2-CLASS GROUP OF QUADRATIC FIELDS

ALEJANDRO AGUILAR-ZAVOZNIK and MARIO PINEDA-RUELAS

Departamento de Matemáticas
Universidad Autónoma Metropolitana-Iztapalapa
Av San Rafael Atlixco No. 186, Col.Vicentina
C.P. 09340 Del. Iztapalapa, D.F., México
e-mail: aaz@xanum.uam.mx
mpr@xanum.uam.mx

Abstract

We find explicitly the 2-class group of a quadratic field. We use this result to give a criterion to decide whether an ideal is principal if the exponent of $C l_{\mathbb{F}}$ is 2 .

1. Introduction

Let $\mathbb{F}=\mathbb{Q}(\sqrt{d})$ be a quadratic field, $\mathcal{O}_{\mathbb{F}}$ the ring of integers of $\mathbb{F}, C l_{\mathbb{F}}$ the class group of $\mathbb{F}, C l_{2}$ the 2-Sylow subgroup of $C l_{\mathbb{F}}$ and $\delta_{\mathbb{F}}$ the discriminant of \mathbb{F}. It is well known that the rank of $C l_{2}$ depends on the number and type of the prime factors of d. However, obtaining Cl_{2} is not an easy task. In [1], [2], [4] and [6], the theory of quadratic forms is used to give an algorithm that computes Cl_{2}. Given a class $\bar{I} \in C l_{2}$, they give different methods to obtain, if possible, another class \bar{J} such that $\bar{J}^{2}=\bar{I}$. It is easy to find representatives of all the ambiguous ideal classes (i.e., classes of order 2) and we can use any of the previous methods to construct Cl_{2}. In this paper, we will give another procedure to compute Cl_{2}, but instead of starting from the ambiguous classes, we will give elements $\alpha \in \mathcal{O}_{\mathbb{F}}$ such that $\langle\bar{\alpha}\rangle$ 2010 Mathematics Subject Classification: 11R11, 11R29, 11Y40.

Keywords and phrases: quadratic field, 2-class group.
is maximal in the set of cyclic subgroups of $C l_{2}$. If the exponent of $C l_{\mathbb{F}}$ is 2 , then we give a criterion to decide if an ideal of $\mathcal{O}_{\mathbb{F}}$ is principal or non-principal. With the aid of the computer programs KASH3 [3] and Sage [7], we solve some explicit examples.

2. Some Results on Finite Abelian Groups

We use C_{n} to denote the cyclic group of order n and for $a \in \mathbb{Z}$, we will write \bar{a} to denote the class of a in C_{n}, where we assume that $C_{n}=\mathbb{Z} / n \mathbb{Z}$. Let $G=\left\langle g_{1}, \ldots, g_{r}\right\rangle$ be a finite abelian group. We are interested in finding h_{1}, \ldots, h_{k} $\in G$ that satisfy

$$
G=\left\langle h_{1}, \ldots, h_{k}\right\rangle \cong\left\langle h_{1}\right\rangle \oplus \cdots \oplus\left\langle h_{k}\right\rangle .
$$

Let $\mathcal{C}_{G}=\{\langle a\rangle: a \in G\}$. Then
Proposition 1. Let $G=G_{1} \oplus \cdots \oplus G_{k}$ be a finite abelian p-group where each G_{j} is a cyclic p-group. If $\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right) \in G$, then $\left\langle\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\rangle$ is a maximal element in \mathcal{C}_{G} if and only if $\operatorname{gcd}\left(a_{i}, p\right)=1$ for some i.

Proof. Suppose that $\left\langle\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\rangle$ is maximal in \mathcal{C}_{G} and $\operatorname{gcd}\left(a_{i}, p\right)=p$ for all i. If $b_{i}=a_{i} / p$, then we have

$$
\left\langle\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\rangle=\left\langle\left(\overline{p b_{1}}, \ldots, \overline{p b_{k}}\right)\right\rangle=\left\langle p\left(\overline{b_{1}}, \ldots, \overline{b_{k}}\right)\right\rangle .
$$

Since

$$
o\left(\left\langle\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\rangle\right)=\frac{o\left(\left\langle\left(\overline{b_{1}}, \ldots, \overline{b_{k}}\right)\right\rangle\right)}{p},
$$

then

$$
\left\langle\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\rangle \nsubseteq\left\langle\left(\overline{b_{1}}, \ldots, \overline{b_{k}}\right)\right\rangle
$$

so that $\left\langle\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\rangle$ is not a maximal element in \mathcal{C}_{G}.
Conversely, we may assume without loss of generality that $\operatorname{gcd}\left(a_{1}, p\right)=1$. Let $\left\langle\left(\overline{c_{1}}, \ldots, \overline{c_{k}}\right)\right\rangle \in \mathcal{C}_{G}$ be such that $\left\langle\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\rangle \subseteq\left\langle\left(\overline{c_{1}}, \ldots, \overline{c_{k}}\right)\right\rangle$. Let $n \in \mathbb{Z}$ be such that $\left\langle\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\rangle=\left\langle n\left(\overline{c_{1}}, \ldots, \overline{c_{k}}\right)\right\rangle$. We consider the projection $\phi: G \rightarrow G_{1}$. Since
$\operatorname{gcd}\left(a_{1}, p\right)=1, \phi\left(\left\langle\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\rangle\right)=G_{1}$. From the equality

$$
o\left(\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right)=\frac{o\left(\left(\overline{c_{1}}, \ldots, \overline{c_{k}}\right)\right)}{\operatorname{gcd}\left(n, o\left(\left(\overline{c_{1}}, \ldots, \overline{c_{k}}\right)\right)\right)}
$$

it follows that if $\operatorname{gcd}\left(n, o\left(\left(\overline{c_{1}}, \ldots, \overline{c_{k}}\right)\right)\right)>1$, then $p \mid n$ and $\phi\left(\left\langle n\left(\overline{c_{1}}, \ldots, \overline{c_{k}}\right)\right\rangle\right) \neq G_{1}$, which is impossible. Therefore, $\operatorname{gcd}\left(n, o\left(\left(\overline{c_{1}}, \ldots, \overline{c_{k}}\right)\right)\right)=1$ and from this it follows that $\left\langle\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right)\right\rangle$ is a maximal element in \mathcal{C}_{G}.

Next result is similar to the Fundamental Theorem of the Finite Abelian Groups.
Proposition 2. Let G be a finite abelian p-group, H a subgroup of $G, g \in G$ such that $G=\langle H, g\rangle, g \notin H$ and $o(g) \leq o(\langle h\rangle)$ for all $\langle h\rangle$ maximal in \mathcal{C}_{H}. Then there is $g^{\prime} \in G$ such that $G=\left\langle H, g^{\prime}\right\rangle \cong H \oplus\left\langle g^{\prime}\right\rangle$.

Proof. Let $\mu=s p^{m}$ be the smallest positive integer such that $\mu g \in H$ and $\operatorname{gcd}(s, p)=1$. Since $\langle g\rangle=\langle s g\rangle$, we may assume that $\mu=p^{m}$. Now consider $h \in H$ with $\langle h\rangle$ maximal in $\mathcal{C}_{H}, p^{m} g \in\langle h\rangle$ and let $v=t p^{n}$ be the least positive integer such that $\operatorname{gcd}(t, p)=1$ and $p^{m} g=v h$. As before, we can replace h with $t h$ and assume that $v=p^{n}$. It is clear that if $o(g)=p^{m+r}$, then $o(h)=p^{n+r}$. If e is the identity of G, then

$$
\begin{aligned}
e & =p^{m+r} g=p^{m} p^{r} g=p^{r}\left(p^{m} g\right)=\left(p^{r}-1\right)\left(p^{m} g\right)+\left(p^{m} g\right) \\
& =\left(p^{r}-1\right)\left(p^{n} h\right)+\left(p^{m} g\right)=p^{m}\left(\left(p^{r}-1\right) p^{n-m} h+g\right)
\end{aligned}
$$

Let $g^{\prime}=\left(p^{r}-1\right) p^{n-m} h+g$. It is clear that $g^{\prime} \neq e$ and $o\left(g^{\prime}\right) \leq p^{m}$. Suppose that $o\left(g^{\prime}\right)=p^{j}$ and $1 \leq j<m$. Then

$$
e=p^{j} g^{\prime}=p^{j}\left(\left(p^{r}-1\right) p^{n-m} h+g\right)=p^{j}\left(\left(p^{r}-1\right) p^{n-m} h\right)+p^{j} g \in\langle h\rangle
$$

Therefore, $p^{j} g \in\langle h\rangle$ which is impossible. Thus $j=m$.
Since $g^{\prime}=\left(p^{r}-1\right) p^{n-m} h+g$, we obtain $G=\left\langle H, g^{\prime}\right\rangle$. The assertion $\left\langle H, g^{\prime}\right\rangle$ $\cong H \oplus\left\langle g^{\prime}\right\rangle$ is a consequence of $H \cap\left\langle g^{\prime}\right\rangle=\langle e\rangle$.

Next, we will describe an algorithm that will help us modify the set of generators of a finite abelian group G so that the new set of generators decompose G as a direct sum.

Algorithm. Let $G=\left\langle g_{1}, \ldots, g_{r}\right\rangle$ be a finite abelian group and assume that $o\left(g_{i}\right)$ are known for $i=1, \ldots, r$. First, we study the case when G is a p-group. In the process that we are describing, whenever we change some generator (if required), we will reindex the new elements so that

$$
o\left(g_{1}\right) \geq o\left(g_{2}\right) \geq \cdots \geq o\left(g_{r}\right) .
$$

Let $G^{\prime}=\left\langle g_{1}, g_{2}\right\rangle, H^{\prime}=\left\langle g_{1}\right\rangle$ and $g=g_{2}$ as in Proposition 2. If $g_{2} \in H^{\prime}$, then $G=\left\langle g_{1}, g_{3}, \ldots, g_{r}\right\rangle$. So we can assume that $g_{2} \notin H^{\prime}$. By using Proposition 2, there is $g_{2}^{\prime} \in G^{\prime}$ such that

$$
G^{\prime}=\left\langle H^{\prime}, g_{2}^{\prime}\right\rangle \cong H^{\prime} \oplus\left\langle g_{2}^{\prime}\right\rangle \text { and }\left\langle g_{1}, g_{2}, \ldots, g_{r}\right\rangle=\left\langle g_{1}, g_{2}^{\prime}, \ldots, g_{r}\right\rangle
$$

It is possible that $o\left(g_{2}^{\prime}\right)<o\left(g_{3}\right)$. If this was the case, then we reindex and repeat the process until $g_{2}^{\prime}=g_{2}$. Therefore, $G^{\prime} \cong\left\langle g_{1}\right\rangle \oplus\left\langle g_{2}\right\rangle$. For the next step, we let $G^{\prime}=\left\langle g_{1}, g_{2}, g_{3}\right\rangle, \quad H^{\prime}=\left\langle g_{1}, g_{2}\right\rangle \cong\left\langle g_{1}\right\rangle \oplus\left\langle g_{2}\right\rangle$ and $g=g_{3}$ as in Proposition 2. We may assume that $g_{3} \notin H^{\prime}$. Since $o\left(g_{1}\right) \geq o\left(g_{2}\right) \geq o\left(g_{3}\right)$, the order of any maximal cyclic subgroup of H^{\prime} is greater or equal to $o\left(g_{3}\right)$ and therefore satisfies the hypothesis of Proposition 2. Let $g_{3}^{\prime} \in G^{\prime}$ such that $G^{\prime}=\left\langle g_{1}\right\rangle \oplus\left\langle g_{2}\right\rangle \oplus\left\langle g_{3}^{\prime}\right\rangle$. If $o\left(g_{3}^{\prime}\right)<o\left(g_{4}\right)$, then repeat the process until we obtain $g_{3}^{\prime}=g_{3}$ and $G^{\prime}=\left\langle g_{1}\right\rangle \oplus$ $\left\langle g_{2}\right\rangle \oplus\left\langle g_{3}\right\rangle$. Continuing with this, we can construct explicitly a basis $\left\{g_{1}, \ldots, g_{t}\right\}$ of G such that $G \cong\left\langle g_{1}\right\rangle \oplus \cdots \oplus\left\langle g_{t}\right\rangle$. In general, if G is a finite abelian group, then we apply the Algorithm to each p-Sylow subgroup of G.

We will refer to the procedure that we have described previously as the Algorithm.

Example 1. Let $G=C_{16} \oplus C_{8} \oplus C_{8} \oplus C_{4}$ and $H=\left\langle g_{1}, g_{2}, g_{3}, g_{4}, g_{5}\right\rangle$, where $g_{1}=(\overline{1}, \overline{1}, \overline{1}, \overline{1}), g_{2}=(\overline{3}, \overline{1}, \overline{1}, \overline{1}), g_{3}=(\overline{7}, \overline{3}, \overline{0}, \overline{2}), g_{4}=(\overline{3}, \overline{0}, \overline{1}, \overline{1})$, $g_{5}=(\overline{12}, \overline{6}, \overline{3}, \overline{1}) \in G$. Using the Algorithm, we will find the representation of H as a direct sum of cyclic subgroups of H. Note that

$$
o\left(g_{1}\right)=o\left(g_{2}\right)=o\left(g_{3}\right)=o\left(g_{4}\right)=16, \quad o\left(g_{5}\right)=8
$$

so, according to the Algorithm, they are arranged already in a proper way. We apply Proposition 2 to $G^{\prime}=\left\langle g_{1}, g_{2}\right\rangle, H^{\prime}=\left\langle g_{1}\right\rangle$ and $g=g_{2}$. The minimal positive integers m and n such that $\mu g_{1}=v g_{2}$ are $\mu=12$ and $v=4$. Since $12=3 \cdot 4$, we replace g_{1} with $3 g_{1}$, and call g_{1} again the new element. With this notation, we have $g_{1}=(\overline{3}, \overline{3}, \overline{3}, \overline{3})$. If $h=g_{1}$, then we have $4 g \in\langle h\rangle$ and the minimal positive integers μ and v such that $\mu g=v h$ are $\mu=v=2^{2}$. Note that $2^{2+2} g=2^{2+2} h=e$. Therefore, the values we need to construct g^{\prime} as in Proposition 2, are $r=m=$ $n=2$ and

$$
g^{\prime}=\left(2^{2}-1\right)\left(2^{2-2}\right) h+g=3 h+g=3(\overline{3}, \overline{3}, \overline{3}, \overline{3})+(\overline{3}, \overline{1}, \overline{1}, \overline{1})=(\overline{12}, \overline{2}, \overline{2}, \overline{2})
$$

Since $o\left(g^{\prime}\right)=4$, we replace g_{2} with g^{\prime} and arrange the generators so that $o\left(g_{1}\right)$ $\geq \cdots \geq o\left(g_{5}\right)$. We have

$$
\begin{aligned}
& g_{1}=(\overline{1}, \overline{1}, \overline{1}, \overline{1}), \\
& g_{2}=(\overline{7}, \overline{3}, \overline{0}, \overline{2}), \\
& g_{3}=(\overline{3}, \overline{0}, \overline{1}, \overline{1}), \\
& g_{4}=(\overline{12}, \overline{6}, \overline{3}, \overline{1}), \\
& g_{5}=(\overline{12}, \overline{2}, \overline{2}, \overline{2}) .
\end{aligned}
$$

We repeat the process with $g=g_{2}, h=g_{1}, 8 g=8 h, 16 g=16 h=e, m=n=3$, $r=1$ and

$$
g^{\prime}=\left(2^{1}-1\right)\left(2^{0}\right) h+g=(\overline{1}, \overline{1}, \overline{1}, \overline{1})+(\overline{7}, \overline{3}, \overline{0}, \overline{2})=(\overline{8}, \overline{4}, \overline{1}, \overline{3})
$$

We replace g_{2} with g^{\prime} and reorder. Thus, we obtain a new list of generators of H :

$$
\begin{aligned}
& g_{1}=(\overline{1}, \overline{1}, \overline{1}, \overline{1}), \\
& g_{2}=(\overline{3}, \overline{0}, \overline{1}, \overline{1}), \\
& g_{3}=(\overline{12}, \overline{6}, \overline{3}, \overline{1}), \\
& g_{4}=(\overline{8}, \overline{4}, \overline{1}, \overline{3}), \\
& g_{5}=(\overline{12}, \overline{2}, \overline{2}, \overline{2}) .
\end{aligned}
$$

We repeat the procedure with the new $g=g_{2}, H^{\prime}=\left\langle g_{1}\right\rangle, h=g_{1}, 8 g=8 h$, $16 g=16 h=e, m=n=3, r=1$. Therefore,

$$
g^{\prime}=\left(2^{1}-1\right)\left(2^{0}\right) h+g=(\overline{1}, \overline{1}, \overline{1}, \overline{1})+(\overline{3}, \overline{0}, \overline{1}, \overline{1})=(\overline{4}, \overline{1}, \overline{2}, \overline{2})
$$

Thus, we obtained a new list of generators of H :

$$
\begin{aligned}
& g_{1}=(\overline{1}, \overline{1}, \overline{1}, \overline{1}) \\
& g_{2}=(\overline{4}, \overline{1}, \overline{2}, \overline{2}) \\
& g_{3}=(\overline{12}, \overline{6}, \overline{3}, \overline{1}), \\
& g_{4}=(\overline{8}, \overline{4}, \overline{1}, \overline{3}) \\
& g_{5}=(\overline{12}, \overline{2}, \overline{2}, \overline{2})
\end{aligned}
$$

We note that, if we apply the process again, then there will be no change since $16 g_{1}=8 g_{2}=e$ and $r=0$. Continuing with $g=g_{3}, H^{\prime}=\left\langle g_{1}, g_{2}\right\rangle$ and $h=g_{1}$, we observe that $8 g=16 h=e$ and $r=0$. Therefore, there is no need to change g_{3}.

In the next step, we apply the Algorithm with $g=g_{4}, H^{\prime}=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$. In this case, we have $g_{4}=12 g_{1}+6 g_{2}+3 g_{3} \in H^{\prime}$. Therefore,

$$
g_{1}=(\overline{1}, \overline{1}, \overline{1}, \overline{1}), \quad g_{2}=(\overline{4}, \overline{1}, \overline{2}, \overline{2}), \quad g_{3}=(\overline{12}, \overline{6}, \overline{3}, \overline{1}), \quad g_{4}=(\overline{12}, \overline{2}, \overline{2}, \overline{2}) .
$$

As in the previous step, $g=g_{4} \in H^{\prime}=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$. Therefore, the generators that we are looking for are g_{1}, g_{2}, g_{3} and

$$
H=\left\langle(\overline{1}, \overline{1}, \overline{1}, \overline{1}),(\overline{4}, \overline{1}, \overline{2}, \overline{2}),(\overline{12}, \overline{6}, \overline{3}, \overline{1}) \cong C_{16} \oplus C_{8} \oplus C_{8}\right.
$$

where $o\left(g_{1}\right)=16, o\left(g_{2}\right)=o\left(g_{3}\right)=8$.

3. 2-class Groups of Real Quadratic Fields

As an application of the Algorithm, we are going to construct generators of the 2-Sylow subgroup of the ideal class group of a real quadratic field. Next theorem is well known ([5, Theorem 3.70]).

Theorem 3 (Gauss's Theorem on the 2-rank of $C l_{\mathbb{F}}$). Let \mathbb{F} be a quadratic field and t the number of distinct factors of $\delta_{\mathbb{F}}$. If there is some prime $p \equiv 3(\bmod 4)$ such that $p \mid \delta_{\mathbb{F}}$ and $d>0$, then the rank of $C l_{2}$ is $t-2$. In any other case, the rank is $t-1$.

Let $a, b \in \mathbb{Z}, b>1$. We will use the following notation:

$$
\left[\frac{a}{b}\right]= \begin{cases}1, & \text { if } x^{2} \equiv a(\bmod b) \text { solvable } \\ -1, & \text { if } x^{2} \equiv a(\bmod b) \text { is not solvable }\end{cases}
$$

If b is a prime number and $\operatorname{gcd}(a, b)=1$, then $\left[\frac{a}{b}\right]$ is just Legendre's symbol $\left(\frac{a}{b}\right)$. As consequence of the Chinese Remainder Theorem, we have:

Lemma 4. Let $a, b=b_{1} \cdots b_{t}>1$ be integers such that $\operatorname{gcd}\left(b_{i}, b_{j}\right)=1$ for $i \neq j$. Then $\left[\frac{a}{b}\right]=1$ if and only if $\left[\frac{a}{b_{i}}\right]=1$ for $i=1, \ldots, t$.

Lemma 5. Let $b_{1}, \ldots, b_{t} \in\{-1,1\}, a, n, p_{1}, \ldots, p_{t} \in \mathbb{Z}^{+}, a<2^{n}$ odd and where p_{i} is an odd prime number for $i=1, \ldots, t$. Then there is a rational prime q such that

$$
q \equiv a\left(\bmod 2^{n}\right), \quad\left(\frac{q}{p_{1}}\right)=b_{1}, \ldots,\left(\frac{q}{p_{t}}\right)=b_{t}
$$

Proof. Let $c_{1}, \ldots, c_{t} \in \mathbb{Z}$ such that $\left(\frac{c_{i}}{p_{i}}\right)=b_{i}$. Using the Chinese Remainder Theorem, there is $c \in \mathbb{Z}$ satisfying

$$
\begin{gathered}
c \equiv a\left(\bmod 2^{n}\right) \\
c \equiv c_{1}\left(\bmod p_{1}\right) \\
\vdots \\
c \equiv c_{t}\left(\bmod p_{t}\right) .
\end{gathered}
$$

Since $p_{i} \nmid c_{i}, \operatorname{gcd}\left(c, 2^{n} p_{1} \cdots p_{t}\right)=1$ and by Dirichlet’s Theorem, there are infinite primes $q \equiv c\left(\bmod 2^{n} p_{1} \cdots p_{t}\right)$.

Lemma 6. Let $d=p_{0} p_{1} \cdots p_{g}$ be a square free positive integer, $p_{i} \equiv 1(\bmod 4)$ for $0 \leq i \leq g$. Then there are primes q_{1}, \ldots, q_{g} such that

$$
\left(\frac{d}{q_{i}}\right)=1 \quad \text { and } \quad\left[\frac{q_{i}}{d}\right]=\left[\frac{-q_{i}}{d}\right]=-1
$$

Proof. It follows from Lemma 5, Quadratic Reciprocity Law and Lemma 4.
From the first assertion of Lemma 5, we note that the primes q_{1}, \ldots, q_{g} can be chosen in such a way that $q_{i} \equiv 1(\bmod 4)$. The choosing of such kind of primes will be relevant in the next results.

Lemma 7. Let $d=2 p_{1} \cdots p_{g}$ be a square free positive integer with $p_{i} \equiv$ $1(\bmod 4)$ for $1 \leq i \leq g$. There are q_{1}, \ldots, q_{g} primes that satisfy

$$
\left(\frac{4 d}{q_{i}}\right)=1 \quad \text { and } \quad\left[\frac{q_{i}}{d}\right]=\left[\frac{-q_{i}}{d}\right]=-1
$$

Proof. By Lemma 5 and the Quadratic Reciprocity Law, we choose $q_{1} \equiv$ $5(\bmod 8)$ such that

$$
\left(\frac{p_{1}}{q_{1}}\right)=-1 \quad \text { and } \quad\left(\frac{p_{j}}{q_{1}}\right)=1, \quad 2 \leq j \leq g
$$

Therefore,

$$
\left(\frac{d}{q_{1}}\right)=\left(\frac{2}{q_{1}}\right)\left(\frac{p_{1}}{q_{1}}\right)\left(\frac{p_{2}}{q_{1}}\right) \cdots\left(\frac{p_{g}}{q_{1}}\right)=(-1)(-1)(1) \cdots(1)=1 .
$$

Finally, $\left(\frac{4 d}{q_{1}}\right)=\left(\frac{d}{q_{1}}\right)$. As in the proof of the previous lemma, it follows that

$$
\left[\frac{q_{1}}{d}\right]=\left[\frac{-q_{1}}{d}\right]=-1
$$

The primes q_{2}, \ldots, q_{g} are obtained as in Lemma 6 with the additional condition $q_{i} \equiv 1(\bmod 8)$.

Lemma 8. Let $d=p_{0} p_{1} \cdots p_{g} \equiv 1(\bmod 4)$ with $g \geq 1$ be a positive square free integer such that for some $t \in\{-1,0,1, \ldots, g-2\}$,

$$
p_{0}, \ldots, p_{t} \equiv 1(\bmod 4), \quad p_{t+1}, \ldots, p_{g} \equiv 3(\bmod 4)
$$

Then there exist primes q_{1}, \ldots, q_{g-1} such that $\left(\frac{d}{q_{i}}\right)=1$ and $\left[\frac{q_{i}}{d}\right]=\left[\frac{-q_{i}}{d}\right]=-1$.

Proof. The first primes q_{1}, \ldots, q_{t} are obtained as in Lemma 6 such that $q_{i} \equiv$ $1(\bmod 4)$. For $t+1 \leq i \leq g-1$, we choose the primes q_{i} such that

$$
\left(\frac{p_{i-1}}{q_{i}}\right)=\left(\frac{p_{i}}{q_{i}}\right)=-1, \quad\left(\frac{p_{j}}{q_{i}}\right)=1, \quad j \neq i-1, i .
$$

Hence $\left(\frac{d}{q_{i}}\right)=-1,\left[\frac{q_{i}}{d}\right]=-1$. Finally, since $\left(\frac{q_{i}}{p_{g}}\right)=1$, we obtain $\left(\frac{-q_{i}}{p_{g}}\right)=-1$ and $\left[\frac{-q_{i}}{p_{g}}\right]=\left[\frac{-q_{i}}{d}\right]=-1$.

Lemma 9. Let $d=p_{0} p_{1} \cdots p_{g} \equiv 3(\bmod 4)$ be a positive square free integer such that for some $t \in\{-1,0,1, \ldots, g-1\}$,

$$
p_{0}, \ldots, p_{t} \equiv 1(\bmod 4), \quad p_{t+1}, \ldots, p_{g} \equiv 3(\bmod 4)
$$

Then there exist primes q_{1}, \ldots, q_{g} such that $\left(\frac{4 d}{q_{i}}\right)=1$ and $\left[\frac{q_{i}}{d}\right]=\left[\frac{-q_{i}}{d}\right]=-1$.
Proof. The primes q_{1}, \ldots, q_{t} are obtained as in Lemma 6 . Since $d \equiv 3(\bmod 4)$, we have an odd number of primes $\equiv 3(\bmod 4)$. First, suppose that p_{g} is the only prime such that $p_{g} \equiv 3(\bmod 4)$. In this case, we choose a prime $q_{g} \equiv 1(\bmod 4)$ satisfying

$$
\left(\frac{p_{g-1}}{q_{g}}\right)=\left(\frac{q_{g}}{p_{g-1}}\right)=\left(\frac{q_{g}}{p_{g}}\right)=-1
$$

Therefore, $\left[\frac{-q_{g}}{d}\right]=-1$. Finally, if more than one prime is $\equiv 3(\bmod 4)$, then instead of using p_{g} as in Lemma 8, we use any of the primes $p_{j} \equiv 3(\bmod 4)$ such that $\left(\frac{q_{i}}{p_{j}}\right)=1$. The proof follows as in the previous lemmas.

Lemma 10. Let $d=2 p_{1} \cdots p_{g}$ be square free with $p_{1}, \ldots, p_{t} \equiv 1(\bmod 4)$ and $p_{t+1}, \ldots, p_{g} \equiv 3(\bmod 4)$ for $0 \leq t \leq g-1$. Then there are primes q_{1}, \ldots, q_{g-1} such that $\left(\frac{4 d}{q_{i}}\right)=1$ and $\left[\frac{q_{i}}{d}\right]=\left[\frac{-q_{i}}{d}\right]=-1$.

Proof. If $t>0$, then q_{1}, \ldots, q_{t} are obtained as in Lemma 7 and the primes q_{t+1}, \ldots, q_{g-1} are obtained as in Lemma 8. If $t=0$, then $p_{i} \equiv 3(\bmod 4)$ for $i=1, \ldots, g$ and $g \geq 2$. In this case, we choose $q_{1} \equiv 5(\bmod 8)$ in such a way that

$$
\left(\frac{p_{1}}{q_{1}}\right)=-1, \quad\left(\frac{p_{i}}{q_{1}}\right)=1, \quad i>1
$$

From this and $\left(\frac{2}{q_{1}}\right)=-1$, it follows that

$$
\left(\frac{4 d}{q_{1}}\right)=1, \quad\left[\frac{q_{1}}{d}\right]=\left[\frac{-q_{1}}{d}\right]=-1
$$

The primes q_{2}, \ldots, q_{g-1} are obtained as in Lemma 8.
From now on, we write $\mathbb{F}=\mathbb{Q}(\sqrt{d}), d>0$ square free. Let $\mathcal{P}=\left\{q_{1}, \ldots, q_{t}\right\}$ obtained in Lemmas 6, 7, 8, 9 or 10 . We observe that there are infinitely many $a_{i} \in \mathbb{N}$ such that $a_{i}^{2} \equiv d\left(\bmod q_{i}\right)$. We fix one of them and define the ideals $\mathfrak{q}_{i}=$ $\left\langle q_{i}, a_{i}+\sqrt{d}\right\rangle$. It is clear that \mathfrak{q}_{i} is a prime ideal, $N\left(\mathfrak{q}_{i}\right)=q_{i}$ and $\left\langle q_{i}\right\rangle=\mathfrak{q}_{i} \mathfrak{q}_{i}^{\prime}$, where $\mathfrak{q}_{i}^{\prime}=\left\langle q_{i}, a_{i}-\sqrt{d}\right\rangle$. Given \mathcal{P} as above, we define $\mathcal{I}_{\mathcal{P}}=\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{t}\right\}$. We will write $\operatorname{ord}_{I}(J)$ to indicate that $I^{\operatorname{ord}_{I}(J)} \mid J$ and $I^{\operatorname{ord}_{I}(J)+1} \nmid J$.

Observe that $N\left(a_{1}+a_{2} \sqrt{d}\right)=a_{1}^{2}-d a_{2}^{2}$, so if $I=\left\langle a_{1}+a_{2} \sqrt{d}\right\rangle$, then $N(I)$ $\equiv a_{1}^{2}(\bmod d)$ or $-N(I) \equiv a_{1}^{2}(\bmod d)$. Therefore, if $\left[\frac{ \pm N(I)}{d}\right]=-1$, then I is a non-principal ideal.

Theorem 11. Let $d=p_{0} p_{1} \cdots p_{g}$ be a positive square free integer and $\mathbb{F}=\mathbb{Q}(\sqrt{d})$. If $I=\prod_{\mathfrak{q} \in \mathcal{I}_{\mathcal{P}}} \mathfrak{q}^{\operatorname{ord}_{\mathfrak{q}}(I)}$ and $\operatorname{ord}_{\mathfrak{q}}(I)$ is odd for some $\mathfrak{q} \in \mathcal{I}_{\mathcal{P}}$, then
(1) $\left[\frac{ \pm N(I)}{d}\right]=-1$ and therefore I is non-principal.
(2) If $\bar{I} \in C l_{\mathbb{F}}$ is the class of I, then o($\left.\bar{I}\right)$ is even.
(3) Let $J=\prod_{\mathfrak{q} \in \mathcal{I}_{\mathcal{P}}} \mathfrak{q}^{\operatorname{ord}_{\mathfrak{q}}(J)}$ such that for some $\mathfrak{q} \in \mathcal{I}_{\mathcal{P}}, \quad \operatorname{ord}_{\mathfrak{q}}(J)$ is odd and $\operatorname{ord}_{\mathfrak{q}}(I) \neq \operatorname{ord}_{\mathfrak{q}}(J)(\bmod 2)$. Then $\bar{I} \neq \bar{J}$.

Proof. For the first assertion, we need that $\left[\frac{N(I)}{p_{1}^{\prime}}\right]=\left[\frac{-N(I)}{p_{2}^{\prime}}\right]=-1$ for certain prime divisors $p_{1}^{\prime}, p_{2}^{\prime}$ of d. Let $j=\max \left\{i: \operatorname{ord}_{\mathfrak{q}_{i}}(I)\right.$ is odd $\}$. We observe that $j>0$ and p_{j} is odd. We know that $\left(\frac{q_{j}}{p_{j}}\right)=\left(\frac{\operatorname{qord}_{q_{j}(I)}}{p_{j}}\right)=-1$, we have that for any $\mathfrak{q}_{i} \in \mathcal{I}_{\mathcal{P}}$, either $i<j$ or $\operatorname{ord}_{\mathfrak{q}_{i}}(I)$ is even. Then by construction, $\left(\frac{\mathfrak{q}_{i} \operatorname{ord}_{q_{j}}(I)}{p_{j}}\right)$ $=1$ if $q_{i} \mid N(I), q_{i} \neq q_{j}$. Therefore, $\left(\frac{N(I)}{p_{j}}\right)=\left[\frac{N(I)}{d}\right]=-1$. If some prime divisor p of $d, p \equiv 1(\bmod 4)$, satisfies $\left(\frac{N(I)}{p}\right)=-1$, then $\left(\frac{-N(I)}{p}\right)=\left[\frac{-N(I)}{d}\right]=-1$. Now consider the case $\left(\frac{N(I)}{p}\right)=1, p \equiv 1(\bmod 4), p \mid d$. If $d \equiv 1,2(\bmod 4)$, then it follows from Lemmas 8,10 that $\left(\frac{N(I)}{p_{g}}\right)=1$. Therefore,

$$
\left(\frac{-N(I)}{p_{g}}\right)=\left[\frac{-N(I)}{p_{g}}\right]=\left[\frac{-N(I)}{d}\right]=-1
$$

Consider the case $d \equiv 3(\bmod 4),\left(\frac{N(I)}{p}\right)=1, p \equiv 1(\bmod 4)$. At the beginning of the proof, we saw that there is an odd prime $p_{j} \mid d$ such that $\left(\frac{N(I)}{p_{j}}\right)=-1$. If $k=$ $\min \left\{i: \operatorname{ord}_{q_{i}}(I)\right.$ is odd $\}$, then it follows that $\left(\frac{N(I)}{p_{k-1}}\right)=-1$. Since $d \equiv 3(\bmod 4)$, d must have an odd number of prime divisors of the form $4 x+3$ and since $p_{j}, p_{k-1} \equiv 3(\bmod 4)$, there are at least three of such prime numbers. Let $q_{i} \in \mathcal{P}$ be such that $\operatorname{ord}_{q_{i}}(I)$ is odd. Each of these has associated two prime divisors
$p_{i-1}, \quad p_{i}$ of d such that $\left(\frac{q_{i}}{p_{i-1}}\right)=\left(\frac{q_{i}}{p_{i}}\right)=-1$. Hence, there is an even number of pairs $\left(p_{l}, q_{m}\right)$ that satisfy $\left(\frac{q_{m}}{p_{l}}\right)=-1$. Therefore, among the symbols $\left(\frac{N(I)}{p_{0}}\right), \ldots,\left(\frac{N(I)}{p_{g}}\right)$, an even number of them take the value -1 for some primes $p_{i} \equiv 3(\bmod 4)$. It follows that there is some prime $p \equiv 3(\bmod 4)$ such that $\left(\frac{N(I)}{p}\right)=1$. As in the case $d \equiv 1,2(\bmod 4)$, we obtain $\left(\frac{-N(I)}{p}\right)=\left[\frac{-N(I)}{d}\right]=-1$. We note that $o(\bar{I})$ is even since I^{a} is non-principal for $a \in \mathbb{N}$ odd.

Finally, the class \bar{I}^{-1} has a representative $I^{\prime}=\prod_{\mathfrak{q} \in \mathcal{I}_{\mathcal{P}}} \mathfrak{q}^{o(\overline{\mathfrak{q}})-\operatorname{ord}_{\mathfrak{q}}(I)}$, where $\operatorname{ord}_{\mathfrak{q}}\left(I^{\prime}\right) \equiv \operatorname{ord}_{\mathfrak{q}}(I)(\bmod 2)$. Thus $\operatorname{ord}_{\mathfrak{q}}\left(J I^{\prime}\right)$ is odd and $J I^{\prime}$ is non-principal. Therefore, $\bar{J} \neq \bar{I}^{\prime-1}$ and so $\bar{I} \neq \bar{J}$.

Lemma 12. Let \mathbb{F} be as always, I, J ideals of $\mathcal{O}_{\mathbb{F}}$ such that $\left[\frac{ \pm N(I)}{d}\right]=-1$, $o(\bar{I})$ even and such that for any ramified prime $p, p \nmid N(I)$ and $p \nmid N(J)$. If $J \in \bar{I}$, then $\left[\frac{ \pm N(J)}{d}\right]=-1$.

Proof. Let $J \in \bar{I}$ such that $\left[\frac{N(J)}{d}\right]=1$ or $\left[\frac{-N(J)}{d}\right]=1$. Since \bar{I} has even order, we have $\left[\frac{N\left(I^{o(\bar{I})}\right)}{d}\right]=1$. From the multiplicity of Legendre's symbol and Lemma 4, we obtain $\left[\frac{ \pm N\left(I^{o(\bar{I})-1}\right)}{d}\right]=-1$. Since $\left[\frac{N(J)}{d}\right]=1$ or $\left[\frac{-N(J)}{d}\right]=1$, in both cases, we have

$$
\left[\frac{N\left(I^{o(\bar{I})-1} J\right)}{d}\right]=\left[\frac{-N\left(I^{o(\bar{I})-1} J\right)}{d}\right]=-1 .
$$

From $\overline{I^{o(\bar{I})-1}}=\bar{I}^{-1}=\bar{J}^{-1}$, it follows that $I^{o(\bar{I})-1} J$ is a principal ideal, which is impossible. Therefore, $\left[\frac{ \pm N(J)}{d}\right]=-1$.

If $\mathfrak{q}_{i} \in \mathcal{I}_{\mathcal{P}}$, then $o\left(\overline{\mathfrak{q}_{i}}\right)=2^{k_{i}} t_{i}$ for some $k_{i}, t_{i} \in \mathbb{N}$ and t_{i} odd. For $\mathfrak{q}_{i} \in \mathcal{I}_{\mathcal{P}}$, we define $J_{i}=\mathfrak{q}_{i}^{t_{i}}$. Let $\mathcal{J}_{\mathcal{P}}=\left\{J_{1}, \ldots, J_{\mid \mathcal{P}} \mid\right\}$. Observe that since $\mathfrak{q}_{i} \neq \mathfrak{q}_{j}$ for $i \neq j, \quad J_{i} \neq J_{j}$.

Lemma 13. Let \mathbb{F} be a real quadratic field and J_{i} as above. Then:
(1) $\left[\frac{ \pm N\left(J_{i}\right)}{d}\right]=-1$ for $1 \leq i \leq|\mathcal{P}|$.
(2) If $J_{i} \in \mathcal{J}_{\mathcal{P}}$, then $\overline{J_{i}} \notin\left\langle\overline{J_{1}}, \ldots, \overline{J_{i-1}}, \overline{J_{i+1}}, \ldots, \overline{J_{|\mathcal{P}|}}\right\rangle$.
(3) We can modify the elements of $\mathcal{J}_{\mathcal{P}}$ in such a way that

$$
\left\langle\overline{J_{1}}, \ldots, \overline{J_{|\mathcal{P}|}}\right\rangle \cong\left\langle\overline{J_{1}}\right\rangle \times \cdots \times \overline{\left\langle\overline{J_{\mid \mathcal{P}} \mid}\right\rangle}
$$

Proof. Before we start the proof, we observe that all the ideals we will be using are such that their norms and d are relative primes, so we can use Lemma 12. (1) follows from Lemma 4 since t_{i} is odd. For (2), let us suppose that $\overline{J_{i}} \in$ $\left\langle\overline{J_{1}}, \ldots, \overline{J_{i-1}}, \overline{J_{i+1}}, \ldots, \overline{J_{|\mathcal{P}|}}\right\rangle$. Let $I=\prod_{J_{l} \in \mathcal{J}_{\mathcal{P}}} J_{l}^{e_{l}}$ with $e_{i}=0$ and e_{j} non-negative integers. Clearly, $\bar{I} \in\left\langle\overline{J_{1}}, \ldots, \overline{J_{i-1}}, \overline{J_{i+1}}, \ldots, \overline{J_{\mid \mathcal{P}} \mid}\right\rangle$. If $I \in \overline{J_{i}}$, since $\left[\frac{ \pm N\left(J_{i}\right)}{d}\right]=-1$, then $\left[\frac{ \pm N(I)}{d}\right]=-1$. From this, some e_{l} is odd. Since $e_{i}=0$, by Theorem 11(3), we have $J_{i}=\mathfrak{q}_{i}^{t_{i}} \notin \bar{I}$. As consequence of (2) we have that the rank of $\left\langle\overline{J_{1}}, \ldots, \overline{J_{|\mathcal{P}|}}\right\rangle$ is $|\mathcal{P}|$. To prove (3), we use the Algorithm.

Theorem 14. If \mathbb{F} is a real quadratic field, then $C l_{2}=\left\langle\overline{J_{1}}, \ldots, \overline{J_{|\mathcal{P}|} \mid}\right\rangle$.
Proof. By Lemma 13 and Theorem 3, we know that $G_{\mathcal{J}}=\left\langle\overline{J_{1}}, \ldots, \overline{J_{|\mathcal{P}|}}\right\rangle$ is a 2-group with rank equal to the rank of $C l_{2}$. Suppose there exists an ideal $I \subseteq \mathcal{O}_{\mathbb{F}}$ such that $o(\bar{I})=2^{k}$ with $k \in \mathbb{N}$ and $\operatorname{gcd}\left(N(I), \delta_{\mathbb{F}}\right)=1$. Since the 2-rank of $C l_{\mathbb{F}}$ is equal to the 2-rank of $G_{\mathcal{J}}$, there exist $t, e_{1}, \ldots, e_{|\mathcal{P}|} \in \mathbb{N}$ such that

$$
\overline{I^{t}}=\overline{\prod_{J_{i} \in \mathcal{J}_{\mathcal{P}}} J_{i}^{e_{i}}}
$$

with $\overline{I^{t}} \neq \overline{\mathcal{O}_{\mathbb{F}}}$. We chose the smallest t satisfying this condition. Note that t is even, otherwise $\bar{I} \in G_{\mathcal{J}}$. Thus $\left[\frac{N\left(I^{t}\right)}{d}\right]=1$. On the other hand, at least one e_{i} is odd, since otherwise t would not be minimum. From Theorem 11, we have that $\left[\frac{N\left(I^{t}\right)}{d}\right]$ $=-1$. This shows that any ideal $I \subseteq \mathcal{O}_{\mathbb{F}}$ with $\operatorname{gcd}\left(N(I), \delta_{\mathbb{F}}\right)=1$ satisfies $\bar{I} \in G_{\mathcal{J}}$. Let p be a ramified prime and \mathfrak{p} a prime ideal such that $N(\mathfrak{p})=p$. We know that the rank of $C l_{2}$ is the same as $G_{\mathcal{J}}$, so $\left\langle G_{\mathcal{J}}, \overline{\mathfrak{p}}\right\rangle$ must have the same rank as $G_{\mathcal{J}}$. This implies $\overline{\mathfrak{p}} \in G_{\mathcal{J}}$ or there is a maximal $H \in C_{G_{\mathcal{J}}}$ such that $H \subseteq\langle\overline{\mathfrak{p}}\rangle$. If the latter happens, $1<o(H) \leq o(\overline{\mathfrak{p}}) \leq 2$, so $H=\langle\overline{\mathfrak{p}}\rangle, \quad \overline{\mathfrak{p}} \in G_{\mathcal{J}}$ and therefore $G_{\mathcal{J}}=$ $\left\langle G_{\mathcal{J}}, \overline{\mathfrak{p}}\right\rangle$. We apply this argument to all ramified primes to obtain $C l_{2}=G_{\mathcal{J}}$.

Lemma 15. Let \mathbb{F} be a real quadratic field. Every class in $C l_{\mathbb{F}}$ has a representative I such that $\operatorname{gcd}\left(N(I), \delta_{\mathbb{F}}\right)=1$.

Proof. Let $\bar{J} \in C l_{\mathbb{F}}$ such that $J=\mathfrak{p}_{1} \cdots \mathfrak{p}_{k} \mathfrak{q}_{1} \cdots \mathfrak{q}_{r}$, where \mathfrak{p}_{i} is a ramified prime ideal for $1 \leq i \leq k$ and \mathfrak{q}_{i} is an unramified prime ideal for $1 \leq i \leq r$. It will suffice to prove that every $\overline{\mathfrak{p}_{i}}$ has a representative that satisfies the affirmation.

First, we will prove the assertion for $d \equiv 1,2(\bmod 4)$. In this case, a prime p is ramified if and only if $p \mid d$, and the ideal of norm p_{i} is

$$
\mathfrak{p}_{i}=\left\langle p_{i}, \sqrt{d}\right\rangle=\left\langle p_{i}, p_{i}+\sqrt{d}\right\rangle .
$$

So we have

$$
\left\langle p_{i}-\sqrt{d}\right\rangle \mathfrak{p}_{i}=\left\langle p_{i}\left(p_{i}-\sqrt{d}\right), p_{i}^{2}-d\right\rangle=\left\langle p_{i}\right\rangle\left\langle p_{i}-\sqrt{d}, p_{i}-d / p_{i}\right\rangle
$$

so \mathfrak{p}_{i} is in the same class than $\mathfrak{p}_{i}^{\prime}=\left\langle p_{i}-\sqrt{d}, p_{i}-d / p_{i}\right\rangle$. Note that $\mathfrak{p}_{i}^{\prime}$ is not necessarily a prime ideal. Observe that $\operatorname{gcd}\left(p, p_{i}-d / p_{i}\right)=1$ for every prime p such that $p \mid d$, then $p \nmid p_{i}-d / p_{i}$ and $p \nmid N\left(p_{i}-d / p_{i}\right)$. The fact that $\mathfrak{p}_{i}^{\prime} \mid\left\langle p_{i}-d / p_{i}\right\rangle$ implies $p \nmid N\left(\mathfrak{p}_{i}^{\prime}\right)$. Therefore, $\operatorname{gcd}\left(d, N\left(\mathfrak{p}_{i}^{\prime}\right)\right)=1$. If we change every \mathfrak{p}_{i} for $\mathfrak{p}_{i}^{\prime}$, then we get a new ideal I related to J without ramified prime factors.

Now suppose $d \equiv 3(\bmod 4)$. We proceed similarly as in the previous case, and we obtain an ideal $I \in \bar{J}$ such that $\operatorname{gcd}(N(I), d)=1$. In this case, 2 is a ramified prime but $2 \nmid d$, so it is possible that $\mathfrak{p}=\langle 2,1+\sqrt{d}\rangle \mid I$. In this case, we have

$$
\mathfrak{p}\langle 1-\sqrt{d}\rangle=\langle 2(1-\sqrt{d}), 1-d\rangle=\langle 2\rangle\langle 1-\sqrt{d}+(1-d) / 2\rangle,
$$

where $\mathfrak{p}^{\prime}=\langle 1-\sqrt{d},(1-d) / 2\rangle \sim \mathfrak{p}$ and $\frac{1-d}{2} \in \mathbb{Z}$ is odd. In particular, $2 \nmid N\left(\mathfrak{p}^{\prime}\right)$. Since $\operatorname{gcd}(1-d, d)=1$, we have $\operatorname{gcd}\left(N\left(\mathfrak{p}^{\prime}\right), d\right)=1$, hence $\operatorname{gcd}\left(N\left(\mathfrak{p}^{\prime}\right), \delta_{\mathbb{F}}\right)=1$. Replacing \mathfrak{p} for \mathfrak{p}^{\prime}, we obtain the ideal we wanted.

Proposition 16. Let \mathbb{F} be a real quadratic field such that $\left|C l_{\mathbb{F}}\right|=2^{k}$ for some $k \in \mathbb{N}$ and $\bar{I} \in C l_{\mathbb{F}}$ with $\operatorname{gcd}\left(N(I), \delta_{\mathbb{F}}\right)=1$. Then $\langle\bar{I}\rangle$ is maximal in $\mathcal{C}_{C_{\mathbb{F}}}$ if and only if $\left[\frac{ \pm N(I)}{d}\right]=-1$.

Proof. We know that $C l_{\mathbb{F}}=G_{\mathcal{J}} \cong\left\langle\overline{J_{1}}\right\rangle \times \cdots \times\left\langle\overline{J_{\mid \mathcal{P}} \mid}\right\rangle$. If $\langle\bar{I}\rangle$ is maximal in $\mathcal{C}_{C l_{\mathbb{F}}}$, then I is related with some ideal

$$
J=\prod_{J_{i} \in \mathcal{J}_{\mathcal{P}}} J_{i}^{\operatorname{ord}_{J_{i}} J}
$$

with $\operatorname{ord}_{J_{i}} J$ odd. Theorem 11 implies that $\left[\frac{ \pm N(I)}{d}\right]=-1$. Conversely, suppose $\langle\bar{I}\rangle$ is not maximal. Then $\langle\bar{I}\rangle \varsubsetneqq\langle\bar{J}\rangle$ for a class \bar{J}. We can choose J in such a way that $\operatorname{gcd}\left(N(J), \delta_{\mathbb{F}}\right)=1$. Therefore, $\bar{I}=\bar{J}^{t}$ for some $t \in \mathbb{N}$. As a consequence of the fact that $\bar{I} \neq \bar{J}$, we have that t is even. So, $\left[\frac{N(I)}{d}\right]=\left[\frac{N\left(J^{t}\right)}{d}\right]=1$.

Example 2. Let $\mathbb{F}=\mathbb{Q}(\sqrt{322})$. Since $322=2 \cdot 7 \cdot 23$, from Theorem 3 we have that the rank of $C l_{2}$ is 1 . We apply Lemma 10 with $t=0, g=2$. We will find a non-principal ideal \mathfrak{q}_{1} such that it generates $C l_{2}$. For this, we need a prime q_{1} such that

$$
\left(\frac{4 \cdot 322}{q_{1}}\right)=1 \quad \text { and } \quad\left[\frac{ \pm q_{1}}{322}\right]=-1
$$

Following the proof of Lemma 10, it is enough that q_{1} satisfies

$$
\begin{equation*}
q_{1} \equiv 5(\bmod 8), \quad\left(\frac{q_{1}}{7}\right)=\left(\frac{7}{q_{1}}\right)=-1, \quad\left(\frac{q_{1}}{23}\right)=\left(\frac{23}{q_{1}}\right)=1 \tag{1}
\end{equation*}
$$

From Lemma 5, we have that 325 satisfies (1), but it is not a prime. From Dirichlet's Theorem, we obtain that $q_{1}=325+1283=1613$ is prime and

$$
\langle 1613\rangle=\langle 1613,100+\sqrt{322}\rangle\langle 1613,100-\sqrt{322}\rangle .
$$

Hence $\overline{\mathfrak{q}_{1}}=\overline{\langle 1613,100+\sqrt{322}\rangle}$ generates $C l_{2}$ and $o\left(\overline{\mathfrak{q}_{1}}\right)=4$.
Example 3. Let $d=272490=2 \cdot 5 \cdot 293 \cdot 3 \cdot 31$ and $\mathbb{F}=\mathbb{Q}(\sqrt{d})$. To find suitable generators of $C l_{2}$, we use Lemma 10 with $g=4, t=2$. We observe that the rank of Cl_{2} is 3 . According to Lemma 7, we need a prime number q_{1} such that

$$
q_{1} \equiv 5(\bmod 8), \quad\left(\frac{q_{1}}{5}\right)=-1, \quad\left(\frac{q_{1}}{293}\right)=\left(\frac{q_{1}}{3}\right)=\left(\frac{q_{1}}{31}\right)=1
$$

Therefore, it is sufficient that q_{1} satisfies

$$
\begin{align*}
q_{1} & \equiv 5(\bmod 8) \\
q_{1} & \equiv 3(\bmod 5) \\
q_{1} & \equiv 1(\bmod 27249) \tag{2}
\end{align*}
$$

The prime number $q_{1}=762973$ solves (2) and

$$
\mathfrak{q}_{1}=\langle 762973,349636+\sqrt{272490}\rangle
$$

is a prime ideal such that $N\left(\mathfrak{q}_{1}\right)=q_{1}$ and $o\left(\overline{\mathfrak{q}_{1}}\right)=8$. Similarly, we find $q_{2}=$ 1895713 and the prime ideal $\mathfrak{q}_{2}=\langle 1895713,507828+\sqrt{272490}\rangle$ satisfies $N\left(\mathfrak{q}_{2}\right)=q_{2}, \quad o\left(\overline{\mathfrak{q}_{2}}\right)=8$. The prime $q_{3}=5674241$ and the prime ideal $\mathfrak{q}_{3}=$ $\langle 5674241,1813618+\sqrt{272490}\rangle$ satisfies $N\left(\mathfrak{q}_{3}\right)=q_{3}$, o($\left.\overline{\mathfrak{q}_{3}}\right)=8$. Therefore, $C l_{2}=$ $\left\langle\overline{\mathfrak{q}_{1}}, \overline{\mathfrak{q}_{2}}, \overline{\mathfrak{q}_{3}}\right\rangle$.

The minimal relations between $\overline{\mathfrak{q}_{1}}, \overline{\mathfrak{q}_{2}}, \overline{\mathfrak{q}_{3}}$ that appear in Proposition 2 are

$$
{\overline{\mathfrak{q}_{1}}}^{4}={\overline{\mathfrak{q}_{2}}}^{4}, \quad{\overline{\mathfrak{q}_{1}}}^{2}={\overline{\mathfrak{q}_{3}}}^{2}, \quad{\overline{\mathfrak{q}_{1}}}^{8}={\overline{\mathfrak{q}_{2}}}^{8}={\overline{\mathfrak{q}_{3}}}^{8}=\overline{\mathcal{O}_{\mathbb{F}}}
$$

We replace $\overline{\mathfrak{q}_{2}}$ with $\overline{\mathfrak{q}_{1}}\left(2^{1}-1\right)\left(2^{0}\right) \mathfrak{q}_{2}=\overline{\mathfrak{q}_{1}} \overline{\mathfrak{q}_{2}}$ and $\overline{\mathfrak{q}_{3}}$ with $\overline{\mathfrak{q}_{1}}\left(2^{2}-1\right)\left(2^{0}\right) \overline{\mathfrak{q}_{3}}=\overline{\mathfrak{q}}_{1}{ }^{3} \overline{\mathfrak{q}_{3}}$. Now we have $C l_{2}=\left\langle\overline{\mathfrak{q}_{1}}, \overline{\mathfrak{q}_{1}} \overline{\mathfrak{q}_{2}}, \overline{\mathfrak{q}_{1}} 3 \overline{\mathfrak{q}_{3}}\right\rangle$, with $o\left(\overline{\mathfrak{q}_{1}}\right)=8$, $o\left(\overline{\mathfrak{q}_{1}} \overline{\mathfrak{q}_{2}}\right)=4$ and $o\left(\overline{\mathfrak{q}_{1}} 3 \overline{\mathfrak{q}_{3}}\right)$ $=2$. Continuing with the Algorithm, we check that this set of generators of Cl_{2} cannot be simplified any further. Therefore,

$$
C l_{2}=\left\langle\overline{\mathfrak{q}_{1}}, \overline{\mathfrak{q}_{1} \mathfrak{q}_{2}}, \overline{\mathfrak{q}_{1}} 3 \overline{\mathfrak{q}_{3}}\right\rangle \cong\left\langle\overline{\mathfrak{q}_{1}}\right\rangle \times\left\langle\overline{\mathfrak{q}_{1} \mathfrak{q}_{2}}\right\rangle \times\left\langle\overline{\mathfrak{q}_{1}} 3 \overline{\mathfrak{q}_{3}}\right\rangle \cong C_{8} \times C_{4} \times C_{2} .
$$

4. Other Cases

Similar results can be found when we have an imaginary quadratic field $\mathbb{F}=\mathbb{Q}(\sqrt{-d})$, where d is a rational positive squarefree integer. In this case, the norm of an element in \mathbb{F} is always positive, hence, we will use $\left[\frac{N(I)}{d}\right]$ instead of $\left[\frac{ \pm N(I)}{d}\right]$ and to construct $\mathcal{P}, \mathcal{I}_{\mathcal{P}}, \mathcal{J}_{\mathcal{P}}$ we will need to find prime numbers as follows:

1. If $d=p_{0} \cdots p_{g}$ as in Lemma 6, then we can find $g+1$ prime numbers q_{0}, \ldots, q_{g} such that $\left(\frac{p_{i}}{q_{i}}\right)=-1, \quad\left(\frac{p_{j}}{q_{i}}\right)=1$ for $i \neq j$ and $q_{i} \equiv 3(\bmod 4)$. In this case, $\left(\frac{-1}{d}\right)=-1$ and $\left(\frac{q_{i}}{p_{i}}\right)=-1$.
2. If $d=2 p_{1} \cdots p_{g}$ as in Lemma 7 or $d=p_{0} p_{1} \cdots p_{g} \equiv 3(\bmod 4)$ as in Lemma 9, then we can find g prime numbers such that $\left(\frac{\delta_{\mathbb{F}}}{q_{i}}\right)=1$ and $\left[\frac{q_{i}}{d}\right]$ $=-1$. In fact, we can use the same q_{i} 's we found in the real case.
3. If $d=p_{0} p_{1} \cdots p_{g} \equiv 1(\bmod 4)$ as in Lemma 8 , then $-d \equiv 3(\bmod 4)$ and $\delta_{\mathbb{F}}=-4 d$. In this case, we can find $g+1$ prime numbers q_{0}, \ldots, q_{g} such that $\left(\frac{p_{i}}{q_{i}}\right)=-1,\left(\frac{p_{j}}{q_{i}}\right)=1$, for $i \neq j$ and $q_{i} \equiv 3(\bmod 4)$. Since $g \geq 1$, we always have a prime p_{j} such that $\left(\frac{p_{j}}{q_{i}}\right)=1$ and $\left(\frac{q_{i}}{p_{j}}\right)=-1$, hence $\left[\frac{q_{i}}{d}\right]=-1$.
4. If $d=2 p_{1} \cdots p_{g} \equiv 1(\bmod 4)$ as in Lemma 10 , then there are g primes

$$
q_{1}, \ldots, q_{g} \text { such that }\left(\frac{p_{i}}{q_{i}}\right)=-1,\left(\frac{p_{j}}{q_{i}}\right)=1 \text { for } i \neq j \text { and } q_{i} \equiv 5(\bmod 8)
$$

With these prime numbers, we define $\mathcal{P}, \mathcal{I}_{\mathcal{P}}$ and $\mathcal{J}_{\mathcal{P}}$ as in the real case. Lemmas 12, 13 and 15, Proposition 16 and Theorems 11 and 14 can be generalized removing the minus sign in $\left[\frac{ \pm N(I)}{d}\right]$.

A particular case of what we have studied is when the exponent of $C l_{\mathbb{F}}$ is 2 . The next results follow from Theorem 14:

Corollary 17. Let \mathbb{F} be a quadratic field such that $C l_{\mathbb{F}}$ has exponent 2. Then $C l_{\mathbb{F}}=\left\langle\mathcal{J}_{\mathcal{P}}\right\rangle$ and each class contains an ideal of the form $\prod_{J \in A} J$ for some $A \subseteq \mathcal{J}_{\mathcal{P}}$, where we define $\prod_{J \in \varnothing} J=\mathcal{O}_{\mathbb{F}}$.

Theorem 18. Let \mathbb{F} be a real quadratic field such that $C l_{\mathbb{F}}$ has exponent 2 and $I \subseteq \mathcal{O}_{\mathbb{F}}$ be an ideal such that $\operatorname{gcd}\left(N(I), \delta_{\mathbb{F}}\right)=1$. Then I is non-principal if and only if $\left[\frac{ \pm N(I)}{d}\right]=-1$.

Proof. Every class is represented by an ideal $I_{A}=\prod_{J \in A} J$ for some $\varnothing \neq A$ $\subseteq \mathcal{J}_{\mathcal{P}}$. By Theorem 11(1), we have $\left[\frac{ \pm N\left(I_{A}\right)}{d}\right]=-1$. If some ideal I satisfies $\left[\frac{ \pm N(I)}{d}\right]=-1$, then by Lemma 12, any ideal J contained in \bar{I} such that $\operatorname{gcd}\left(N(J), \delta_{\mathbb{F}}\right)=1$ satisfies $\left[\frac{ \pm N(J)}{d}\right]=-1$. Therefore, any non-principal ideal satisfies $\left[\frac{ \pm N(I)}{d}\right]=-1$. The converse is true in any real quadratic field.

The condition $\operatorname{gcd}\left(N(I), \delta_{\mathbb{F}}\right)=1$ is necessary, otherwise if $\operatorname{gcd}\left(N(I), \delta_{\mathbb{F}}\right)>1$, then there might exist non-principal ideals I such that $\left[\frac{N(I)}{d}\right]=1$ or $\left[\frac{-N(I)}{d}\right]=1$.

For example, if $\mathbb{F}=\mathbb{Q}(\sqrt{10})$, then $\left[\frac{ \pm 5}{10}\right]=1$ but $\langle 5, \sqrt{10}\rangle$ is non-principal. A similar result can be stated for the imaginary case.

Example 4. We are going to find the 2-class group of the imaginary quadratic field $\mathbb{F}=\mathbb{Q}(\sqrt{-665})$. Since $-665=-(5)(7)(19) \equiv 3(\bmod 4), \delta_{\mathbb{F}}=-2660, p_{0}=5$, $p_{1}=7$ and $p_{2}=19$. The next table shows the first prime numbers $q \equiv 3(\bmod 4)$ such that $\left(\frac{\delta_{\mathbb{F}}}{q}\right)=1$. Here we can see that $q_{0}=3, q_{1}=71$ and $q_{2}=131$ satisfy the conditions that we required previously. In this case, $\mathfrak{p}_{1}=\langle 3,4+\sqrt{-665}\rangle$, $\mathfrak{p}_{2}=\langle 71,20+\sqrt{-665}\rangle$ and $\mathfrak{p}_{3}=\langle 131,11+\sqrt{-665}\rangle, \quad o\left(\mathfrak{p}_{1}\right)=o\left(\mathfrak{p}_{2}\right)=o\left(\mathfrak{p}_{3}\right)=6$, $\mathcal{I}_{\mathcal{P}}=\left\{\mathfrak{p}_{1}^{3}, \mathfrak{p}_{2}^{3}, \mathfrak{p}_{3}^{3}\right\}$. If we apply the Algorithm, then we will find that $\mathcal{I}_{\mathcal{P}}=\mathcal{J}_{\mathcal{P}}$ and

$$
C l_{2} \cong C_{2} \times C_{2} \times C_{2}
$$

q	$\left(\frac{\delta_{F}}{q}\right)$	$\left(\frac{5}{q}\right)$	$\left(\frac{7}{q}\right)$	$\left(\frac{19}{q}\right)$	$\left[\frac{q}{665}\right]$
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{- 1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{- 1}$
23	1	-1	-1	-1	-1
43	1	-1	-1	-1	-1
$\mathbf{7 1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{- 1}$	$\mathbf{1}$	$\mathbf{- 1}$
79	1	1	-1	1	-1
103	1	-1	1	1	-1
$\mathbf{1 3 1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{- 1}$	$\mathbf{- 1}$
139	1	1	1	-1	-1
151	1	1	-1	1	-1

Example 5. If $\mathbb{F}=\mathbb{Q}(\sqrt{-21})$, then $C l_{\mathbb{F}} \cong C_{2} \times C_{2}$; hence, an ideal is principal if and only if $\left[\frac{N(I)}{21}\right]=1$. For example, $\langle 5,2+\sqrt{-21}\rangle$ is a non-principal ideal since $N(I)=5$ and $\left[\frac{5}{21}\right]=-1$. The ideal $\langle 37,41+\sqrt{-21}\rangle$ is principal since $N(I)=37$ and $4^{2} \equiv 37(\bmod 21)$.

References

[1] J. M. Basilla and H. Wada, On efficient computation of the 2-parts of ideal class groups of quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 80(10) (2004), 191-193.
[2] W. Bosma and P. Stevenhagen, On the computation of quadratic 2-class groups, J. de Théorie des Nombres de Bordeaux 8(2) (1996), 283-313.
[3] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner and K. Wildanger, KANT V4, J. Symbolic Comp. 24 (1997), 267-283.
[4] H. Hasse, An algorithm for determining the structure of the 2-Sylow subgroups of the divisor class group of a quadratic number field, Symposia Mathematica, Vol. XV (Convegno di Strutture in Corpi Algebrici, INDAM, Rome, 1973), Academic Press, 1975, pp. 341-352.
[5] R. Mollin, Algebraic Number Theory, CRC Press, 1999.
[6] D. Shanks, Gauss's ternary form reduction and the 2-Sylow subgroup, Math. Comp. 25 (1971), 837-853.
[7] W. A. Stein et al., Sage Mathematics Software (Version 4.6.1), The Sage Development Team, 2010, http://www.sagemath.org.

