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Abstract

We find explicitly the 2-class group of a quadratic field. We use this result
to give a criterion to decide whether an ideal is principal if the exponent
of Cly is 2.

1. Introduction

Let F = Q(~/d) be a quadratic field, O the ring of integers of F, Cly the

class group of T, Cl, the 2-Sylow subgroup of Cly and &g the discriminant of F.

It is well known that the rank of Cl, depends on the number and type of the prime

factors of d. However, obtaining Cl, is not an easy task. In [1], [2], [4] and [6], the

theory of quadratic forms is used to give an algorithm that computes Cl,. Given a

class 1 e Cl,, they give different methods to obtain, if possible, another class J

such that J2 = 1. Itis easy to find representatives of all the ambiguous ideal classes
(i.e., classes of order 2) and we can use any of the previous methods to construct
Cl,. In this paper, we will give another procedure to compute Cl,, but instead of

starting from the ambiguous classes, we will give elements o € Oy such that (a)
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is maximal in the set of cyclic subgroups of Cl,. If the exponent of Cly is 2, then
we give a criterion to decide if an ideal of Op is principal or non-principal. With the

aid of the computer programs KASH3 [3] and Sage [7], we solve some explicit
examples.

2. Some Results on Finite Abelian Groups

We use C,, to denote the cyclic group of order n and for a € Z, we will write
a to denote the class of a in C,, where we assume that C, = Z/nZ. Let
G =(0y, .., 9r) be a finite abelian group. We are interested in finding hy, ..., hy
e G that satisfy

G = (hy, ..., he) = () @ - ® ().

Let Cg = {(a) : a € G}. Then

Proposition 1. Let G = G; @ --- ® Gy be a finite abelian p-group where each
G
in Cg ifand only if gcd(a;, p) =1 for some i.

is a cyclic p-group. If (ay, ..., a) € G, then ((ay, ..., ay)) is a maximal element

Proof. Suppose that ((ay, ..., ay)) is maximal in Cg and gcd(aj, p) = p for

alli. If bj = a;/p, then we have
(@y, - @) = ((Pby, .., b)) = (plby, ., b)),
Since

o((ag, -t 3¢) = Mpb_k»)

then
(g, o @) & (B, s D),
so that ((ay, ..., a)) is not a maximal element in Cg.

Conversely, we may assume without loss of generality that gcd(ay, p) = 1. Let
((c1, -y & )) € Cg be such that ((ay, ..., ay)) < ((Cy, ..., ¢ )). Let n e Z be such

that ((ay, ..., ay)) = (n(cy, ..., ¢ )). We consider the projection ¢ : G — Gy. Since
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ged(ag, p) =1, &({(ay, -, &y ))) = G;. From the equality

o 50
ged(n, o((cy, -, Cx)))

o((ay, - ax)) =

it follows that if ged(n, o((cy, ..., ¢ ))) > 1, then p|n and ¢((n(c_1, a))) # Gy,
which is impossible. Therefore, gcd(n, o((cy, ..., ¢, ))) =1 and from this it follows
that ((ay, ..., & )) is a maximal element in Cg. O

Next result is similar to the Fundamental Theorem of the Finite Abelian Groups.

Proposition 2. Let G be a finite abelian p-group, H a subgroup of G, g € G
such that G =(H, g), g« H and o(g) <o((h)) for all (h) maximal in Cy.
Thenthereis g’ € G suchthat G = (H, g') = H @& (g’).

Proof. Let u = sp™ be the smallest positive integer such that ug € H and
ged(s, p) =1. Since (g)=(sg), we may assume that p = p™. Now consider
h e H with (h) maximal in Cyy, p™g e (h) and let v = tp" be the least positive
integer such that ged(t, p) =1 and p™g = vh. As before, we can replace h with th
and assume that v = p". It is clear that if o(g) = p™*", then o(h) = p"*". Ifeis
the identity of G, then

e=p"g=p"p'g=p"(p"g)=(p" -1)(p"9)+(p"g)
=(p" =D(p"M+(p"g) = p"(p" -1 p" " + g).

Let g’ = (p" =1)p"™h + g. Itisclear that g’ # e and o(g') < p™. Suppose that

o(g') = p} and 1< j < m. Then
e=plg’=pl((p" - p"™h+g) = pl((p" - p""h)+ plg < (h).
Therefore, plg e (h) which is impossible. Thus j = m.

Since g'=(p" —1)p"™h + g, we obtain G = (H, g'). The assertion (H, g')
= H @ (g’) is a consequence of H N (g’) = (e). O
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Next, we will describe an algorithm that will help us modify the set of
generators of a finite abelian group G so that the new set of generators decompose G
as a direct sum.

Algorithm. Let G =(gy, ..., g;) be a finite abelian group and assume that
o(g;) are known for i =1, ..., r. First, we study the case when G is a p-group. In
the process that we are describing, whenever we change some generator (if
required), we will reindex the new elements so that

0(g1) = 0(g2) = -+ = o(gr)-

Let G’ =(9g;, 9»), H' =(0;) and g =g, as in Proposition 2. If g, € H’,
then G =(gy, 93, ..., 9y ). SO we can assume that g, ¢ H'. By using Proposition 2,

there is g5 € G' such that

G'=(H", g2) = H'®(g2) and (91, 92, .- 9r) = (91, 92, .- Ur)-

It is possible that o(g5) < o(g3). If this was the case, then we reindex and repeat the
process until g5 = g,. Therefore, G’ = (g;) ® (g,). For the next step, we let
G'=(91, 92, 93), H'=(01, 92) = (91) ®(92) and g = g3 as in Proposition 2.
We may assume that g; ¢ H'. Since 0(g;) > 0(g,) > o(g3), the order of any
maximal cyclic subgroup of H' is greater or equal to o(gs3) and therefore satisfies
the hypothesis of Proposition 2. Let g3 € G’ such that G' = (g;) ® (g,) ® (g3). If
0(g3) < 0(g4), then repeat the process until we obtain g3 = g3 and G’ = (g;) ®
(92) @ (g3). Continuing with this, we can construct explicitly a basis {gy, ..., 9¢}
of G such that G = (g;) @ --- ® (g;). In general, if G is a finite abelian group, then
we apply the Algorithm to each p-Sylow subgroup of G.

We will refer to the procedure that we have described previously as the
Algorithm.

Example 1. Let G =C;g ®Cg ®Cg ®Cy and H =(0y, 95, 93, U4, Js),
where g; =(1,1,1,1), g, =(3,1,1,1), g3=(7,3,0,2), g, =(3,0,1, 1),
gs = (12, 6, 3, 1) € G. Using the Algorithm, we will find the representation of H

as a direct sum of cyclic subgroups of H. Note that

0(91) = 0(g2) = 0(g3) = 0(g4) = 16, 0(gs) =8,
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s0, according to the Algorithm, they are arranged already in a proper way. We apply
Proposition 2 to G’ =(gy, 9»), H'=(g;) and g = g,. The minimal positive
integers m and n such that pg; = vg, are p =12 and v = 4. Since 12 = 3- 4, we

replace g, with 3g;, and call g; again the new element. With this notation, we
have gy = (3, 3, 3, 3). If h = gy, then we have 4g e (h) and the minimal positive
integers p and v such that pg = vh are p = v = 22 Note that 2°72g = 22*2h =e.

Therefore, the values we need to construct g’ as in Proposition 2, are r =m =
n=2 and

9 =(2%-1)(2>?%)h+g=31+9g=33,33,3)+(31,1,1)=(12 2, 2, 2).

Since o(g’) = 4, we replace g, with g’ and arrange the generators so that o(g;)
> ... > 0(gs). We have

0=(1111),
92 =(7,3,0,2),
93 =(3,0,1,1),
04 = (12,6 3,1),

We repeat the process with g = g, h = g;, 8g =8h, 16g =16h=¢, m=n =3,
r=1and

9=2"-1)2%h+g=(1,1,1,1)+(7,3,0,2)=(8, 4 1, 3).

o =(1111),
92 =(3,0,1, 1),
93 = (12, 6,3, 1),
9, =(8,4,1,3)
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We repeat the procedure with the new g = g,, H'=(g;), h=g;, 8g =8h,
16g =16h =e, m=n =3, r =1. Therefore,

9=2'-1)(2%h+9=(1,1,1,1)+(3,0,1

|
N
Il
—_~
Bl
Ll
Nl
N
SN

Thus, we obtained a new list of generators of H:

0 =(1111)
9, = (41,2 2),
g3 =(12,6, 3, 1)
9s=(8,4,13),
gs = (12, 2, 2, 2).

We note that, if we apply the process again, then there will be no change since
16g; = 89, = e and r = 0. Continuing with g = g3, H' =(gy, ) and h = gy,
we observe that 8g =16h = e and r = 0. Therefore, there is no need to change
93-

In the next step, we apply the Algorithm with g = g4, H' =(g1, 95, g3). In

this case, we have g, =129, + 69, + 393 € H'. Therefore,
0=(1,1,11), 9g,=(41,2,2), g3=(126,3,1), g4=(12 2, 2, 2).

As in the previous step, g = g4 € H' = (01, 95, g3). Therefore, the generators

that we are looking for are g;, g,, g3 and

H=(1111),(4122)(1286,3,1)=Cyz ®Cq ®Cg,
where o(g;) =16, 0(g,) = 0(g3) = 8.
3. 2-class Groups of Real Quadratic Fields

As an application of the Algorithm, we are going to construct generators of the
2-Sylow subgroup of the ideal class group of a real quadratic field. Next theorem is
well known ([5, Theorem 3.70]).
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Theorem 3 (Gauss’s Theorem on the 2-rank of Cly). Let F be a quadratic
field and t the number of distinct factors of 8. If there is some prime p =3 (mod4)
such that p|ér and d > 0, then the rank of Cl, is t — 2. In any other case, the

rankis t —1.

Let a, b € Z, b >1. We will use the following notation:

[a} _ {1, if x2 = a (modb) solvable,
b=

-1, if x> = a (modb) is not solvable.

If b is a prime number and gcd(a, b) = 1, then {%} is just Legendre’s symbol (%)

As consequence of the Chinese Remainder Theorem, we have:
Lemma 4. Let a, b=Db---by >1 be integers such that ged(b;, bj) =1 for

i = j. Then [%} — 1 ifand only if {

a

bi}:lforlzl, o L

Lemma 5. Let by, .. b e{-11, an, p,..,peZ", a<2" odd and
where p; is an odd prime number for i =1, ..., t. Then there is a rational prime q
such that

q=a(mod2"), (%1) =by, .., (%) = by.

S

Proof. Let ¢, ..., ¢ € Z such that (p ) = b;. Using the Chinese Remainder

Theorem, there is ¢ € Z satisfying
¢ =a(mod2")
¢ =¢ (mod py)
¢ =¢; (mod py).

Since p; 1 ¢, ged(c, 2" p; -+~ pr) = 1 and by Dirichlet’s Theorem, there are infinite

primes g = ¢ (mod 2" p; - py). O
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Lemma 6. Let d = pyp; -~ py be a square free positive integer, p; =1(mod 4)

for 0 <i < g. Then there are primes ¢y, ..., qg such that

(@)es e 330

Proof. It follows from Lemma 5, Quadratic Reciprocity Law and Lemma 4. [

From the first assertion of Lemma 5, we note that the primes ¢y, ..., dq can be

chosen in such a way that g; =1 (mod 4). The choosing of such kind of primes will

be relevant in the next results.
Lemma 7. Let d = 2p;--- py be a square free positive integer with p; =

1(mod4) for 1<i < g. Thereare ¢y, ..., qg primes that satisfy

@)t o [3]-2)

Proof. By Lemma 5 and the Quadratic Reciprocity Law, we choose o; =
5 (mod 8) such that

Therefore,

G- GRG0

Finally, (2—(1] = (qi) As in the proof of the previous lemma, it follows that
1

1
N O
BN

The primes dj, ..., g are obtained as in Lemma 6 with the additional condition

g; =1 (mod8). O

Lemma 8. Let d = pyp;--- pg =1(mod4) with g >1 be a positive square

free integer such that for some t € {-1, 0, 1, ..., g — 2},



2-CLASS GROUP OF QUADRATIC FIELDS 163

Pos - Py =1(mod4),  priq, ..., Pg = 3 (Mod4).

Then there exist primes ¢y, ..., §q_1 such that (qij =1 and {%} = [_qu} =-1
[

Proof. The first primes q, ..., g; are obtained as in Lemma 6 such that q; =

1(mod4). For t +1<i < g —1, we choose the primes g; such that

()-@)- (&)

Hence [1) =-1, {&} = —1. Finally, since (i =1, we obtain (_—q'j =-1
g d Pg Py

w8 D

Lemma 9. Let d = popy--- pg =3 (mod 4) be a positive square free integer

such that for some t € {-1, 0,1, ..., g — 1},

Pos - Py =1(mod4),  priq, ..., Pg = 3 (Mod4).

Then there exist primes gy, ..., g4 such that (2—(1) =1and {%} = [—_q,} =-1
i

Proof. The primes g, ..., g; are obtained as in Lemma 6. Since d = 3(mod 4),

we have an odd number of primes = 3 (mod 4). First, suppose that pg is the only

prime such that py =3 (mod4). In this case, we choose a prime qq =1 (mod4)

(i)

Therefore, {_d&}:—l. Finally, if more than one prime is =3 (mod4), then

satisfying

instead of using py as in Lemma 8, we use any of the primes p; = 3 (mod 4) such

that (iJ = 1. The proof follows as in the previous lemmas. O
i
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Lemma 10. Let d = 2p; --- py be square free with p, ..., p; =1 (mod 4) and

Pts1s - Pg =3 (mod4) for 0 <t <g-1. Then there are primes q, ..., dg-1

such that (ﬂj =1and {i} = {—_q,} =-1.
] d d

Proof. If t >0, then q, ..., g; are obtained as in Lemma 7 and the primes

Ot11, - Qg—y are obtained as in Lemma 8. If t =0, then p; =3 (mod4) for

i=1 .., 9 and g > 2. Inthis case, we choose g; = 5 (mod 8) in such a way that

@)+ (@)

From this and (3) — 1 it follows that

4]
Ad)_ G _|Z%|__
@) B2
The primes g, ..., §q_; are obtained as in Lemma 8. O

From now on, we write F = Q(¥d), d >0 square free. Let P = {¢y, ..., G}
obtained in Lemmas 6, 7, 8, 9 or 10. We observe that there are infinitely many
a; € N such that a? = d (mod g;). We fix one of them and define the ideals g; =
(gi, & + v/d). Itis clear that g; is a prime ideal, N(q;) = q; and (q;) = q;qj, where
q; = (qj, aj —~/d). Given P as above, we define Zp = {qy, ..., q;}. We will write
ord; (J) to indicate that 1°1 () |3 and 191y 3,

Observe that N(a; + a,/d) = ;> —da3, so if | =(a +a,~d), then N(I)
=a? (modd) or —N(I)=a? (modd). Therefore, if [#} =-1, then I is a
non-principal ideal.

Theorem 11. Let d = popy---pg be a positive square free integer and
F=Q(d). If I = H qordq(l) and ord, (1) is odd for some q € Zp, then
qEIp

1) [%(I)} = -1 and therefore | is non-principal.
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(2) If I € Cly isthe class of I, then o(I) is even.

(3) Let 3 = JT o™

qelp
ord,(1) # ord,(J) (mod 2). Then I = J.

such that for some q e Zp, ordy(J) is odd and

Proof. For the first assertion, we need that [L} = [ N(I )} -1 for certain

p1 P2
prime divisors pj, p, of d. Let j =max{i:ordg (I)is odd}. We observe that
ordqj(l)
j>0 and pj is odd. We know that [EJJ qu— = -1, we have that for
j j
ordqj(l)

any qj € Zp, either i < j or ordqi(l) is even. Then by construction, 4

Pj

=1if g |N(1), q; # q;. Therefore, ( { )J [N(I)} —1. If some prime divisor
Pj

p of d, p=1(mod4), satisfies (N(I)j -1, then (_Np(l)) = [_'\:j(l)} =-1

Now consider the case (%) =1 p=1(mod4), pld. If d=1 2 (mod4),

then it follows from Lemmas 8, 10 that (%I)j = 1. Therefore,
g

() -

Consider the case d = 3 (mod 4), (%) =1 p=1(mod4). Atthe beginning of

the proof, we saw that there is an odd prime pj|d such that (N(I )] -1 If k =
Pj

mindi : ord, (1) is odd}, then it follows that (%j — _1. Since d = 3 (mod4),
k-1
d must have an odd number of prime divisors of the form 4x + 3 and since

Pj, Pk-1 = 3 (mod4), there are at least three of such prime numbers. Let ¢; € P

be such that ord, (1) is odd. Each of these has associated two prime divisors
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Pi_1, P; of d such that (pq—'j = (%) = —1. Hence, there is an even number
i-1 i

of pairs (py, gy) that satisfy (qp—m)=—l. Therefore, among the symbols
|

(%) (%) an even number of them take the value -1 for some primes
0 g

pi =3 (mod4). It follows that there is some prime p =3 (mod4) such that

(%) =1.Asinthe case d =1 2 (mod 4), we obtain (_Np(l )j N {_’\:ﬂ(l )} -t

We note that o(1) is even since 12 is non-principal for a € N odd.

Finally, the class i has a representative |’ = H qo(q)fordq(l), where
qelp

ord,(1") = ordy(I) (mod2). Thus ordy(JI") is odd and JI' is non-principal.

Therefore, J = 1" Y andso T = J. O

Lemma 12. Let F be as always, |, J ideals of Op such that [%“)} =-1

o(l) even and such that for any ramified prime p, p + N(1) and p t N(J). If

J e, then [%U)} =1

Proof. Let J e | such that [%} =1 or [%(J)} =1. Since | has even
N(190)) -
order, we have T 1. From the multiplicity of Legendre’s symbol and

i o(1)-1 _
Lemma 4, we obtain #} = -1. Since [%} =1or { Nd(‘])} =1 in

both cases, we have

d d

_N(Io(l)—lJ):l _ |:_N(|0(|)—1J):| 4

From 1201 — 71— 31 it follows that 190013 is a principal ideal, which is

impossible. Therefore, iNd(J)} =-1. 0



2-CLASS GROUP OF QUADRATIC FIELDS 167
If gj € Zp, then o(qj) = 2k t; for some ki, tj e N and t; odd. For gj € Zp,
we define Jj=qi. Let Jp = {Jp, ... Jjp|}. Observe that since gq; = q;j for
i # j, ‘]i e ‘]j
Lemma 13. Let F be a real quadratic field and J; as above. Then:

1) {%Ui)}z—lforlsiswﬂ.

(2 If Jj € Tp, then J; & (3, ooy Jisg, Jigts oo I p |-
(3) We can modify the elements of 7 p in such a way that

T2 Y = @ )

Proof. Before we start the proof, we observe that all the ideals we will be using
are such that their norms and d are relative primes, so we can use Lemma 12.

(1) follows from Lemma 4 since t; is odd. For (2), let us suppose that J_, €

(31, o Jicts Jisgs o Jypp) Let 1= T I with ¢ =0 and e} non-negative
Jiedp

- — _— _— — + .
integers. Clearly, I € (Jy, ..., Jj_1, Jis1, - J)p|)- If I € Jj, since {%(J')} =-1,
+N(1) : . .
then b —1. From this, some ¢ is odd. Since e; = 0, by Theorem 11(3),

we have J; = q}i ¢ 1. As consequence of (2) we have that the rank of (J_l e ‘)

is | P|. To prove (3), we use the Algorithm. O
Theorem 14. If F is a real quadratic field, then Cl, = (J_l J‘ 'p‘).

Proof. By Lemma 13 and Theorem 3, we know that G; = (Jy, ... Jyp|) isa
2-group with rank equal to the rank of Cl,. Suppose there exists an ideal | < O

such that o() = 2X with k € N and gcd(N(1), 8) = 1. Since the 2-rank of Cly
is equal to the 2-rank of G 7, there exist t, ey, ..., ¢ p| € N such that

Tt &
Jiedp
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with I' = Op. We chose the smallest t satisfying this condition. Note that t is even,

t
otherwise I € G;. Thus {NS )} =1. On the other hand, at least one ¢; is odd,

since otherwise t would not be minimum. From Theorem 11, we have that {%ﬂ)}
= —1. This shows that any ideal | c O with gcd(N(1), 8p) = 1 satisfies I € G ;.
Let p be a ramified prime and p a prime ideal such that N(p) = p. We know that
the rank of Cl, is the same as G, so (G7, p) must have the same rank as G .
This implies p € G or there is a maximal H Co, such that H < (p). If the
latter happens, 1< o(H)<o(p)<2, so H =(p), peGy; and therefore G; =
(G, p). We apply this argument to all ramified primes to obtain Cl, = G ;. O

Lemma 15. Let F be a real quadratic field. Every class in Cly has a

representative | such that gcd(N(1), &) = 1.

Proof. Let J € Clp such that J = p;---peq;---q;, Where p; is a ramified

prime ideal for 1 <i <k and g; is an unramified prime ideal for 1 <i < r. It will

suffice to prove that every p_, has a representative that satisfies the affirmation.

First, we will prove the assertion for d =1, 2 (mod 4). In this case, a prime p is

ramified if and only if p|d, and the ideal of norm p; is

pi = (pi, Vd) = (p;, pj ++/d).

So we have
(pi = Vd)pi = (pi(pi —vd), pf —d) = (pi)(pi ~d, pi —d/py),

so p; is in the same class than pj = (p; —+/d, p; — d/p;). Note that p; is not
necessarily a prime ideal. Observe that gcd(p, p; —d/pj) =1 for every prime
p such that p|d, then p+t pj—d/p; and p{ N(p; —d/p;j). The fact that
pi|(p;i —d/p;) implies p { N(pj). Therefore, gcd(d, N(pj)) =1. If we change
every p; for pi, then we get a new ideal | related to J without ramified prime
factors.
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Now suppose d = 3 (mod 4). We proceed similarly as in the previous case, and
we obtain an ideal 1 € J such that gcd(N(1), d) =1. In this case, 2 is a ramified

prime but 2 1 d, so it is possible that p = (2, 1+ «/E)| I. In this case, we have

pl—d) = (20 -+d) 1-d) = (2)(1-~d + (1 -d)/2),

where p' = (1- Jd, (1- d)/2) ~ p and 1_2d € 7 is odd. In particular, 2 { N(p").
Since gcd(l—d, d)=1, we have gcd(N(p'), d) =1 hence gcd(N(p'), 5p) =1.
Replacing p for p’, we obtain the ideal we wanted. 0

Proposition 16. Let F be a real quadratic field such that | Clg | = 2% for some

ke N and I € Clg with ged(N(1), 55) = 1. Then (I) is maximal in Cc,, if and

only if [%(I)} =-1

Proof. We know that Cly = G, = <J_1>><"'><<J"P‘>. If (I) is maximal in

Ccly» then Iis related with some ideal

_ H JiordJiJ

JieJp
: N £N(I)
with ordJiJ odd. Theorem 11 implies that 1= —1. Conversely, suppose

(I'y is not maximal. Then (1) ¢ (J) for aclass J. We can choose J in such a way

that gcd(N(J), 85) = 1. Therefore, I = J' for some t e N. As a consequence of

t
the fact that 1 = J, we have that t is even. So, [%} = {%} =1. O

Example 2. Let F = Q(~/322). Since 322 = 2-7-23, from Theorem 3 we
have that the rank of Cl, is 1. We apply Lemma 10 with t =0, g = 2. We will

find a non-principal ideal g, such that it generates Cl,. For this, we need a prime

4.322) N
( % j_l and [322}— 1.

gy such that
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Following the proof of Lemma 10, it is enough that g, satisfies

s (3)-F)-1 (B)F) o

From Lemma 5, we have that 325 satisfies (1), but it is not a prime. From Dirichlet’s
Theorem, we obtain that q; = 325 + 1283 = 1613 is prime and

(1613) = (1613, 100 + +/322) (1613, 100 — +/322).

Hence q; = (1613, 100 + +/322) generates Cl, and o(q;) = 4.

Example 3. Let d = 272490 =2-5-293-3-31 and F = Q(¥d). To find
suitable generators of Cl,, we use Lemma 10 with g = 4, t = 2. We observe that

the rank of Cl, is 3. According to Lemma 7, we need a prime number ¢g; such that

s (3] (85)-(3)-(3) 2

Therefore, it is sufficient that g; satisfies

¢ =5 (mod8),

oy = 3 (mod5),

¢, =1 (mod 27249). 2)

The prime number ¢, = 762973 solves (2) and
q1 = (762973, 349636 + +/272490)

is a prime ideal such that N(q;) = ¢ and o(qy) = 8. Similarly, we find q, =
1895713 and the prime ideal g, = (1895713, 507828 + /272490) satisfies

N(qp) =0y, 0(qp)=8. The prime g3 = 5674241 and the prime ideal g3 =
(5674241, 1813618 + v 272490) satisfies N(q3) = 03, 0(q3) = 8. Therefore, Cl, =

(a1 92, g3)-
The minimal relations between q;, g, q3 that appear in Proposition 2 are

—4 —4 — —2 -—8 —8 —8 —
G =d2, G =9d3, d =92 =4q3 =Op.
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— =@, —— — . —2*p2"— —3—
We replace g, with q; d2 =4q1q92 and g3 with qp 43 =41 9s3-

— —— —3— . — — —3—
Now we have Cly = (ag, 412, a1 gg), With o(q) =8, 0(aqz) =4 and oy g3)
= 2. Continuing with the Algorithm, we check that this set of generators of Cl,
cannot be simplified any further. Therefore,

Cly = (@, q192, &1 93) = (m) x (da2) x (@ q3) = Cg x C4 x Cy.
4. Other Cases

Similar results can be found when we have an imaginary quadratic field
F = Q(y/—d), where d is a rational positive squarefree integer. In this case, the

norm of an element in F is always positive, hence, we will use [#} instead of

+
[#(I)} and to construct P, Zp, Jp we will need to find prime numbers as
follows:

1. If d =pg-pg asin Lemma 6, then we can find g +1 prime numbers

dg, -+ Og Such that (%) =-1, (%) =1 for i # j and g; =3 (mod4).
[ [

In this case, (_Flj =-1and (q—:) =-1.

2. If d=2py---py as in Lemma 7 or d = popy--- pg =3 (mod4) as in
Lemma 9, then we can find g prime numbers such that (%) =1and [%}
= -1. In fact, we can use the same g; ’s we found in the real case.

3. If d = pypy---pg =1(mod4) as in Lemma 8, then —d = 3 (mod4) and

O = —4d. In this case, we can find g +1 prime numbers qg, ..., g4 such

that (ﬂj = -1, (%} =1, for i # j and g; =3 (mod4). Since g >1,
i i

we always have a prime p; such that (%) =1 and (ij = -1, hence

3+ o
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4. 1f d =2p;---pg =1(mod4) as in Lemma 10, then there are g primes

th, - Qg SUch that (%j =1, [%J =1 fori= j and g; =5 (mod8).
i i

With these prime numbers, we define P, Zp and Jp as in the real case.
Lemmas 12, 13 and 15, Proposition 16 and Theorems 11 and 14 can be generalized

+
removing the minus sign in [#(I)}
A particular case of what we have studied is when the exponent of Clg is 2.

The next results follow from Theorem 14:

Corollary 17. Let F be a quadratic field such that Clr has exponent 2. Then

Clp =(Jp) and each class contains an ideal of the form H J for some
JeA

Ac Jp, where we define [ ] J = Op.
Jed

Theorem 18. Let F be a real quadratic field such that Cly has exponent 2 and

| < Op be an ideal such that gcd(N(1), 8f) =1. Then I is non-principal if and

only if [%(I)} =-1

Proof. Every class is represented by an ideal 1, = H J for some & = A
JeA

< Jp. By Theorem 11(1), we have {%IA)} = —1. If some ideal | satisfies

[_i’\(‘j(l)}:_l, then by Lemma 12, any ideal J contained in I such that

gcd(N(J), 8p) =1 satisfies [%(J)} = -1. Therefore, any non-principal ideal

+
satisfies [%(I)} = —1. The converse is true in any real quadratic field. O

The condition gcd(N(1), 8) =1 is necessary, otherwise if gcd(N(1), 5) > 1,

then there might exist non-principal ideals | such that [%} =1or [_T(I)} =1
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For example, if F = Q(+10), then E—g’

similar result can be stated for the imaginary case.

}:1 but (5, +/10) is non-principal. A

Example 4. We are going to find the 2-class group of the imaginary quadratic
field F = Q(/—665). Since —665 = —(5)(7)(19) = 3 (mod 4), 8r = —2660, pg =5,
pp =7 and p, =19. The next table shows the first prime numbers g = 3 (mod 4)

such that (%Fj =1. Here we can see that qy =3, ¢ =71 and g, =131 satisfy

the conditions that we required previously. In this case, p; = (3, 4 + /—665),

pp = (71, 20 + {—665) and p3 = (131, 11+ /-665), 0(p;) = 0(p,) = o(p3) = 6,
Ip= {pf, p%, pg}. If we apply the Algorithm, then we will find that Zp = Jp
and

C|2 = C2 XC2 X Cz.

GRS
q q q a 665
3 1 -1 1 1 -1
23 1 -1 -1 -1 -1
43 1 -1 -1 -1 -1
71 1 -1 -1
79 1 1 -1 1 -1
103 1 -1 1 1 -1
131 1 -1 -1
139 1 1 1 -1 -1
151 1 1 -1 1 -1

Example 5. If F = Q(y-21), then Cly = C, x C,; hence, an ideal is principal
if and only if {%} = 1. For example, (5, 2 + 4/—21) is a non-principal ideal since
N(l)=5 and [%} = —1. The ideal (37, 41+ /-21) is principal since N(I) = 37

and 42 = 37 (mod 21).
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