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Abstract 

We find explicitly the 2-class group of a quadratic field. We use this result 
to give a criterion to decide whether an ideal is principal if the exponent 
of FCl  is 2. 

1. Introduction 

Let ( )dQF =  be a quadratic field, FO  the ring of integers of FF Cl,  the 

class group of 2, ClF  the 2-Sylow subgroup of FCl  and Fδ  the discriminant of .F  

It is well known that the rank of 2Cl  depends on the number and type of the prime 

factors of d. However, obtaining 2Cl  is not an easy task. In [1], [2], [4] and [6], the 

theory of quadratic forms is used to give an algorithm that computes .2Cl  Given a 

class ,2ClI ∈  they give different methods to obtain, if possible, another class J  

such that .2 IJ =  It is easy to find representatives of all the ambiguous ideal classes 
(i.e., classes of order 2) and we can use any of the previous methods to construct 

.2Cl  In this paper, we will give another procedure to compute ,2Cl  but instead of 

starting from the ambiguous classes, we will give elements FO∈α  such that α  
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is maximal in the set of cyclic subgroups of .2Cl  If the exponent of FCl  is 2, then 

we give a criterion to decide if an ideal of FO  is principal or non-principal. With the 

aid of the computer programs KASH3 [3] and Sage [7], we solve some explicit 
examples. 

2. Some Results on Finite Abelian Groups 

We use nC  to denote the cyclic group of order n and for ,Z∈a  we will write 

a  to denote the class of a in ,nC  where we assume that .ZZ nCn =  Let 

rggG ...,,1=  be a finite abelian group. We are interested in finding khh ...,,1  

G∈  that satisfy 

....,, 11 kk hhhhG ⊕⊕≅=  

Let { }.: GaaG ∈=C  Then 

Proposition 1. Let kGGG ⊕⊕= 1  be a finite abelian p-group where each 

jG  is a cyclic p-group. If ( ) ,...,,1 Gaa k ∈  then ( )kaa ...,,1  is a maximal element 

in GC  if and only if ( ) 1,gcd =pai  for some i. 

Proof. Suppose that ( )kaa ...,,1  is maximal in GC  and ( ) ppai =,gcd  for 

all i. If ,pab ii =  then we have 

( ) ( ) ( ) ....,,...,,...,, 111 kkk bbppbpbaa ==  

Since 

( ( ) ) ( ( ) )
,...,,...,, 1

1 p
bboaao k

k =  

then 

( ) ( ) ,...,,...,, 11 kk bbaa  

so that ( )kaa ...,,1  is not a maximal element in .GC  

Conversely, we may assume without loss of generality that ( ) .1,gcd 1 =pa  Let 

( ) Gkcc C∈...,,1  be such that ( ) ( ) ....,,...,, 11 kk ccaa ⊆  Let Z∈n  be such 

that ( ) ( ) ....,,...,, 11 kk ccnaa =  We consider the projection .: 1GG →φ  Since 
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( ) ,1,gcd 1 =pa  ( ( ) ) ....,, 11 Gaa k =φ  From the equality 

(( )) (( ))
( (( )))

,
...,,,gcd

...,,...,,
1

1
1

k

k
k ccon

ccoaao =  

it follows that if ( (( ))) ,1...,,,gcd 1 >kccon  then np |  and ( ( ) ) ,...,, 11 Gccn k ≠φ  

which is impossible. Therefore, ( (( ))) 1...,,,gcd 1 =kccon  and from this it follows 

that ( )kaa ...,,1  is a maximal element in .GC  ~ 

Next result is similar to the Fundamental Theorem of the Finite Abelian Groups. 

Proposition 2. Let G be a finite abelian p-group, H a subgroup of GgG ∈,  

such that ,, gHG =  Hg ∉  and ( ) ( )hogo ≤  for all h  maximal in .HC  

Then there is Gg ∈′  such that ., gHgHG ′⊕≅′=  

Proof. Let msp=μ  be the smallest positive integer such that Hg ∈μ  and 

( ) .1,gcd =ps  Since ,sgg =  we may assume that .mp=μ  Now consider 

Hh ∈  with h  maximal in hgpm
H ∈,C  and let ntp=ν  be the least positive 

integer such that ( ) 1,gcd =pt  and .hgpm ν=  As before, we can replace h with th 

and assume that .np=ν  It is clear that if ( ) ,rmpgo +=  then ( ) .rnpho +=  If e is 

the identity of G, then 

( ) ( ) ( ) ( )gpgppgppgppgpe mmrmrrmrm +−==== + 1  

( ) ( ) ( ) (( ) ).11 ghpppgphpp mnrmmnr +−=+−= −  

Let ( ) .1 ghppg mnr +−=′ −  It is clear that eg ≠′  and ( ) .mpgo ≤′  Suppose that 

( ) jpgo =′  and .1 mj <≤  Then 

(( ) ) (( ) ) .11 hgphpppghpppgpe jmnrjmnrjj ∈+−=+−=′= −−  

Therefore, hgp j ∈  which is impossible. Thus .mj =  

Since ( ) ,1 ghppg mnr +−=′ −  we obtain ., gHG ′=  The assertion gH ′,  

gH ′⊕≅  is a consequence of .egH =′∩  ~ 
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Next, we will describe an algorithm that will help us modify the set of 
generators of a finite abelian group G so that the new set of generators decompose G 
as a direct sum. 

Algorithm. Let rggG ...,,1=  be a finite abelian group and assume that 

( )igo  are known for ....,,1 ri =  First, we study the case when G is a p-group. In 

the process that we are describing, whenever we change some generator (if 
required), we will reindex the new elements so that 

( ) ( ) ( ).21 rgogogo ≥≥≥  

Let 121 ,, gHggG =′=′  and 2gg =  as in Proposition 2. If ,2 Hg ′∈  

then ....,,, 31 rgggG =  So we can assume that .2 Hg ′∉  By using Proposition 2, 

there is Gg ′∈′2  such that 

....,,,...,,,and, 212122 rr gggggggHgHG ′=′⊕′≅′′=′  

It is possible that ( ) ( ).32 gogo <′  If this was the case, then we reindex and repeat the 

process until .22 gg =′  Therefore, .21 ggG ⊕≅′  For the next step, we let 

,,, 321 gggG =′  2121, ggggH ⊕≅=′  and 3gg =  as in Proposition 2. 

We may assume that .3 Hg ′∉  Since ( ) ( ) ( ),321 gogogo ≥≥  the order of any 

maximal cyclic subgroup of H ′  is greater or equal to ( )3go  and therefore satisfies 

the hypothesis of Proposition 2. Let Gg ′∈′3  such that .321 gggG ′⊕⊕=′  If 

( ) ( ),43 gogo <′  then repeat the process until we obtain 33 gg =′  and ⊕=′ 1gG  

.32 gg ⊕  Continuing with this, we can construct explicitly a basis { }tgg ...,,1  

of G such that .1 tggG ⊕⊕≅  In general, if G is a finite abelian group, then 

we apply the Algorithm to each p-Sylow subgroup of G. 

We will refer to the procedure that we have described previously as the 
Algorithm. 

Example 1. Let 48816 CCCCG ⊕⊕⊕=  and ,,,,, 54321 gggggH =  

where ( ),1,1,1,11 =g  ( ),1,1,1,32 =g  ( ),2,0,3,73 =g  ( ),1,1,0,34 =g  

( ) .1,3,6,125 Gg ∈=  Using the Algorithm, we will find the representation of H 

as a direct sum of cyclic subgroups of H. Note that 

( ) ( ) ( ) ( ) ( ) ,8,16 54321 ===== gogogogogo  
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so, according to the Algorithm, they are arranged already in a proper way. We apply 
Proposition 2 to ,, 21 ggG =′  1gH =′  and .2gg =  The minimal positive 

integers m and n such that 21 gg ν=μ  are 12=μ  and .4=ν  Since ,4312 ⋅=  we 

replace 1g  with ,3 1g  and call 1g  again the new element. With this notation, we 

have ( ).3,3,3,31 =g  If ,1gh =  then we have hg ∈4  and the minimal positive 

integers μ and ν such that hg ν=μ  are .22=ν=μ  Note that .22 2222 ehg == ++  

Therefore, the values we need to construct g′  as in Proposition 2, are == mr  

2=n  and 

( ) ( ) ( ) ( ) ( ).2,2,2,121,1,1,33,3,3,333212 222 =+=+=+−=′ − ghghg  

Since ( ) ,4=′go  we replace 2g  with g′  and arrange the generators so that ( )1go  

( ).5go≥≥  We have 

( ),1,1,1,11 =g  

( ),2,0,3,72 =g  

( ),1,1,0,33 =g  

( ),1,3,6,124 =g  

( ).2,2,2,125 =g  

We repeat the process with ,2gg =  ,1gh =  ,88 hg =  ,1616 ehg ==  ,3== nm  

1=r  and 

( ) ( ) ( ) ( ) ( ).3,1,4,82,0,3,71,1,1,1212 01 =+=+−=′ ghg  

We replace 2g  with g′  and reorder. Thus, we obtain a new list of generators of H: 

( ),1,1,1,11 =g  

( ),1,1,0,32 =g  

( ),1,3,6,123 =g  

( ),3,1,4,84 =g  

( ).2,2,2,125 =g  
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We repeat the procedure with the new ,2gg =  ,1gH =′  ,1gh =  ,88 hg =  

,1616 ehg ==  ,3== nm  .1=r  Therefore, 

( ) ( ) ( ) ( ) ( ).2,2,1,41,1,0,31,1,1,1212 01 =+=+−=′ ghg  

Thus, we obtained a new list of generators of H: 

( ),1,1,1,11 =g  

( ),2,2,1,42 =g  

( ),1,3,6,123 =g  

( ),3,1,4,84 =g  

( ).2,2,2,125 =g  

We note that, if we apply the process again, then there will be no change since 
egg == 21 816  and .0=r  Continuing with ,3gg =  21, ggH =′  and ,1gh =  

we observe that ehg == 168  and .0=r  Therefore, there is no need to change 

.3g  

In the next step, we apply the Algorithm with ,4gg =  .,, 321 gggH =′  In 

this case, we have .3612 3214 Hgggg ′∈++=  Therefore, 

( ) ( ) ( ) ( ).2,2,2,12,1,3,6,12,2,2,1,4,1,1,1,1 4321 ==== gggg  

As in the previous step, .,, 3214 gggHgg =′∈=  Therefore, the generators 

that we are looking for are ,1g  ,2g  3g  and 

( ) ( ) ( ) ,1,3,6,12,2,2,1,4,1,1,1,1 8816 CCCH ⊕⊕≅=  

where ( ) ,161 =go  ( ) ( ) .832 == gogo  

3. 2-class Groups of Real Quadratic Fields 

As an application of the Algorithm, we are going to construct generators of the 
2-Sylow subgroup of the ideal class group of a real quadratic field. Next theorem is 
well known ([5, Theorem 3.70]). 
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Theorem 3 (Gauss’s Theorem on the 2-rank of .)FCl  Let F  be a quadratic 

field and t the number of distinct factors of .Fδ  If there is some prime ( )4mod3≡p  

such that Fδ|p  and ,0>d  then the rank of 2Cl  is .2−t  In any other case, the 

rank is .1−t  

Let ,, Z∈ba  .1>b  We will use the following notation: 

( )
( )⎪⎩

⎪
⎨
⎧

≡−

≡
=⎥⎦

⎤
⎢⎣
⎡

solvable.notismodif,1

solvable,modif,1
2

2

bax

bax
b
a  

If b is a prime number and ( ) ,1,gcd =ba  then ⎥⎦
⎤

⎢⎣
⎡

b
a  is just Legendre’s symbol .⎟

⎠
⎞⎜

⎝
⎛

b
a  

As consequence of the Chinese Remainder Theorem, we have: 

Lemma 4. Let 1, 1 >= tbbba  be integers such that ( ) 1,gcd =ji bb  for 

.ji ≠  Then 1=⎥⎦
⎤

⎢⎣
⎡

b
a  if and only if 1=⎥⎦

⎤
⎢⎣
⎡

ib
a  for ....,,1 ti =  

Lemma 5. Let { },1,1...,,1 −∈tbb  ,...,,,, 1
+∈ Ztppna  na 2<  odd and 

where ip  is an odd prime number for ....,,1 ti =  Then there is a rational prime q 

such that 

( ) ....,,,2mod 1
1

t
t

n bp
qbp

qaq =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛≡  

Proof. Let Z∈tcc ...,,1  such that .i
i
i bp

c
=⎟

⎠
⎞

⎜
⎝
⎛  Using the Chinese Remainder 

Theorem, there is Z∈c  satisfying 

( )

( )

( ).mod

mod

2mod

11

tt

n

pcc

pcc

ac

≡

≡

≡

 

Since ,ii cp  ( ) 12,gcd 1 =t
n ppc  and by Dirichlet’s Theorem, there are infinite 

primes ( ).2mod 1 t
n ppcq ≡  ~ 
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Lemma 6. Let gpppd 10=  be a square free positive integer, ( )4mod1≡ip  

for .0 gi ≤≤  Then there are primes gqq ...,,1  such that 

.11 −=⎥⎦
⎤

⎢⎣
⎡−=⎥⎦

⎤
⎢⎣
⎡=⎟

⎠
⎞

⎜
⎝
⎛

d
q

d
qandq

d ii
i

 

Proof. It follows from Lemma 5, Quadratic Reciprocity Law and Lemma 4. ~ 

From the first assertion of Lemma 5, we note that the primes gqq ...,,1  can be 

chosen in such a way that ( ).4mod1≡iq  The choosing of such kind of primes will 

be relevant in the next results. 

Lemma 7. Let gppd 12=  be a square free positive integer with ≡ip  

( )4mod1  for .1 gi ≤≤  There are gqq ...,,1  primes that satisfy 

.114 −=⎥⎦
⎤

⎢⎣
⎡−=⎥⎦

⎤
⎢⎣
⎡=⎟

⎠
⎞

⎜
⎝
⎛

d
q

d
qandq

d ii
i

 

Proof. By Lemma 5 and the Quadratic Reciprocity Law, we choose ≡1q  

( )8mod5  such that 

.2,1and1
11

1 gjq
p

q
p j ≤≤=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⎟

⎠
⎞

⎜
⎝
⎛  

Therefore, 

( ) ( ) ( ) ( ) .111112
11

2
1
1

11
=−−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

q
p

q
p

q
p

qq
d g  

Finally, .4
11
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

q
d

q
d  As in the proof of the previous lemma, it follows that 

.111 −=⎥⎦
⎤

⎢⎣
⎡−=⎥⎦

⎤
⎢⎣
⎡

d
q

d
q  

The primes gqq ...,,2  are obtained as in Lemma 6 with the additional condition 

( ).8mod1≡iq  ~ 

Lemma 8. Let ( )4mod110 ≡= gpppd  with 1≥g  be a positive square 

free integer such that for some { },2...,,1,0,1 −−∈ gt  
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( ) ( ).4mod3...,,,4mod1...,, 10 ≡≡ + gtt pppp  

Then there exist primes 11 ...,, −gqq  such that 1=⎟
⎠
⎞

⎜
⎝
⎛

iq
d  and .1−=⎥⎦

⎤
⎢⎣
⎡−=⎥⎦

⎤
⎢⎣
⎡

d
q

d
q ii  

Proof. The first primes tqq ...,,1  are obtained as in Lemma 6 such that ≡iq  

( ).4mod1  For ,11 −≤≤+ git  we choose the primes iq  such that 

.,1,1,11 iijq
p

q
p

q
p

i

j

i
i

i
i −≠=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ −  

Hence ,1−=⎟
⎠
⎞

⎜
⎝
⎛

iq
d  .1−=⎥⎦

⎤
⎢⎣
⎡

d
qi  Finally, since ,1=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

g
i

p
q  we obtain 1−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
g
i

p
q  

and .1−=⎥⎦
⎤

⎢⎣
⎡−=⎥

⎦

⎤
⎢
⎣

⎡−
d
q

p
q i
g
i  ~ 

Lemma 9. Let ( )4mod310 ≡= gpppd  be a positive square free integer 

such that for some { },1...,,1,0,1 −−∈ gt  

( ) ( ).4mod3...,,,4mod1...,, 10 ≡≡ + gtt pppp  

Then there exist primes gqq ...,,1  such that 14 =⎟
⎠
⎞

⎜
⎝
⎛

iq
d  and .1−=⎥⎦

⎤
⎢⎣
⎡−=⎥⎦

⎤
⎢⎣
⎡

d
q

d
q ii  

Proof. The primes tqq ...,,1  are obtained as in Lemma 6. Since ( ),4mod3≡d  

we have an odd number of ( ).4mod3primes ≡  First, suppose that gp  is the only 

prime such that ( ).4mod3≡gp  In this case, we choose a prime ( )4mod1≡gq  

satisfying 

.1
1

1 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

−

g

g

g

g

g

g
p
q

p
q

q
p

 

Therefore, .1−=⎥
⎦

⎤
⎢
⎣

⎡−
d
qg  Finally, if more than one prime is ( ),4mod3≡  then 

instead of using gp  as in Lemma 8, we use any of the primes ( )4mod3≡jp  such 

that .1=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

j
i

p
q  The proof follows as in the previous lemmas. ~ 
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Lemma 10. Let gppd 12=  be square free with ( )4mod1...,,1 ≡tpp  and 

( )4mod3...,,1 ≡+ gt pp  for .10 −≤≤ gt  Then there are primes 11 ...,, −gqq  

such that 14 =⎟
⎠
⎞

⎜
⎝
⎛

iq
d  and .1−=⎥⎦

⎤
⎢⎣
⎡−=⎥⎦

⎤
⎢⎣
⎡

d
q

d
q ii  

Proof. If ,0>t  then tqq ...,,1  are obtained as in Lemma 7 and the primes 

11 ...,, −+ gt qq  are obtained as in Lemma 8. If ,0=t  then ( )4mod3≡ip  for 

gi ...,,1=  and .2≥g  In this case, we choose ( )8mod51 ≡q  in such a way that 

.1,1,1
11

1 >=⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛ iq

p
q
p i  

From this and ,12
1

−=⎟
⎠
⎞

⎜
⎝
⎛

q  it follows that 

.1,14 11
1

−=⎥⎦
⎤

⎢⎣
⎡−=⎥⎦

⎤
⎢⎣
⎡=⎟

⎠
⎞

⎜
⎝
⎛

d
q

d
q

q
d  

The primes 12 ...,, −gqq  are obtained as in Lemma 8. ~ 

From now on, we write ( ),dQF =  0>d  square free. Let { }tqq ...,,1=P  

obtained in Lemmas 6, 7, 8, 9 or 10. We observe that there are infinitely many 

N∈ia  such that ( ).mod2
ii qda ≡  We fix one of them and define the ideals =iq  

., daq ii +  It is clear that iq  is a prime ideal, ( ) ii qN =q  and ,iiiq qq ′=  where 

., daq iii −=′q  Given P  as above, we define { }....,,1 tqq=PI  We will write 

( )JIord  to indicate that ( ) JI JI |ord  and ( ) .1ord JI JI +  

Observe that ( ) ,2
2

2
121 daadaaN −=+  so if ,21 daaI +=  then ( )IN  

( )da mod2
1≡  or ( ) ( ).mod2

1 daIN ≡−  Therefore, if ( ) ,1−=⎥⎦
⎤

⎢⎣
⎡±

d
IN  then I is a 

non-principal ideal. 

Theorem 11. Let gpppd 10=  be a positive square free integer and 

( ).dQF =  If ( )∏
∈

=
PIq

qq
II ord  and ( )Iqord  is odd for some ,PI∈q  then 

(1) ( ) 1−=⎥⎦
⎤

⎢⎣
⎡±

d
IN  and therefore I is non-principal. 
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(2) If FClI ∈  is the class of I, then ( )Io  is even. 

(3) Let ( )∏
∈

=
PIq

qq
JJ ord  such that for some ,PI∈q  ( )Jqord  is odd and 

( ) ( ) ( ).2modordord JI qq ≡/  Then .JI ≠  

Proof. For the first assertion, we need that ( ) ( ) 1
21

−=⎥⎦
⎤

⎢⎣
⎡

′
−

=⎥⎦
⎤

⎢⎣
⎡

′ p
IN

p
IN  for certain 

prime divisors ,1p′  2p′  of d. Let { ( ) }.oddisord:max Iij iq=  We observe that 

0>j  and jp  is odd. We know that 

( )

,1

ord

−=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

j

I
j

j

j
p

q
p
q jq

 we have that for 

any ,PI∈iq  either ji <  or ( )Iiqord  is even. Then by construction, 
( )

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

j

I
i

p
q jqord

 

1=  if ( ),INqi |  .ji qq ≠  Therefore, ( ) ( ) .1−=⎥⎦
⎤

⎢⎣
⎡=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
d

IN
p

IN
j

 If some prime divisor 

p of d, ( ),4mod1≡p  satisfies ( ) ,1−=⎟
⎠
⎞⎜

⎝
⎛

p
IN  then ( ) ( ) .1−=⎥⎦

⎤
⎢⎣
⎡−=⎟

⎠
⎞

⎜
⎝
⎛ −

d
IN

p
IN  

Now consider the case ( ) ,1=⎟
⎠
⎞⎜

⎝
⎛

p
IN  ( ),4mod1≡p  .dp |  If ( ),4mod2,1≡d  

then it follows from Lemmas 8, 10 that ( ) .1=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

gp
IN  Therefore, 

( ) ( ) ( ) .1−=⎥⎦
⎤

⎢⎣
⎡−=⎥

⎦

⎤
⎢
⎣

⎡−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
d

IN
p

IN
p

IN
gg

 

Consider the case ( ),4mod3≡d  ( ) ,1=⎟
⎠
⎞⎜

⎝
⎛

p
IN  ( ).4mod1≡p  At the beginning of 

the proof, we saw that there is an odd prime dp j |  such that ( ) .1−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

jp
IN  If =k  

{ ( ) },oddisord:min Ii iq  then it follows that ( ) .1
1

−=⎟
⎠
⎞

⎜
⎝
⎛

−kp
IN  Since ( ),4mod3≡d  

d must have an odd number of prime divisors of the form 34 +x  and since 
( ),4mod3, 1 ≡−kj pp  there are at least three of such prime numbers. Let P∈iq  

be such that ( )Iiqord  is odd. Each of these has associated two prime divisors       
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,1−ip  ip  of d such that .1
1

−=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

− i
i

i
i

p
q

p
q  Hence, there is an even number         

of pairs ( )ml qp ,  that satisfy .1−=⎟
⎠
⎞

⎜
⎝
⎛

l
m

p
q  Therefore, among the symbols 

( ) ( ) ,...,,
0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

gp
IN

p
IN  an even number of them take the value –1 for some primes 

( ).4mod3≡ip  It follows that there is some prime ( )4mod3≡p  such that 

( ) .1=⎟
⎠
⎞⎜

⎝
⎛

p
IN  As in the case ( ),4mod2,1≡d  we obtain ( ) ( ) .1−=⎥⎦

⎤
⎢⎣
⎡−=⎟

⎠
⎞

⎜
⎝
⎛ −

d
IN

p
IN  

We note that ( )Io  is even since aI  is non-principal for N∈a  odd. 

Finally, the class 1−I  has a representative ( ) ( )∏
∈

−
=′

PIq

q qq ,ord IoI  where 

( ) ( ) ( ).2modordord II qq ≡′  Thus ( )IJ ′qord  is odd and IJ ′  is non-principal. 

Therefore, 1−′≠ IJ  and so .JI ≠  ~ 

Lemma 12. Let F  be as always, I, J ideals of FO  such that ( ) ,1−=⎥⎦
⎤

⎢⎣
⎡±

d
IN  

( )Io  even and such that for any ramified prime ( )INpp,  and ( ).JNp  If 

,IJ ∈  then ( ) .1−=⎥⎦
⎤

⎢⎣
⎡±

d
JN  

Proof. Let IJ ∈  such that ( ) 1=⎥⎦
⎤

⎢⎣
⎡

d
JN  or ( ) .1=⎥⎦

⎤
⎢⎣
⎡−

d
JN  Since I  has even 

order, we have ( ( ) ) .1=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
d
IN Io

 From the multiplicity of Legendre’s symbol and 

Lemma 4, we obtain ( ( ) ) .1
1

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡± −

d
IN Io

 Since ( ) 1=⎥⎦
⎤

⎢⎣
⎡

d
JN  or ( ) ,1=⎥⎦

⎤
⎢⎣
⎡−

d
JN  in 

both cases, we have 

( ( ) ) ( ( ) ) .1
11

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−

d
JIN

d
JIN IoIo

 

From ( ) ,111 −−− == JII Io  it follows that ( ) JI Io 1−  is a principal ideal, which is 

impossible. Therefore, ( ) .1−=⎥⎦
⎤

⎢⎣
⎡±

d
JN  ~ 
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If ,PI∈iq  then ( ) i
k

i to i2=q  for some N∈ii tk ,  and it  odd. For ,PI∈iq  

we define .it
iiJ q=  Let { }....,,1 PPJ JJ=  Observe that since ji qq ≠  for 

,ji ≠  .ji JJ ≠  

Lemma 13. Let F  be a real quadratic field and iJ  as above. Then: 

(1) ( ) 1−=⎥⎦
⎤

⎢⎣
⎡±

d
JN i  for .1 P≤≤ i  

(2) If ,PJ∈iJ  then ....,,,...,, 111 PJJJJJ iii +−∉  

(3) We can modify the elements of PJ  in such a way that 

....,, 11 PP JJJJ ××≅  

Proof. Before we start the proof, we observe that all the ideals we will be using 
are such that their norms and d are relative primes, so we can use Lemma 12.                  

(1) follows from Lemma 4 since it  is odd. For (2), let us suppose that ∈iJ  

....,,,...,, 111 PJJJJ ii +−  Let ∏
∈

=
PJl

l

J

e
lJI  with 0=ie  and je  non-negative 

integers. Clearly, ....,,,...,, 111 PJJJJI ii +−∈  If ,iJI ∈  since ( ) ,1−=⎥⎦
⎤

⎢⎣
⎡±

d
JN i  

then ( ) .1−=⎥⎦
⎤

⎢⎣
⎡±

d
IN  From this, some le  is odd. Since ,0=ie  by Theorem 11(3), 

we have .IJ it
ii ∉= q  As consequence of (2) we have that the rank of PJJ ...,,1  

is .P  To prove (3), we use the Algorithm. ~ 

Theorem 14. If F  is a real quadratic field, then ....,,12 PJJCl =  

Proof. By Lemma 13 and Theorem 3, we know that PJ JJG ...,,1=  is a 

2-group with rank equal to the rank of .2Cl  Suppose there exists an ideal FO⊆I  

such that ( ) kIo 2=  with N∈k  and ( )( ) .1,gcd =δFIN  Since the 2-rank of FCl  

is equal to the 2-rank of ,JG  there exist N∈Peet ...,,, 1  such that 

∏
∈

=
PJi

i

J

e
i

t JI ,  
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with .FO≠
tI  We chose the smallest t satisfying this condition. Note that t is even, 

otherwise .JGI ∈  Thus ( ) .1=⎥
⎦

⎤
⎢
⎣

⎡
d
IN t

 On the other hand, at least one ie  is odd, 

since otherwise t would not be minimum. From Theorem 11, we have that ( )
⎥
⎦

⎤
⎢
⎣

⎡
d
IN t

 

.1−=  This shows that any ideal FO⊆I  with ( )( ) 1,gcd =δFIN  satisfies .JGI ∈  

Let p be a ramified prime and p  a prime ideal such that ( ) .pN =p  We know that 

the rank of 2Cl  is the same as ,JG  so p,JG  must have the same rank as .JG  

This implies JG∈p  or there is a maximal 
JGCH ∈  such that .p⊆H  If the 

latter happens, ( ) ( ) ,21 ≤≤< poHo  so ,p=H  JG∈p  and therefore =JG  

., pJG  We apply this argument to all ramified primes to obtain .2 JGCl =  ~ 

Lemma 15. Let F  be a real quadratic field. Every class in FCl  has a 

representative I such that ( )( ) .1,gcd =δFIN  

Proof. Let FClJ ∈  such that ,11 rkJ qqpp=  where ip  is a ramified 

prime ideal for ki ≤≤1  and iq  is an unramified prime ideal for .1 ri ≤≤  It will 

suffice to prove that every ip  has a representative that satisfies the affirmation. 

First, we will prove the assertion for ( ).4mod2,1≡d  In this case, a prime p is 

ramified if and only if ,dp |  and the ideal of norm ip  is 

.,, dppdp iiii +==p  

So we have 

( ) ,,, 2
iiiiiiiii pdpdppdpdppdp −−=−−=− p  

so ip  is in the same class than ., iiii pdpdp −−=′p  Note that ip′  is not 

necessarily a prime ideal. Observe that ( ) 1,gcd =− ii pdpp  for every prime              

p such that ,dp |  then ii pdpp −  and ( ).ii pdpNp −  The fact that 

iii pdp −|′p  implies ( ).iNp p′  Therefore, ( )( ) .1,gcd =′iNd p  If we change 

every ip  for ,ip′  then we get a new ideal I related to J without ramified prime 

factors. 



2-CLASS GROUP OF QUADRATIC FIELDS 169 

Now suppose ( ).4mod3≡d  We proceed similarly as in the previous case, and 

we obtain an ideal JI ∈  such that ( )( ) .1,gcd =dIN  In this case, 2 is a ramified 

prime but ,2 d  so it is possible that .1,2 Id |+=p  In this case, we have 

( ) ( ) ,21121,121 ddddd −+−=−−=−p  

where ( ) pp ~21,1 dd −−=′  and Z∈−
2

1 d  is odd. In particular, ( ).2 p′N  

Since ( ) ,1,1gcd =− dd  we have ( )( ) ,1,gcd =′ dN p  hence ( )( ) .1,gcd =δ′ FpN  

Replacing p  for ,p′  we obtain the ideal we wanted. ~ 

Proposition 16. Let F  be a real quadratic field such that kCl 2=F  for some 

N∈k  and FClI ∈  with ( )( ) .1,gcd =δFIN  Then I  is maximal in FClC  if and 

only if ( ) .1−=⎥⎦
⎤

⎢⎣
⎡±

d
IN  

Proof. We know that .1 PJ JJGCl ××≅=F  If I  is maximal in 

,FClC  then I is related with some ideal 

∏
∈

=
PJi

iJ

J

J
iJJ
ord

 

with JiJord  odd. Theorem 11 implies that ( ) .1−=⎥⎦
⎤

⎢⎣
⎡±

d
IN  Conversely, suppose 

I  is not maximal. Then JI  for a class .J  We can choose J in such a way 

that ( )( ) .1,gcd =δFJN  Therefore, tJI =  for some .N∈t  As a consequence of 

the fact that ,JI ≠  we have that t is even. So, ( ) ( ) .1=⎥
⎦

⎤
⎢
⎣

⎡
=⎥⎦

⎤
⎢⎣
⎡

d
JN

d
IN t

 ~ 

Example 2. Let ( ).322QF =  Since ,2372322 ⋅⋅=  from Theorem 3 we 

have that the rank of 2Cl  is 1. We apply Lemma 10 with ,0=t  .2=g  We will 

find a non-principal ideal 1q  such that it generates .2Cl  For this, we need a prime 

1q  such that 

.1322and13224 1
1

−=⎥⎦
⎤

⎢⎣
⎡±=⎟

⎠
⎞

⎜
⎝
⎛ ⋅ q

q  
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Following the proof of Lemma 10, it is enough that 1q  satisfies 

 ( ) .123
23,17

7,8mod5
1

1
1

1
1 =⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛≡ q

q
q

qq  (1) 

From Lemma 5, we have that 325 satisfies (1), but it is not a prime. From Dirichlet’s 
Theorem, we obtain that 161312833251 =+=q  is prime and 

.322100,1613322100,16131613 −+=  

Hence 322100,16131 +=q  generates 2Cl  and ( ) .41 =qo  

Example 3. Let 31329352272490 ⋅⋅⋅⋅==d  and ( ).dQF =  To find 

suitable generators of ,2Cl  we use Lemma 10 with ,4=g  .2=t  We observe that 

the rank of 2Cl  is 3. According to Lemma 7, we need a prime number 1q  such that 

( ) .1313293,15,8mod5 1111
1 =⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛≡

qqqqq  

Therefore, it is sufficient that 1q  satisfies 

( ),8mod51 ≡q  

( ),5mod31 ≡q  

( ).27249mod11 ≡q  (2) 

The prime number 7629731 =q  solves (2) and 

272490349636,7629731 +=q  

is a prime ideal such that ( ) 11 qN =q  and ( ) .81 =qo  Similarly, we find =2q  

1895713 and the prime ideal 272490507828,18957132 +=q  satisfies 

( ) ,22 qN =q  ( ) .82 =qo  The prime 56742413 =q  and the prime ideal =3q  

2724901813618,5674241 +  satisfies ( ) ,33 qN =q  ( ) .83 =qo  Therefore, =2Cl  

.,, 321 qqq  

The minimal relations between ,1q  ,2q  3q  that appear in Proposition 2 are 

.,,
8

3
8

2
8

1
2

3
2

1
4

2
4

1 FO===== qqqqqqq  
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We replace 2q  with 
( ) ( )

212
212

1
01

qqqq =
−

 and 3q  with 
( ) ( )

.3
3

13
212

1
02

qqqq =
−

 

Now we have ,,, 3
3

12112 qqqqq=Cl  with ( ) ,81 =qo  ( ) 421 =qqo  and ( )3
3

1 qqo  

.2=  Continuing with the Algorithm, we check that this set of generators of 2Cl  

cannot be simplified any further. Therefore, 

.,, 2483
3

12113
3

12112 CCCCl ××≅××≅= qqqqqqqqqq  

4. Other Cases 

Similar results can be found when we have an imaginary quadratic field 
( ),d−= QF  where d is a rational positive squarefree integer. In this case, the 

norm of an element in F  is always positive, hence, we will use ( )
⎥⎦
⎤

⎢⎣
⎡

d
IN  instead of 

( )
⎥⎦
⎤

⎢⎣
⎡±

d
IN  and to construct ,P  ,PI  PJ  we will need to find prime numbers as 

follows: 

1. If gppd 0=  as in Lemma 6, then we can find 1+g  prime numbers 

gqq ...,,0  such that ,1−=⎟
⎠
⎞

⎜
⎝
⎛

i
i

q
p  1=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

i

j
q
p

 for ji ≠  and ( ).4mod3≡iq  

In this case, 11
−=⎟

⎠
⎞

⎜
⎝
⎛ −

d  and .1−=⎟
⎠
⎞

⎜
⎝
⎛

i
i

p
q  

2. If gppd 12=  as in Lemma 7 or ( )4mod310 ≡= gpppd  as in 

Lemma 9, then we can find g prime numbers such that 1=⎟
⎠
⎞

⎜
⎝
⎛ δ

iq
F  and ⎥⎦

⎤
⎢⎣
⎡

d
qi  

.1−=  In fact, we can use the same iq ’s we found in the real case. 

3. If ( )4mod110 ≡= gpppd  as in Lemma 8, then ( )4mod3≡−d  and 

.4d−=δF  In this case, we can find 1+g  prime numbers gqq ...,,0  such 

that ,1−=⎟
⎠
⎞

⎜
⎝
⎛

i
i

q
p  ,1=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
i

j
q
p

 for ji ≠  and ( ).4mod3≡iq  Since ,1≥g  

we always have a prime jp  such that 1=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

j
q
p

 and ,1−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

j
i

p
q  hence 

.1−=⎥⎦
⎤

⎢⎣
⎡

d
qi  
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4. If ( )4mod12 1 ≡= gppd  as in Lemma 10, then there are g primes 

gqq ...,,1  such that ,1−=⎟
⎠
⎞

⎜
⎝
⎛

i
i

q
p  1=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

i

j
q
p

 for ji ≠  and ( ).8mod5≡iq  

With these prime numbers, we define ,P  PI  and PJ  as in the real case. 

Lemmas 12, 13 and 15, Proposition 16 and Theorems 11 and 14 can be generalized 

removing the minus sign in ( ) .⎥⎦
⎤

⎢⎣
⎡±

d
IN  

A particular case of what we have studied is when the exponent of FCl  is 2. 

The next results follow from Theorem 14: 

Corollary 17. Let F  be a quadratic field such that FCl  has exponent 2. Then 

PJ=FCl  and each class contains an ideal of the form ∏
∈AJ

J  for some 

,PJ⊆A  where we define ∏
∅∈

=
J

J .FO  

Theorem 18. Let F  be a real quadratic field such that FCl  has exponent 2 and 

FO⊆I  be an ideal such that ( )( ) .1,gcd =δFIN  Then I is non-principal if and 

only if ( ) .1−=⎥⎦
⎤

⎢⎣
⎡±

d
IN  

Proof. Every class is represented by an ideal ∏
∈

=
AJ

A JI  for some A≠∅  

.PJ⊆  By Theorem 11(1), we have ( ) .1−=⎥⎦
⎤

⎢⎣
⎡±

d
IN A  If some ideal I satisfies 

( ) ,1−=⎥⎦
⎤

⎢⎣
⎡±

d
IN  then by Lemma 12, any ideal J contained in I  such that 

( )( ) 1,gcd =δFJN  satisfies ( ) .1−=⎥⎦
⎤

⎢⎣
⎡±

d
JN  Therefore, any non-principal ideal 

satisfies ( ) .1−=⎥⎦
⎤

⎢⎣
⎡±

d
IN  The converse is true in any real quadratic field. ~ 

The condition ( )( ) 1,gcd =δFIN  is necessary, otherwise if ( )( ) ,1,gcd >δFIN  

then there might exist non-principal ideals I such that ( ) 1=⎥⎦
⎤

⎢⎣
⎡

d
IN  or ( ) .1=⎥⎦

⎤
⎢⎣
⎡−

d
IN  
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For example, if ( ),10QF =  then 1
10

5
=⎥⎦

⎤
⎢⎣
⎡±  but 10,5  is non-principal. A 

similar result can be stated for the imaginary case. 

Example 4. We are going to find the 2-class group of the imaginary quadratic 

field ( ).665−= QF  Since ( ) ( ) ( ) ( ),4mod31975665 ≡−=−  ,2660−=δF  ,50 =p  

71 =p  and .192 =p  The next table shows the first prime numbers ( )4mod3≡q  

such that .1=⎟
⎠
⎞

⎜
⎝
⎛ δ

q
F  Here we can see that ,30 =q  711 =q  and 1312 =q  satisfy 

the conditions that we required previously. In this case, ,6654,31 −+=p  

66520,712 −+=p  and ,66511,1313 −+=p  ( ) ( ) ( ) ,6321 === ppp ooo  

{ }.,, 3
3

3
2

3
1 ppp=PI  If we apply the Algorithm, then we will find that PP JI =  

and 

.2222 CCCCl ××≅  

q ⎟
⎠
⎞

⎜
⎝
⎛ δ

q
F  ⎟

⎠
⎞⎜

⎝
⎛

q
5  ⎟

⎠
⎞⎜

⎝
⎛

q
7  ⎟

⎠
⎞⎜

⎝
⎛

q
19  ⎥⎦

⎤
⎢⎣
⎡
665
q  

3 1 –1 1 1 –1 
23 1 –1 –1 –1 –1 
43 1 –1 –1 –1 –1 
71 1 1 –1 1 –1 
79 1 1 –1 1 –1 

103 1 –1 1 1 –1 
131 1 1 1 –1 –1 
139 1 1 1 –1 –1 
151 1 1 –1 1 –1 

Example 5. If ( ),21−= QF  then ;22 CCCl ×≅F  hence, an ideal is principal 

if and only if ( ) .121 =⎥⎦
⎤

⎢⎣
⎡ IN  For example, 212,5 −+  is a non-principal ideal since 

( ) 5=IN  and .121
5 −=⎥⎦
⎤

⎢⎣
⎡  The ideal 2141,37 −+  is principal since ( ) 37=IN  

and ( ).21mod3742 ≡  
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