-q_1}{d}\right] = -1.$$

The primes $q_2, ..., q_g$ are obtained as in Lemma 6 with the additional condition $q_i \equiv 1 \pmod{8}$.

Lemma 8. Let $d = p_0 p_1 \cdots p_g \equiv 1 \pmod{4}$ with $g \ge 1$ be a positive square free integer such that for some $t \in \{-1, 0, 1, ..., g - 2\}$,

$$p_0, ..., p_t \equiv 1 \pmod{4}, \quad p_{t+1}, ..., p_g \equiv 3 \pmod{4}.$$

Then there exist primes $q_1, ..., q_{g-1}$ such that $\left(\frac{d}{q_i}\right) = 1$ and $\left[\frac{q_i}{d}\right] = \left[\frac{-q_i}{d}\right] = -1$.

Proof. The first primes q_1 , ..., q_t are obtained as in Lemma 6 such that $q_i \equiv 1 \pmod{4}$. For $t+1 \le i \le g-1$, we choose the primes q_i such that

$$\left(\frac{p_{i-1}}{q_i}\right) = \left(\frac{p_i}{q_i}\right) = -1, \quad \left(\frac{p_j}{q_i}\right) = 1, \quad j \neq i-1, i.$$

Hence
$$\left(\frac{d}{q_i}\right) = -1$$
, $\left[\frac{q_i}{d}\right] = -1$. Finally, since $\left(\frac{q_i}{p_g}\right) = 1$, we obtain $\left(\frac{-q_i}{p_g}\right) = -1$ and $\left[\frac{-q_i}{p_g}\right] = \left[\frac{-q_i}{d}\right] = -1$.

Lemma 9. Let $d = p_0 p_1 \cdots p_g \equiv 3 \pmod{4}$ be a positive square free integer such that for some $t \in \{-1, 0, 1, ..., g - 1\}$,

$$p_0, ..., p_t \equiv 1 \pmod{4}, \quad p_{t+1}, ..., p_g \equiv 3 \pmod{4}.$$

Then there exist primes $q_1, ..., q_g$ such that $\left(\frac{4d}{q_i}\right) = 1$ and $\left\lceil \frac{q_i}{d} \right\rceil = \left\lceil \frac{-q_i}{d} \right\rceil = -1$.

Proof. The primes q_1 , ..., q_t are obtained as in Lemma 6. Since $d \equiv 3 \pmod{4}$, we have an odd number of primes $\equiv 3 \pmod{4}$. First, suppose that p_g is the only prime such that $p_g \equiv 3 \pmod{4}$. In this case, we choose a prime $q_g \equiv 1 \pmod{4}$ satisfying

$$\left(\frac{p_{g-1}}{q_g}\right) = \left(\frac{q_g}{p_{g-1}}\right) = \left(\frac{q_g}{p_g}\right) = -1.$$

Therefore, $\left\lfloor \frac{-q_g}{d} \right\rfloor = -1$. Finally, if more than one prime is $\equiv 3 \pmod 4$, then instead of using p_g as in Lemma 8, we use any of the primes $p_j \equiv 3 \pmod 4$ such that $\left(\frac{q_i}{p_j}\right) = 1$. The proof follows as in the previous lemmas.

Lemma 10. Let $d=2p_1\cdots p_g$ be square free with $p_1,...,p_t\equiv 1\ (\text{mod }4)$ and $p_{t+1},...,p_g\equiv 3\ (\text{mod }4)$ for $0\leq t\leq g-1$. Then there are primes $q_1,...,q_{g-1}$ such that $\left(\frac{4d}{q_i}\right)=1$ and $\left\lceil\frac{q_i}{d}\right\rceil=\left\lceil\frac{-q_i}{d}\right\rceil=-1$.

Proof. If t > 0, then $q_1, ..., q_t$ are obtained as in Lemma 7 and the primes $q_{t+1}, ..., q_{g-1}$ are obtained as in Lemma 8. If t = 0, then $p_i \equiv 3 \pmod 4$ for i = 1, ..., g and $g \ge 2$. In this case, we choose $q_1 \equiv 5 \pmod 8$ in such a way that

$$\left(\frac{p_1}{q_1}\right) = -1, \quad \left(\frac{p_i}{q_1}\right) = 1, \quad i > 1.$$

From this and $\left(\frac{2}{q_1}\right) = -1$, it follows that

$$\left(\frac{4d}{q_1}\right) = 1, \quad \left[\frac{q_1}{d}\right] = \left[\frac{-q_1}{d}\right] = -1.$$

The primes q_2 , ..., q_{g-1} are obtained as in Lemma 8.

From now on, we write $\mathbb{F} = \mathbb{Q}(\sqrt{d})$, d > 0 square free. Let $\mathcal{P} = \{q_1, ..., q_t\}$ obtained in Lemmas 6, 7, 8, 9 or 10. We observe that there are infinitely many $a_i \in \mathbb{N}$ such that $a_i^2 \equiv d \pmod{q_i}$. We fix one of them and define the ideals $\mathfrak{q}_i = \langle q_i, a_i + \sqrt{d} \rangle$. It is clear that \mathfrak{q}_i is a prime ideal, $N(\mathfrak{q}_i) = q_i$ and $\langle q_i \rangle = \mathfrak{q}_i \mathfrak{q}_i'$, where $\mathfrak{q}_i' = \langle q_i, a_i - \sqrt{d} \rangle$. Given \mathcal{P} as above, we define $\mathcal{I}_{\mathcal{P}} = \{\mathfrak{q}_1, ..., \mathfrak{q}_t\}$. We will write $\mathrm{ord}_I(J)$ to indicate that $I^{\mathrm{ord}_I(J)} | J$ and $I^{\mathrm{ord}_I(J)+1} \nmid J$.

Observe that $N(a_1 + a_2\sqrt{d}) = a_1^2 - da_2^2$, so if $I = \langle a_1 + a_2\sqrt{d} \rangle$, then $N(I) \equiv a_1^2 \pmod{d}$ or $-N(I) \equiv a_1^2 \pmod{d}$. Therefore, if $\left[\frac{\pm N(I)}{d}\right] = -1$, then I is a non-principal ideal.

Theorem 11. Let $d = p_0 p_1 \cdots p_g$ be a positive square free integer and $\mathbb{F} = \mathbb{Q}(\sqrt{d})$. If $I = \prod_{\mathfrak{q} \in \mathcal{I}_{\mathcal{D}}} \mathfrak{q}^{\operatorname{ord}_{\mathfrak{q}}(I)}$ and $\operatorname{ord}_{\mathfrak{q}}(I)$ is odd for some $\mathfrak{q} \in \mathcal{I}_{\mathcal{D}}$, then

(1)
$$\left[\frac{\pm N(I)}{d}\right] = -1$$
 and therefore I is non-principal.

(2) If $\bar{I} \in Cl_{\mathbb{F}}$ is the class of I, then $o(\bar{I})$ is even.

(3) Let $J = \prod_{\mathfrak{q} \in \mathcal{I}_{\mathcal{P}}} \mathfrak{q}^{\operatorname{ord}_{\mathfrak{q}}(J)}$ such that for some $\mathfrak{q} \in \mathcal{I}_{\mathcal{P}}$, $\operatorname{ord}_{\mathfrak{q}}(J)$ is odd and $\operatorname{ord}_{\mathfrak{q}}(I) \not\equiv \operatorname{ord}_{\mathfrak{q}}(J) \pmod{2}$. Then $\bar{I} \not\equiv \bar{J}$.

Proof. For the first assertion, we need that $\left[\frac{N(I)}{p_1'}\right] = \left[\frac{-N(I)}{p_2'}\right] = -1$ for certain prime divisors p_1' , p_2' of d. Let $j = \max\{i : \operatorname{ord}_{\mathfrak{q}_i}(I) \text{ is odd}\}$. We observe that j > 0 and p_j is odd. We know that $\left(\frac{q_j}{p_j}\right) = \left(\frac{\operatorname{ord}_{\mathfrak{q}_j}(I)}{p_j}\right) = -1$, we have that for any $\mathfrak{q}_i \in \mathcal{I}_{\mathcal{P}}$, either i < j or $\operatorname{ord}_{\mathfrak{q}_i}(I)$ is even. Then by construction, $\left(\frac{\operatorname{ord}_{\mathfrak{q}_j}(I)}{p_j}\right) = 1$ if $q_i \mid N(I)$, $q_i \neq q_j$. Therefore, $\left(\frac{N(I)}{p_j}\right) = \left[\frac{N(I)}{d}\right] = -1$. If some prime divisor p of d, $p \equiv 1 \pmod{4}$, satisfies $\left(\frac{N(I)}{p}\right) = -1$, then $\left(\frac{-N(I)}{p}\right) = \left[\frac{-N(I)}{d}\right] = -1$. Now consider the case $\left(\frac{N(I)}{p}\right) = 1$, $p \equiv 1 \pmod{4}$, $p \mid d$. If $d \equiv 1, 2 \pmod{4}$, then it follows from Lemmas 8, 10 that $\left(\frac{N(I)}{p_g}\right) = 1$. Therefore,

$$\left(\frac{-N(I)}{p_g}\right) = \left[\frac{-N(I)}{p_g}\right] = \left[\frac{-N(I)}{d}\right] = -1.$$

Consider the case $d \equiv 3 \pmod 4$, $\left(\frac{N(I)}{p}\right) = 1$, $p \equiv 1 \pmod 4$. At the beginning of the proof, we saw that there is an odd prime $p_j \mid d$ such that $\left(\frac{N(I)}{p_j}\right) = -1$. If $k = \min\{i : \operatorname{ord}_{\mathfrak{q}_i}(I) \text{ is odd}\}$, then it follows that $\left(\frac{N(I)}{p_{k-1}}\right) = -1$. Since $d \equiv 3 \pmod 4$, d must have an odd number of prime divisors of the form 4x + 3 and since $p_j, p_{k-1} \equiv 3 \pmod 4$, there are at least three of such prime numbers. Let $q_i \in \mathcal{P}$ be such that $\operatorname{ord}_{\mathfrak{q}_i}(I)$ is odd. Each of these has associated two prime divisors

 $p_{i-1}, \quad p_i \quad \text{of } d \text{ such that } \left(\frac{q_i}{p_{i-1}}\right) = \left(\frac{q_i}{p_i}\right) = -1.$ Hence, there is an even number of pairs (p_l, q_m) that satisfy $\left(\frac{q_m}{p_l}\right) = -1.$ Therefore, among the symbols $\left(\frac{N(I)}{p_0}\right), \dots, \left(\frac{N(I)}{p_g}\right)$, an even number of them take the value -1 for some primes $p_i \equiv 3 \pmod 4$. It follows that there is some prime $p \equiv 3 \pmod 4$ such that $\left(\frac{N(I)}{p}\right) = 1.$ As in the case $d \equiv 1, 2 \pmod 4$, we obtain $\left(\frac{-N(I)}{p}\right) = \left[\frac{-N(I)}{d}\right] = -1.$ We note that $o(\bar{I})$ is even since I^a is non-principal for $a \in \mathbb{N}$ odd.

Finally, the class \bar{I}^{-1} has a representative $I' = \prod_{\mathfrak{q} \in \mathcal{I}_{\mathcal{P}}} \mathfrak{q}^{o(\overline{\mathfrak{q}}) - \operatorname{ord}_{\mathfrak{q}}(I)}$, where $\operatorname{ord}_{\mathfrak{q}}(I') \equiv \operatorname{ord}_{\mathfrak{q}}(I) \pmod{2}$. Thus $\operatorname{ord}_{\mathfrak{q}}(JI')$ is odd and JI' is non-principal. Therefore, $\bar{J} \neq \bar{I}'^{-1}$ and so $\bar{I} \neq \bar{J}$.

Lemma 12. Let \mathbb{F} be as always, I, J ideals of $\mathcal{O}_{\mathbb{F}}$ such that $\left[\frac{\pm N(I)}{d}\right] = -1$, $o(\bar{I})$ even and such that for any ramified prime p, $p \nmid N(I)$ and $p \nmid N(J)$. If $J \in \bar{I}$, then $\left[\frac{\pm N(J)}{d}\right] = -1$.

Proof. Let $J \in \overline{I}$ such that $\left[\frac{N(J)}{d}\right] = 1$ or $\left[\frac{-N(J)}{d}\right] = 1$. Since \overline{I} has even order, we have $\left[\frac{N(I^{o(\overline{I})})}{d}\right] = 1$. From the multiplicity of Legendre's symbol and Lemma 4, we obtain $\left[\frac{\pm N(I^{o(\overline{I})-1})}{d}\right] = -1$. Since $\left[\frac{N(J)}{d}\right] = 1$ or $\left[\frac{-N(J)}{d}\right] = 1$, in both cases, we have

$$\left\lceil \frac{N(I^{o(\bar{I})-1}J)}{d} \right\rceil = \left\lceil \frac{-N(I^{o(\bar{I})-1}J)}{d} \right\rceil = -1.$$

From $\overline{I^{o(\bar{I})-1}} = \bar{I}^{-1} = \bar{J}^{-1}$, it follows that $I^{o(\bar{I})-1}J$ is a principal ideal, which is impossible. Therefore, $\left[\frac{\pm N(J)}{d}\right] = -1$.

If $\mathfrak{q}_i \in \mathcal{I}_{\mathcal{P}}$, then $o(\overline{\mathfrak{q}_i}) = 2^{k_i} t_i$ for some $k_i, t_i \in \mathbb{N}$ and t_i odd. For $\mathfrak{q}_i \in \mathcal{I}_{\mathcal{P}}$, we define $J_i = \mathfrak{q}_i^{t_i}$. Let $\mathcal{J}_{\mathcal{P}} = \{J_1, ..., J_{|\mathcal{P}|}\}$. Observe that since $\mathfrak{q}_i \neq \mathfrak{q}_j$ for $i \neq j, \ J_i \neq J_j$.

Lemma 13. Let \mathbb{F} be a real quadratic field and J_i as above. Then:

$$(1) \left\lceil \frac{\pm N(J_i)}{d} \right\rceil = -1 \text{ for } 1 \le i \le |\mathcal{P}|.$$

(2) If
$$J_i \in \mathcal{J}_{\mathcal{P}}$$
, then $\overline{J_i} \notin \langle \overline{J_1}, ..., \overline{J_{i-1}}, \overline{J_{i+1}}, ..., \overline{J_{|\mathcal{P}|}} \rangle$.

(3) We can modify the elements of $\mathcal{J}_{\mathcal{P}}$ in such a way that

$$\langle \overline{J_1}, ..., \overline{J_{|\mathcal{P}|}} \rangle \cong \langle \overline{J_1} \rangle \times \cdots \times \langle \overline{J_{|\mathcal{P}|}} \rangle.$$

Proof. Before we start the proof, we observe that all the ideals we will be using are such that their norms and d are relative primes, so we can use Lemma 12. (1) follows from Lemma 4 since t_i is odd. For (2), let us suppose that $\overline{J_i} \in \langle \overline{J_1},...,\overline{J_{i-1}},\overline{J_{i+1}},...,\overline{J_{|\mathcal{P}|}}\rangle$. Let $I = \prod_{J_l \in \mathcal{J}_{\mathcal{P}}} J_l^{e_l}$ with $e_i = 0$ and e_j non-negative integers. Clearly, $\overline{I} \in \langle \overline{J_1},...,\overline{J_{i-1}},\overline{J_{i+1}},...,\overline{J_{|\mathcal{P}|}}\rangle$. If $I \in \overline{J_i}$, since $\left[\frac{\pm N(J_i)}{d}\right] = -1$, then $\left[\frac{\pm N(I)}{d}\right] = -1$. From this, some e_l is odd. Since $e_i = 0$, by Theorem 11(3), we have $J_i = \mathfrak{q}_i^{t_i} \notin \overline{I}$. As consequence of (2) we have that the rank of $\langle \overline{J_1},...,\overline{J_{|\mathcal{P}|}}\rangle$ is $|\mathcal{P}|$. To prove (3), we use the Algorithm.

Theorem 14. If \mathbb{F} is a real quadratic field, then $Cl_2 = \langle \overline{J_1}, ..., \overline{J_{|\mathcal{P}|}} \rangle$.

Proof. By Lemma 13 and Theorem 3, we know that $G_{\mathcal{J}} = \langle \overline{J_1}, ..., \overline{J_{|\mathcal{P}|}} \rangle$ is a 2-group with rank equal to the rank of Cl_2 . Suppose there exists an ideal $I \subseteq \mathcal{O}_{\mathbb{F}}$ such that $o(\overline{I}) = 2^k$ with $k \in \mathbb{N}$ and $\gcd(N(I), \delta_{\mathbb{F}}) = 1$. Since the 2-rank of $Cl_{\mathbb{F}}$ is equal to the 2-rank of $G_{\mathcal{J}}$, there exist $t, e_1, ..., e_{|\mathcal{P}|} \in \mathbb{N}$ such that

$$\overline{I^t} = \overline{\prod_{J_i \in \mathcal{J}_{\mathcal{P}}} J_i^{e_i}},$$

with $\overline{I^t} \neq \overline{\mathcal{O}_{\mathbb{F}}}$. We chose the smallest t satisfying this condition. Note that t is even, otherwise $\overline{I} \in G_{\mathcal{J}}$. Thus $\left[\frac{N(I^t)}{d}\right] = 1$. On the other hand, at least one e_i is odd,

since otherwise t would not be minimum. From Theorem 11, we have that $\left\lfloor \frac{N(I^t)}{d} \right\rfloor$ = -1. This shows that any ideal $I \subseteq \mathcal{O}_{\mathbb{F}}$ with $\gcd(N(I), \delta_{\mathbb{F}}) = 1$ satisfies $\bar{I} \in G_{\mathcal{J}}$. Let p be a ramified prime and \mathfrak{p} a prime ideal such that $N(\mathfrak{p}) = p$. We know that the rank of Cl_2 is the same as $G_{\mathcal{J}}$, so $\langle G_{\mathcal{J}}, \overline{\mathfrak{p}} \rangle$ must have the same rank as $G_{\mathcal{J}}$. This implies $\overline{\mathfrak{p}} \in G_{\mathcal{J}}$ or there is a maximal $H \in C_{G_{\mathcal{J}}}$ such that $H \subseteq \langle \overline{\mathfrak{p}} \rangle$. If the

latter happens, $1 < o(H) \le o(\overline{\mathfrak{p}}) \le 2$, so $H = \langle \overline{\mathfrak{p}} \rangle$, $\overline{\mathfrak{p}} \in G_{\mathcal{J}}$ and therefore $G_{\mathcal{J}} = \langle G_{\mathcal{J}}, \overline{\mathfrak{p}} \rangle$. We apply this argument to all ramified primes to obtain $Cl_2 = G_{\mathcal{J}}$.

Lemma 15. Let \mathbb{F} be a real quadratic field. Every class in $Cl_{\mathbb{F}}$ has a representative I such that $\gcd(N(I), \delta_{\mathbb{F}}) = 1$.

Proof. Let $\overline{J} \in Cl_{\mathbb{F}}$ such that $J = \mathfrak{p}_1 \cdots \mathfrak{p}_k \mathfrak{q}_1 \cdots \mathfrak{q}_r$, where \mathfrak{p}_i is a ramified prime ideal for $1 \le i \le k$ and \mathfrak{q}_i is an unramified prime ideal for $1 \le i \le r$. It will suffice to prove that every $\overline{\mathfrak{p}_i}$ has a representative that satisfies the affirmation.

First, we will prove the assertion for $d \equiv 1, 2 \pmod{4}$. In this case, a prime p is ramified if and only if $p \mid d$, and the ideal of norm p_i is

$$\mathfrak{p}_i = \langle p_i, \sqrt{d} \rangle = \langle p_i, p_i + \sqrt{d} \rangle.$$

So we have

$$\langle p_i - \sqrt{d} \rangle \mathfrak{p}_i = \langle p_i(p_i - \sqrt{d}), p_i^2 - d \rangle = \langle p_i \rangle \langle p_i - \sqrt{d}, p_i - d/p_i \rangle,$$

so \mathfrak{p}_i is in the same class than $\mathfrak{p}_i' = \langle p_i - \sqrt{d}, p_i - d/p_i \rangle$. Note that \mathfrak{p}_i' is not necessarily a prime ideal. Observe that $\gcd(p, p_i - d/p_i) = 1$ for every prime p such that $p \mid d$, then $p \nmid p_i - d/p_i$ and $p \nmid N(p_i - d/p_i)$. The fact that $\mathfrak{p}_i' \mid \langle p_i - d/p_i \rangle$ implies $p \nmid N(\mathfrak{p}_i')$. Therefore, $\gcd(d, N(\mathfrak{p}_i')) = 1$. If we change every \mathfrak{p}_i for \mathfrak{p}_i' , then we get a new ideal I related to J without ramified prime factors.

Now suppose $d \equiv 3 \pmod{4}$. We proceed similarly as in the previous case, and we obtain an ideal $I \in \overline{J}$ such that $\gcd(N(I), d) = 1$. In this case, 2 is a ramified prime but $2 \nmid d$, so it is possible that $\mathfrak{p} = \langle 2, 1 + \sqrt{d} \rangle | I$. In this case, we have

$$\mathfrak{p}\langle 1 - \sqrt{d} \rangle = \langle 2(1 - \sqrt{d}), 1 - d \rangle = \langle 2 \rangle \langle 1 - \sqrt{d} + (1 - d)/2 \rangle,$$

where $\mathfrak{p}' = \langle 1 - \sqrt{d}, (1 - d)/2 \rangle \sim \mathfrak{p}$ and $\frac{1 - d}{2} \in \mathbb{Z}$ is odd. In particular, $2 \nmid N(\mathfrak{p}')$. Since $\gcd(1 - d, d) = 1$, we have $\gcd(N(\mathfrak{p}'), d) = 1$, hence $\gcd(N(\mathfrak{p}'), \delta_{\mathbb{F}}) = 1$. Replacing \mathfrak{p} for \mathfrak{p}' , we obtain the ideal we wanted.

Proposition 16. Let \mathbb{F} be a real quadratic field such that $|Cl_{\mathbb{F}}| = 2^k$ for some $k \in \mathbb{N}$ and $\bar{I} \in Cl_{\mathbb{F}}$ with $\gcd(N(I), \delta_{\mathbb{F}}) = 1$. Then $\langle \bar{I} \rangle$ is maximal in $C_{Cl_{\mathbb{F}}}$ if and only if $\left\lceil \frac{\pm N(I)}{d} \right\rceil = -1$.

Proof. We know that $Cl_{\mathbb{F}} = G_{\mathcal{J}} \cong \langle \overline{J_1} \rangle \times \cdots \times \langle \overline{J_{|\mathcal{P}|}} \rangle$. If $\langle \overline{I} \rangle$ is maximal in $\mathcal{C}_{Cl_{\mathbb{F}}}$, then I is related with some ideal

$$J = \prod_{J_i \in \mathcal{J}_{\mathcal{P}}} J_i^{\operatorname{ord}_{J_i} J}$$

with $\operatorname{ord}_{J_i}J$ odd. Theorem 11 implies that $\left[\frac{\pm N(I)}{d}\right]=-1$. Conversely, suppose $\langle \bar{I} \rangle$ is not maximal. Then $\langle \bar{I} \rangle \subsetneq \langle \bar{J} \rangle$ for a class \bar{J} . We can choose J in such a way that $\gcd(N(J), \delta_{\mathbb{F}})=1$. Therefore, $\bar{I}=\bar{J}^t$ for some $t\in\mathbb{N}$. As a consequence of the fact that $\bar{I}\neq \bar{J}$, we have that t is even. So, $\left[\frac{N(I)}{d}\right]=\left[\frac{N(J^t)}{d}\right]=1$.

Example 2. Let $\mathbb{F} = \mathbb{Q}(\sqrt{322})$. Since $322 = 2 \cdot 7 \cdot 23$, from Theorem 3 we have that the rank of Cl_2 is 1. We apply Lemma 10 with t = 0, g = 2. We will find a non-principal ideal \mathfrak{q}_1 such that it generates Cl_2 . For this, we need a prime q_1 such that

$$\left(\frac{4\cdot 322}{q_1}\right) = 1$$
 and $\left[\frac{\pm q_1}{322}\right] = -1$.

Following the proof of Lemma 10, it is enough that q_1 satisfies

$$q_1 \equiv 5 \pmod{8}, \quad \left(\frac{q_1}{7}\right) = \left(\frac{7}{q_1}\right) = -1, \quad \left(\frac{q_1}{23}\right) = \left(\frac{23}{q_1}\right) = 1.$$
 (1)

From Lemma 5, we have that 325 satisfies (1), but it is not a prime. From Dirichlet's Theorem, we obtain that $q_1 = 325 + 1283 = 1613$ is prime and

$$\langle 1613 \rangle = \langle 1613, 100 + \sqrt{322} \rangle \langle 1613, 100 - \sqrt{322} \rangle.$$

Hence $\overline{\mathfrak{q}_1} = \overline{\langle 1613, 100 + \sqrt{322} \rangle}$ generates Cl_2 and $o(\overline{\mathfrak{q}_1}) = 4$.

Example 3. Let $d = 272490 = 2 \cdot 5 \cdot 293 \cdot 3 \cdot 31$ and $\mathbb{F} = \mathbb{Q}(\sqrt{d})$. To find suitable generators of Cl_2 , we use Lemma 10 with g = 4, t = 2. We observe that the rank of Cl_2 is 3. According to Lemma 7, we need a prime number q_1 such that

$$q_1 \equiv 5 \pmod{8}, \quad \left(\frac{q_1}{5}\right) = -1, \quad \left(\frac{q_1}{293}\right) = \left(\frac{q_1}{3}\right) = \left(\frac{q_1}{31}\right) = 1.$$

Therefore, it is sufficient that q_1 satisfies

$$q_1 \equiv 5 \pmod{8},$$

$$q_1 \equiv 3 \pmod{5},$$

$$q_1 \equiv 1 \pmod{27249}.$$
(2)

The prime number $q_1 = 762973$ solves (2) and

$$q_1 = \langle 762973, 349636 + \sqrt{272490} \rangle$$

is a prime ideal such that $N(\mathfrak{q}_1)=q_1$ and $o(\overline{\mathfrak{q}_1})=8$. Similarly, we find $q_2=1895713$ and the prime ideal $\mathfrak{q}_2=\langle 1895713,507828+\sqrt{272490}\rangle$ satisfies $N(\mathfrak{q}_2)=q_2,\ o(\overline{\mathfrak{q}_2})=8$. The prime $q_3=5674241$ and the prime ideal $\mathfrak{q}_3=\langle 5674241,1813618+\sqrt{272490}\rangle$ satisfies $N(\mathfrak{q}_3)=q_3,\ o(\overline{\mathfrak{q}_3})=8$. Therefore, $Cl_2=\langle \overline{\mathfrak{q}_1},\overline{\mathfrak{q}_2},\overline{\mathfrak{q}_3}\rangle$.

The minimal relations between $\overline{q_1}$, $\overline{q_2}$, $\overline{q_3}$ that appear in Proposition 2 are

$$\frac{-4}{\mathfrak{q}_1} = \overline{\mathfrak{q}_2}^4 \,, \quad \overline{\mathfrak{q}_1}^2 = \overline{\mathfrak{q}_3}^2 \,, \quad \overline{\mathfrak{q}_1}^8 = \overline{\mathfrak{q}_2}^8 = \overline{\mathfrak{q}_3}^8 = \overline{\mathcal{O}_{\mathbb{F}}}.$$

We replace $\overline{\mathfrak{q}_2}$ with $\overline{\mathfrak{q}_1}^{(2^1-1)(2^0)}\mathfrak{q}_2 = \overline{\mathfrak{q}_1}\overline{\mathfrak{q}_2}$ and $\overline{\mathfrak{q}_3}$ with $\overline{\mathfrak{q}_1}^{(2^2-1)(2^0)}\overline{\mathfrak{q}_3} = \overline{\mathfrak{q}_1}^3\overline{\mathfrak{q}_3}$. Now we have $Cl_2 = \langle \overline{\mathfrak{q}_1}, \overline{\mathfrak{q}_1}\overline{\mathfrak{q}_2}, \overline{\mathfrak{q}_1}^3\overline{\mathfrak{q}_3} \rangle$, with $o(\overline{\mathfrak{q}_1}) = 8$, $o(\overline{\mathfrak{q}_1}\overline{\mathfrak{q}_2}) = 4$ and $o(\overline{\mathfrak{q}_1}^3\overline{\mathfrak{q}_3}) = 2$. Continuing with the Algorithm, we check that this set of generators of Cl_2 cannot be simplified any further. Therefore,

$$Cl_2 = \langle \overline{\mathfrak{q}_1}, \, \overline{\mathfrak{q}_1}\overline{\mathfrak{q}_2}, \, \overline{\mathfrak{q}_1^3}\overline{\mathfrak{q}_3} \rangle \cong \langle \overline{\mathfrak{q}_1} \rangle \times \langle \overline{\mathfrak{q}_1}\overline{\mathfrak{q}_2} \rangle \times \langle \overline{\mathfrak{q}_1}^3\overline{\mathfrak{q}_3} \rangle \cong C_8 \times C_4 \times C_2.$$

4. Other Cases

Similar results can be found when we have an imaginary quadratic field $\mathbb{F} = \mathbb{Q}(\sqrt{-d})$, where d is a rational positive squarefree integer. In this case, the norm of an element in \mathbb{F} is always positive, hence, we will use $\left[\frac{N(I)}{d}\right]$ instead of $\left[\frac{\pm N(I)}{d}\right]$ and to construct \mathcal{P} , $\mathcal{I}_{\mathcal{P}}$, $\mathcal{I}_{\mathcal{P}}$ we will need to find prime numbers as follows:

- 1. If $d=p_0\cdots p_g$ as in Lemma 6, then we can find g+1 prime numbers $q_0,...,q_g$ such that $\left(\frac{p_i}{q_i}\right)=-1, \left(\frac{p_j}{q_i}\right)=1$ for $i\neq j$ and $q_i\equiv 3\ (\text{mod }4)$. In this case, $\left(\frac{-1}{d}\right)=-1$ and $\left(\frac{q_i}{p_i}\right)=-1$.
- 2. If $d=2p_1\cdots p_g$ as in Lemma 7 or $d=p_0p_1\cdots p_g\equiv 3\pmod 4$ as in Lemma 9, then we can find g prime numbers such that $\left(\frac{\delta_\mathbb{F}}{q_i}\right)=1$ and $\left[\frac{q_i}{d}\right]$ = -1. In fact, we can use the same q_i 's we found in the real case.
- 3. If $d=p_0p_1\cdots p_g\equiv 1\ (\text{mod}\ 4)$ as in Lemma 8, then $-d\equiv 3\ (\text{mod}\ 4)$ and $\delta_{\mathbb{F}}=-4d$. In this case, we can find g+1 prime numbers $q_0,...,q_g$ such that $\left(\frac{p_i}{q_i}\right)=-1,\ \left(\frac{p_j}{q_i}\right)=1,$ for $i\neq j$ and $q_i\equiv 3\ (\text{mod}\ 4).$ Since $g\geq 1,$ we always have a prime p_j such that $\left(\frac{p_j}{q_i}\right)=1$ and $\left(\frac{q_i}{p_j}\right)=-1,$ hence $\left[\frac{q_i}{d}\right]=-1.$

4. If $d=2p_1\cdots p_g\equiv 1\ (\text{mod}\ 4)$ as in Lemma 10, then there are g primes $q_1,\,...,\,q_g$ such that $\left(\frac{p_i}{q_i}\right)=-1,\,\left(\frac{p_j}{q_i}\right)=1$ for $i\neq j$ and $q_i\equiv 5\ (\text{mod}\ 8)$.

With these prime numbers, we define \mathcal{P} , $\mathcal{I}_{\mathcal{P}}$ and $\mathcal{J}_{\mathcal{P}}$ as in the real case. Lemmas 12, 13 and 15, Proposition 16 and Theorems 11 and 14 can be generalized removing the minus sign in $\left\lceil \frac{\pm N(I)}{d} \right\rceil$.

A particular case of what we have studied is when the exponent of $Cl_{\mathbb{F}}$ is 2. The next results follow from Theorem 14:

Corollary 17. Let \mathbb{F} be a quadratic field such that $Cl_{\mathbb{F}}$ has exponent 2. Then $Cl_{\mathbb{F}} = \langle \mathcal{J}_{\mathcal{P}} \rangle$ and each class contains an ideal of the form $\prod_{J \in A} J$ for some $A \subseteq \mathcal{J}_{\mathcal{P}}$, where we define $\prod_{J \in \emptyset} J = \mathcal{O}_{\mathbb{F}}$.

Theorem 18. Let \mathbb{F} be a real quadratic field such that $Cl_{\mathbb{F}}$ has exponent 2 and $I \subseteq \mathcal{O}_{\mathbb{F}}$ be an ideal such that $\gcd(N(I), \delta_{\mathbb{F}}) = 1$. Then I is non-principal if and only if $\left[\frac{\pm N(I)}{d}\right] = -1$.

Proof. Every class is represented by an ideal $I_A = \prod_{J \in A} J$ for some $\emptyset \neq A$ $\subseteq \mathcal{J}_{\mathcal{P}}$. By Theorem 11(1), we have $\left[\frac{\pm N(I_A)}{d}\right] = -1$. If some ideal I satisfies $\left[\frac{\pm N(I)}{d}\right] = -1$, then by Lemma 12, any ideal J contained in \bar{I} such that $\gcd(N(J), \delta_{\mathbb{F}}) = 1$ satisfies $\left[\frac{\pm N(J)}{d}\right] = -1$. Therefore, any non-principal ideal satisfies $\left[\frac{\pm N(I)}{d}\right] = -1$. The converse is true in any real quadratic field.

The condition $\gcd(N(I), \delta_{\mathbb{F}}) = 1$ is necessary, otherwise if $\gcd(N(I), \delta_{\mathbb{F}}) > 1$, then there might exist non-principal ideals I such that $\left[\frac{N(I)}{d}\right] = 1$ or $\left[\frac{-N(I)}{d}\right] = 1$.

For example, if $\mathbb{F} = \mathbb{Q}(\sqrt{10})$, then $\left[\frac{\pm 5}{10}\right] = 1$ but $\langle 5, \sqrt{10} \rangle$ is non-principal. A similar result can be stated for the imaginary case.

Example 4. We are going to find the 2-class group of the imaginary quadratic field $\mathbb{F} = \mathbb{Q}(\sqrt{-665})$. Since $-665 = -(5)(7)(19) \equiv 3 \pmod{4}$, $\delta_{\mathbb{F}} = -2660$, $p_0 = 5$, $p_1 = 7$ and $p_2 = 19$. The next table shows the first prime numbers $q \equiv 3 \pmod{4}$ such that $\left(\frac{\delta_{\mathbb{F}}}{q}\right) = 1$. Here we can see that $q_0 = 3$, $q_1 = 71$ and $q_2 = 131$ satisfy the conditions that we required previously. In this case, $\mathfrak{p}_1 = \langle 3, 4 + \sqrt{-665} \rangle$, $\mathfrak{p}_2 = \langle 71, 20 + \sqrt{-665} \rangle$ and $\mathfrak{p}_3 = \langle 131, 11 + \sqrt{-665} \rangle$, $o(\mathfrak{p}_1) = o(\mathfrak{p}_2) = o(\mathfrak{p}_3) = 6$, $\mathcal{I}_{\mathcal{P}} = \{\mathfrak{p}_1^3, \mathfrak{p}_2^3, \mathfrak{p}_3^3\}$. If we apply the Algorithm, then we will find that $\mathcal{I}_{\mathcal{P}} = \mathcal{I}_{\mathcal{P}}$ and

$$Cl_2 \cong C_2 \times C_2 \times C_2$$
.

q	$\left(\frac{\delta_F}{q}\right)$	$\left(\frac{5}{q}\right)$	$\left(\frac{7}{q}\right)$	$\left(\frac{19}{q}\right)$	$\left[\frac{q}{665}\right]$
3	1	-1	1	1	-1
23	1	-1	-1	-1	-1
43	1	-1	-1	-1	-1
71	1	1	-1	1	-1
79	1	1	-1	1	-1
103	1	-1	1	1	-1
131	1	1	1	-1	-1
139	1	1	1	-1	-1
151	1	1	-1	1	-1

Example 5. If $\mathbb{F} = \mathbb{Q}(\sqrt{-21})$, then $Cl_{\mathbb{F}} \cong C_2 \times C_2$; hence, an ideal is principal if and only if $\left[\frac{N(I)}{21}\right] = 1$. For example, $\langle 5, 2 + \sqrt{-21} \rangle$ is a non-principal ideal since N(I) = 5 and $\left[\frac{5}{21}\right] = -1$. The ideal $\langle 37, 41 + \sqrt{-21} \rangle$ is principal since N(I) = 37 and $4^2 \equiv 37 \pmod{21}$.

References

- [1] J. M. Basilla and H. Wada, On efficient computation of the 2-parts of ideal class groups of quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 80(10) (2004), 191-193.
- [2] W. Bosma and P. Stevenhagen, On the computation of quadratic 2-class groups, J. de Théorie des Nombres de Bordeaux 8(2) (1996), 283-313.
- [3] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner and K. Wildanger, KANT V4, J. Symbolic Comp. 24 (1997), 267-283.
- [4] H. Hasse, An algorithm for determining the structure of the 2-Sylow subgroups of the divisor class group of a quadratic number field, Symposia Mathematica, Vol. XV (Convegno di Strutture in Corpi Algebrici, INDAM, Rome, 1973), Academic Press, 1975, pp. 341-352.
- [5] R. Mollin, Algebraic Number Theory, CRC Press, 1999.
- [6] D. Shanks, Gauss's ternary form reduction and the 2-Sylow subgroup, Math. Comp. 25 (1971), 837-853.
- [7] W. A. Stein et al., Sage Mathematics Software (Version 4.6.1), The Sage Development Team, 2010, http://www.sagemath.org.