Far East Journal of Mathematical Sciences (FJMS)

Volume 53, Number 2, 2011, Pages 113-169 Published Online: July 9, 2011

This paper is available online at http://pphmj.com/journals/fjms.htm

© 2011 Pushpa Publishing House

CONSTRUCTING (ω_1, β) -MORASSES FOR $\omega_1 \leq \beta$

BERNHARD IRRGANG

Mathematisches Institut Universitaet Bonn Endenicher Allee 60 53115 Bonn, Germany

e-mail: irrgang@math.uni-bonn.de

Abstract

Let $\kappa \in Card$ and $L_{\kappa}[X]$ be such that the fine structure theory, condensation and $Card^{L_{\kappa}[X]} = Card \cap \kappa$ hold. Then it is possible to prove the existence of morasses. In particular, I will prove that there is a κ -standard morass, a notion that I introduced in a previous paper. This shows the consistency of (ω_1, β) -morasses for all $\beta \geq \omega_1$.

1. Introduction

R. Jensen formulated in the 1970's the concept of an (ω_{α}, β) -morass whereby objects of size $\omega_{\alpha+\beta}$ could be constructed by a directed system of objects of size less than ω_{α} . He defined the notion of an (ω_{α}, β) -morass only for the case that $\beta < \omega_{\alpha}$. I introduced in a previous paper [6] a definition of an (ω_{α}, β) -morass for the case that $\omega_{1} \leq \beta$.

This definition of an (ω_1, β) -morass for the case that $\omega_1 \le \beta$ seems to be an 2010 Mathematics Subject Classification: 03E05.

Keywords and phrases: higher gap morasses, inner model, condensation, fine structure, coherence

Submitted by Qi Feng

Received August 24, 2009; Revised December 17, 2010

axiomatic description of the condensation property of Gödel's constructible universe L and the whole fine structure theory of it. I was, however, not able to formulate and prove this fact in form of a mathematical statement. Therefore, I defined a seemingly innocent strengthening of the notion of an (ω_1, β) -morass, which I actually expect to be equivalent to the notion of (ω_1, β) -morass. I call this strengthening an $\omega_{1+\beta}$ -standard morass. As will be seen, if we construct a morass in the usual way in L, the properties of a standard morass hold automatically.

Using the notion of a standard morass, I was able to prove a theorem which can be interpreted as saying that standard morasses fully cover the condensation property and fine structure of L. More precisely, I was able to show the following [6].

Theorem. Let $\kappa \geq \omega_1$ be a cardinal and assume that a κ -standard morass exists. Then there exists a predicate X such that $Card \cap \kappa = Card^{L_{\kappa}[X]}$ and $L_{\kappa}[X]$ satisfies amenability, coherence and condensation.

Let me explain this. The predicate X is a sequence $X = \langle X_{\nu} | \nu \in S^X \rangle$, where $S^X \subseteq Lim \cap \kappa$, and $L_{\kappa}[X]$ is endowed with the following hierarchy: Let $I_{\nu} = \langle J_{\nu}^X, X \upharpoonright \nu \rangle$ for $\nu \in Lim - S^X$ and $I_{\nu} = \langle J_{\nu}^X, X \upharpoonright \nu, X_{\nu} \rangle$ for $\nu \in S^X$, where $X_{\nu} \subseteq J_{\nu}^X$ and

$$\begin{split} J_0^X &= \varnothing, \\ J_{v+\omega}^X &= rud(I_v^X), \\ J_{\lambda}^X &= \bigcup \{J_v^X \mid v \in \lambda\} \text{ for } \lambda \in Lim^2 := Lim(Lim), \end{split}$$

where $rud(I_{\nu}^{X})$ is the rudimentary closure of $J_{\nu}^{X} = \bigcup \{J_{\nu}^{X}\}$ relative to $X \upharpoonright \nu$ if $\nu \in Lim - S^{X}$ and relative to $X \upharpoonright \nu$ and X_{ν} if $\nu \in S^{X}$. Now, the properties of $L_{\kappa}[X]$ are defined as follows:

(Amenability) The structures I_{v} are amenable.

(**Coherence**) If $v \in S^X$, $H \prec_1 I_v$ and $\lambda = \sup(H \cap On)$, then $\lambda \in S^X$ and $X_{\lambda} = X_v \cap J_{\lambda}^X$.

(**Condensation**) If $\lambda \in S^X$ and $H \prec_1 I_V$, then there is some $\mu \in S^X$ such that $H \cong I_{\mu}$.

Moreover, if we let $\beta(\nu)$ be the least β such that $J_{\beta+\omega}^X \models \nu$ singular, then $S^X = \{\beta(\nu) | \nu \text{ singular in } I_\kappa\}.$

As will be seen, these properties suffice to develop the fine structure theory. In this sense, the theorem shows indeed what I claimed. In the present paper, I shall show the converse:

Theorem. If $L_{\kappa}[X]$, $\kappa \in Card$, satisfies condensation, coherence, amenability, $S^X = \{\beta(\nu) | \nu \text{ singular in } I_{\kappa} \}$ and $Card^{L_{\kappa}[X]} = Card \cap \kappa$, then there is a κ -standard morass.

Since L itself satisfies the properties of $L_{\kappa}[X]$, this also shows that the existence of κ -standard morasses and (ω_1, β) -morasses is consistent for all $\kappa \geq \omega_2$ and all $\lambda \geq \omega_1$.

Most results that can be proved in L from condensation and the fine structure theory also hold in the structures $L_{\kappa}[X]$ of the above form. As examples, I proved in my dissertation the following two theorems whose proofs can also be seen as applications of morasses:

Theorem. Let $\lambda \geq \omega_1$ be a cardinal, $S^X \subseteq Lim \cap \lambda$, $Card \cap \lambda = Card^{L_{\lambda}[X]}$ and $X = \langle X_{\nu} | \nu \in S^X \rangle$ be a sequence such that amenability, coherence, condensation and $S^X = \{\beta(\nu) | \nu \text{ singular in } I_{\kappa} \}$ hold. Then \square_k holds for all infinite cardinals $\kappa < \lambda$.

Theorem. Let $S^X \subseteq Lim$ and $X = \langle X_v | v \in S^X \rangle$ be a sequence such that amenability, coherence, condensation and $S^X = \{\beta(v) | v \text{ singular in } L[X]\}$ hold. Then the weak covering lemma holds for L[X]. That is, if there is no non-trival, elementary embedding $\pi: L[X] \to L[X]$, $\kappa \in Card^{L[X]} - \omega_2$ and $\tau = (\kappa^+)^{L[X]}$, then

$$\tau < \kappa^+ \Rightarrow cf(\tau) = card(\kappa)$$
.

2. The Inner Model L[X]

We say a function $f: V^n \to V$ is *rudimentary* for some structure $\mathfrak{W} = \langle W, X_i \rangle$ if it is generated by the following schemata:

$$f(x_1, ..., x_n) = x_i \text{ for } 1 \le i \le n,$$

$$f(x_1, ..., x_n) = \{x_i, x_j\} \text{ for } 1 \le i, j \le n,$$

$$f(x_1, ..., x_n) = x_i - x_j \text{ for } 1 \le i, j \le n,$$

$$f(x_1, ..., x_n) = h(g_1(x_1, ..., x_n), ..., g_n(x_1, ..., x_n)),$$
where $h, g_1, ..., g_n$ are rudimentary
$$f(y, x_2, ..., x_n) = \bigcup \{g(z, x_2, ..., x_n) | z \in y\},$$
where g is rudimentary
$$f(x_1, ..., x_n) = X_i \cap x_j, \text{ where } 1 \le j \le n.$$

Lemma 1. A function is rudimentary iff it is a composition of the following functions:

$$F_{0}(x, y) = \{x, y\},\$$

$$F_{1}(x, y) = x - y,\$$

$$F_{2}(x, y) = x \times y,\$$

$$F_{3}(x, y) = \{\langle u, z, v \rangle | z \in x \text{ and } \langle u, v \rangle \in y\},\$$

$$F_{4}(x, y) = \{\langle z, u, v \rangle | z \in x \text{ and } \langle u, v \rangle \in y\},\$$

$$F_{5}(x, y) = \bigcup x,\$$

$$F_{6}(x, y) = dom(x),\$$

$$F_{7}(x, y) = \in \bigcap (x \times x),\$$

$$F_{8}(x, y) = \{x[\{z\}] | z \in y\},\$$

$$F_{9+i}(x, y) = x \cap X_{i}$$

for the predicates X_i of the structure under consideration.

117

Proof. See, for example, in [3].

A relation $R \subseteq V^n$ is called *rudimentary* if there is a rudimentary function $f: V^n \to V$ such that $R(x_i) \Leftrightarrow f(x_i) \neq \emptyset$.

Lemma 2. Every relation that is Σ_0 over the considered structure is rudimentary.

Proof. Let χ_R be the characteristic function of R. The claim follows from the facts (i)-(vi):

(i) R rudimentary $\Leftrightarrow \chi_R$ rudimentary.

 \Leftarrow is clear. Conversely, $\chi_R = \bigcup \{g(y) | y \in f(x_i)\}$, where g(y) = 1 is constant and $R(x_i) \Leftrightarrow f(x_i) \neq \emptyset$.

(ii) If R is rudimentary, then $\neg R$ is also rudimentary.

Since $\chi_{\neg R} = 1 - \chi_R$.

(iii) $x \in y$ and x = y are rudimentary.

By
$$x \notin y \Leftrightarrow \{x\} - y \neq \emptyset$$
, $x \neq y \Leftrightarrow (x - y) \cup (y - x) \neq \emptyset$ and (ii).

(iv) If $R(y, x_i)$ is rudimentary, then $(\exists z \in y) R(z, x_i)$ and $(\forall z \in y) R(z, x_i)$ are rudimentary.

If
$$R(y, x_i) \Leftrightarrow f(y, x_i) \neq \emptyset$$
, then

$$(\exists z \in y) R(z, x_i) \Leftrightarrow \bigcup \{f(z, x_i) | z \in y\} \neq \emptyset.$$

The second claim follows from this by (ii).

(v) If R_1 , $R_2 \subseteq V^n$ are rudimentary, then so are $R_1 \vee R_2$ and $R_1 \wedge R_2$.

Because $f(x, y) = x \cup y$ is rudimentary, $(R_1 \vee R_2)(x_i) \Leftrightarrow \chi_{R_1}(x_i) \cup \chi_{R_2}(x_i)$ $\neq \emptyset$ is rudimentary. The second claim follows from that by (ii).

(vi) $x \in X_i$ is rudimentary.

Since
$$\{x\} \cap X_i \neq \emptyset \Leftrightarrow x \in X_i$$
.

For a converse of this lemma, we define:

A function f is called *simple* if $R(f(x_i), y_k)$ is Σ_0 for every Σ_0 -relation $R(z, y_k)$.

Lemma 3. A function f is simple iff

(i)
$$z \in f(x_i)$$
 is Σ_0 ,

(ii)
$$A(z)$$
 is $\Sigma_0 \Rightarrow (\exists z \in f(x_i)) A(z)$ is Σ_0 .

Proof. If f is simple, then (i) and (ii) hold, because these are instances of the definition. The converse is proved by induction on Σ_0 -formulas, e.g., if $R(z, y_k) :\Leftrightarrow z = y_k$, then $R(f(x_i), y_k) \Leftrightarrow f(x_i) = y_k \Leftrightarrow (\forall z \in f(x_i))(z \in y_k)$ and $(\forall z \in y_k)(z \in f(x_i))$. Thus we need (i) and (ii). The other cases are similar. \square

Lemma 4. Every rudimentary function is Σ_0 in the parameters X_i .

Proof. By induction, one proves that the rudimentary functions that are generated without the schema $f(x_1, ..., x_n) = X_i \cap x_j$ are simple. For this, one uses Lemma 3. But since the function $f(x, y) = x \cap y$ is one of those, the claim holds.

Thus every rudimentary relation is Σ_0 in the parameters X_i , but not necessarily Σ_0 with the X_i as predicates. An example is the relation $\{x, y\} \in X_0$.

A structure is said to be *rudimentary closed* if its underlying set is closed under all rudimentary functions.

Lemma 5. If W is rudimentary closed and $H \prec_1 \mathfrak{W}$, then H and the collapse of H are also rudimentary closed.

Proof. That is clear, since the functions F_0 , ..., F_{9+i} are Σ_0 with the predicates X_i .

Let T_N be the set of Σ_0 formulae of our language $\{\in, X_1, ..., X_N\}$ having exactly one free variable. By Lemma 2, there is a rudimentary function f for every Σ_0 formula ψ such that $\psi(x_*) \Leftrightarrow f(x_*) \neq \emptyset$. By Lemma 1, we have

$$x_0 = f(x_*) = F_{k_1}(x_1, x_2),$$

where
$$x_1 = F_{k_2}(x_3, x_4)$$

 $x_2 = F_{k_3}(x_5, x_6)$
and $x_3 = \cdots$.

Of course, x_* appears at some point.

Therefore, we may define an effective Gödel coding

$$T_N \to G$$
, $\psi_u \mapsto u$

as follows (m, n possibly = *):

$$\langle k, l, m, n \rangle \in u : \Leftrightarrow x_k = F_l(x_m, x_n).$$

Let
$$\vDash^{\Sigma_0}_{\mathfrak{W}}(u, x_*) : \Leftrightarrow$$

 ψ_u is Σ_0 formula with exactly one free variable and $\mathfrak{W} \vDash \psi_u(x_*)$.

Lemma 6. If \mathfrak{W} is transitive and rudimentary closed, then $\vDash_{\mathfrak{W}}^{\Sigma_0}(x, y)$ is Σ_1 -definable over \mathfrak{W} . The definition of $\vDash_{\mathfrak{W}}^{\Sigma_0}(u, x_*)$ depends only on the number of predicates of \mathfrak{W} . That is, it is uniform for all structures of the same type.

Proof. Whether $\vDash^{\Sigma_0}_{\mathfrak{W}}(u, x_*)$ holds, may be computed directly. First, one computes the x_k which only depend on x_* . For those $\langle k, l, *, * \rangle \in u$. Then one computes the x_i which only depend on x_m and x_n such that $m, n \in \{k \mid \langle k, l, *, * \rangle \in u\}$ – etc. Since \mathfrak{W} is rudimentary closed, this process only breaks off, when one has computed $x_0 = f(x_*)$. And $\vDash^{\Sigma_0}_{\mathfrak{W}}(u, x_*)$ holds iff $x_0 = f(x_0) \neq \emptyset$.

More formally speaking: $\vDash_{\mathfrak{W}}^{\Sigma_0}(x, x_*)$ holds iff there is some sequence $\langle x_i | i \in d \rangle$, $d = \{k | \langle k, l, m, n \rangle \in u\}$ such that

$$\langle k, l, m, n \rangle \in u \Rightarrow x_k = F_l(x_m, x_n) \text{ and } x_0 \neq \emptyset.$$

Hence
$$\vDash^{\Sigma_0}_{\mathfrak{W}}$$
 is Σ_1 .

If $\mathfrak W$ is a structure, then let $rud(\mathfrak W)$ be the closure of $W \cup \{W\}$ under the functions which are rudimentary for $\mathfrak W$.

Lemma 7. If \mathfrak{W} is transitive, then so is $rud(\mathfrak{W})$.

Proof. By induction on the definition of the rudimentary functions. \Box

Lemma 8. Let \mathfrak{W} be a transitive structure with underlying set W. Then

$$rud(\mathfrak{W}) \cap \mathfrak{P}(W) = Def(\mathfrak{W}).$$

Proof. First, let $A \in Def(\mathfrak{W})$. Then A is Σ_0 over $\langle W \cup \{W\}, X_i \rangle$, i.e. there are parameters $p_i \in W \cup \{W\}$ and some Σ_0 formula φ such that $x \in A \Leftrightarrow \varphi(x, p_i)$. But by Lemma 2, every Σ_0 relation is rudimentary. Thus there is a rudimentary function f such that $x \in A \Leftrightarrow f(x, p_i) \neq \emptyset$. Let $g(z, x) = \{x\}$ and define $h(y, x) = \bigcup \{g(z, x) | z \in y\}$. Then $h(f(x, p_i), x) = \bigcup \{g(z, x) | z \in f(x, p_i)\}$ is rudimentary, $h(f(x, p_i), x) = \emptyset$ if $x \notin A$ and $h(f(x, p_0), x) = \{x\}$ if $x \in A$. Finally, let $H(y, p_i) = \bigcup \{h(f(x, p_i), x) | x \in y\}$. Then H is rudimentary and $A = H(W, p_i)$. So we are done.

Conversely, let $A \in rud(\mathfrak{W}) \cap \mathfrak{P}(W)$. Then there is a rudimentary function f and some $a \in W$ such that A = f(a, W). By Lemma 4 and Lemma 3, there exists Σ_0 formula such that $x \in f(a, W) \Leftrightarrow \psi(x, a, W, X_i)$. By Σ_0 absoluteness, $A = \{x \in W | W \cup \{W, X_i\} \models \psi(x, a, W, X_i)\}$, since $X_i \subseteq W$. Therefore, there is a formula ϕ such that $A = \{x \in W \mid \mathfrak{W} \models \phi(x, a)\}$.

Let $\kappa \in \mathit{Card} - \omega_1$, $S^X \subseteq \mathit{Lim} \cap \kappa$ and $\langle X_{\nu} \upharpoonright \nu \in S^X \rangle$ be a sequence.

For $v \in Lim - S^X$, let $I_v = \langle J_v^X, X \upharpoonright v, X_v \rangle$ and let $I_v = \langle J_v^X, X \upharpoonright v, X_v \rangle$ for $v \in S^X$ such that $X_v \subseteq J_v^X$, where

$$\begin{split} J_0^X &= \varnothing, \\ J_{v+\omega}^X &= rud(I_v), \\ J_{\lambda}^X &= \bigcup \{J_v^X \mid v \in \lambda\} \text{ if } \lambda \in Lim^2 := Lim(Lim). \end{split}$$

Obviously, $L_{\kappa}[X] = \bigcup \{J_{\nu}^{X} \mid \nu \in \kappa\}.$

We say that $L_{\kappa}[X]$ is amenable if I_{ν} is rudimentary closed for all $\nu \in S^X$.

Lemma 9. (i) Every J_{v}^{X} is transitive,

(ii)
$$\mu < \nu \Rightarrow J_{\mu}^{X} \in J_{\nu}^{X}$$
,

(iii)
$$rank(J_{v}^{X}) = J_{v}^{X} \cap On = v.$$

Proof. That are three easy proofs by induction.

Sometimes we need levels between J_{ν}^{X} and $J_{\nu+\omega}^{X}$. To make those transitive, we define

$$G_i(x, y, z) = F_i(x, y) \text{ for } i \le 8,$$
 $G_9(x, y, z) = x \cap X,$
 $G_{10}(x, y, z) = \langle x, y \rangle,$
 $G_{11}(x, y, z) = x[y],$
 $G_{12}(x, y, z) = \{\langle x, y \rangle\},$
 $G_{13}(x, y, z) = \langle x, y, z \rangle,$
 $G_{14}(x, z) = \{\langle x, y \rangle, z\}.$

Let

$$\begin{split} S_0 &= \varnothing, \\ S_{\mu+1} &= S_{\mu} \cup \{S_{\mu}\} \cup \bigcup \{G_i \big[\big(S_{\mu} \cup \{S_{\mu}\}\big)^3 \big] | i \in 15 \}, \\ S_{\lambda} &= \bigcup \{S_{\mu} \, | \, \mu \in \lambda \} \text{ if } \lambda \in \mathit{Lim}. \end{split}$$

Lemma 10. The sequence $\langle I_{\mu} | \mu \in Lim \cap \nu \rangle$ is (uniformly) Σ_1 -definable over I_{ν} .

Proof. By definition $J_{\mu}^{X}=S_{\mu}$ for $\mu\in \mathit{Lim}$, that is, the sequence $\langle J_{\mu}^{X}\mid \mu\in \mathit{Lim}\cap \nu\rangle$ is the solution of the recursion defining Σ_{0} restricted to Lim .

Since the recursion condition is Σ_0 over I_{ν} , the solution is Σ_1 . It is Σ_1 over I_{ν} if the existential quantifier can be restricted to J_{ν}^X . Hence we must prove $\langle S_{\mu} | \mu \in \tau \rangle$ $\in J_{\nu}^X$ for $\tau \in \nu$. This is done by induction on ν . The base case $\nu = 0$ and the limit step are clear. For the successor step, note that $S_{\mu+1}$ is a rudimentary function of S_{μ} and μ , and use the rudimentary closedness of J_{ν}^X .

Lemma 11. There are well-orderings $<_{v}$ of the sets J_{v}^{X} such that

- (i) $\mu < \nu \Rightarrow <_{\mu} \subseteq <_{\nu}$,
- (ii) $<_{v+1}$ is an end-extension of $<_v$,
- (iii) the sequence $\langle <_{\mu} | \mu \in Lim \cap \nu \rangle$ is (uniformly) Σ_1 -definable over I_{ν} ,
- (iv) $<_{v}$ is (uniformly) Σ_{1} -definable over I_{v} ,
- (v) the function $pr_v(x) = \{z \mid z <_v x\}$ is (uniformly) Σ_1 -definable over I_v .

Proof. Define well-orderings $<_{\mu}$ of S_{μ} by recursion:

- (I) $<_0 = \emptyset$.
- (II) (1) For $x, y \in S_{\mu}$, let $x <_{\mu+1} y \Leftrightarrow x <_{\mu} y$.
 - (2) $x \in S_{\mu}$ and $y \notin S_{\mu} \Rightarrow y <_{\mu+1} y$, $y \in S_{\mu}$ and $x \notin S_{\mu} \Rightarrow y <_{\mu+1} x$.
 - (3) If $x, y \notin S_{\mu}$, then there is an $i \in 15$ and $x_1, x_2, x_3 \in S_{\mu}$ such that $x = G_i(x_1, x_2, x_3)$. And there is a $j \in 15$ and $y_1, y_2, y_3 \in S_{\mu}$ such that $y = G_j(y_1, y_2, y_3)$. First, choose i and j minimal, then x_1 and y_1 , then x_2 and y_2 , and finally x_3 and y_3 .

Set:

(a)
$$x <_{\mu+1} y \text{ if } i < j$$
,

$$y <_{u+1} x \text{ if } i = j.$$

(b)
$$x_1 <_{\mu} x_1 \text{ if } i = j \text{ and } x_1 <_{\mu} x_1,$$

$$y <_{\mu+1} y \text{ if } i = j \text{ and } y_1 <_{\mu} x_1.$$

(c)
$$x_1 <_{\mu+1} y$$
 if $i = j$ and $x_1 = y_1$ and $x_2 <_{\mu} y_2$,

$$y <_{u+1} x \text{ if } i = j \text{ and } x_1 = y_1 \text{ and } y_2 <_u x_2.$$

(d)
$$x <_{u+1} y$$
 if $i = j$ and $x_1 = y_1$ and $x_2 = y_2$ and $x_3 <_u y_3$,

$$y <_{\mu+1} x$$
 if $i = j$ and $x_1 = y_1$ and $y_2 = x_2$ and $y_3 <_{\mu} x_3$.

$$(III) <_{\lambda} = \bigcup \{ <_{\mu} | \, \mu \in \lambda \}.$$

The properties (i) to (v) are obvious. For the Σ_1 -definability, one needs the argument from Lemma 10.

Lemma 12. The rudimentary closed $\langle J_{\nu}^{X}, X \upharpoonright \nu, A \rangle$ have a canonical Σ_{1} -Skolem function h.

Proof. Let $\langle \psi_i | i \in \omega \rangle$ be an effective enumeration of the Σ_0 formulae with three free variables. Intuitively, we would define:

$$h(i, x) \simeq (z)_0$$

for

the
$$<_{\mathbf{v}}$$
-least $z \in J_{\mathbf{v}}^{X}$ such that $\langle J_{\mathbf{v}}^{X}, X \upharpoonright \mathbf{v}, A \rangle \vDash \psi_{i}((z)_{0}, x, (z)_{1})$.

Formally, we define:

By Lemma 11(v), let θ be a Σ_0 formula such that

$$w = \{v \mid v <_{\mathbf{v}} z\} \Leftrightarrow \langle J_{\mathbf{v}}^{X}, X \upharpoonright \mathbf{v}, A \rangle \vDash (\exists t) \theta(w, z, t).$$

Let u_i be the Gödel coding of

$$\theta((s)_1,\,(s)_0,\,(s)_2) \wedge \psi(((s)_0)_0,\,s_3,\,((s)_0)_1) \wedge (\forall v \in (s)_1) \neg \psi_i((v)_0,\,(s)_3,\,(v)_1)$$

and

$$y = h(i, x) \Leftrightarrow (\exists s)(((s_0)_0 = y \land (s)_3 = x \vDash \frac{\Sigma_0}{\langle J_v^X, X \upharpoonright v, A \rangle}(u_i, s)).$$

This has the desired properties. Note Lemma 6!

I will denote this Σ_1 -Skolem function by $h_{\nu, A}$. Let $h_{\nu} := h_{\nu, \emptyset}$.

Let us say that $L_{\kappa}[X]$ has condensation if the following holds:

If $v \in S^X$ and $H \prec_1 I_v$, then there is some $\mu \in S^X$ such that $H \cong I_{\mu}$.

From now on, suppose that $L_{\kappa}[X]$ is amenable and has condensation.

Set
$$I_{\nu}^{0} = \langle J_{\nu}^{X}, X \upharpoonright \nu \rangle$$
 for all $\nu \in Lim \cap \kappa$.

Lemma 13 (Gödel's pairing function). There is a bijection $\Phi: On^2 \to On$ such that $\Phi(\alpha, \beta) \ge \alpha$, β for all α , β and $\Phi^{-1} \upharpoonright \alpha$ is uniformly Σ_1 -definable over I_{α}^0 for all $\alpha \in Lim$.

Proof. Define a well-ordering $<^*$ on On^2 by

$$\langle \alpha, \beta \rangle <^* \langle \gamma, \delta \rangle$$

iff

$$max(\alpha, \beta) < max(\gamma, \delta)$$
 or
$$max(\alpha, \beta) = max(\gamma, \delta) \text{ and } \alpha < \gamma \text{ or}$$

$$max(\alpha, \beta) = max(\gamma, \delta) \text{ and } \alpha = \gamma \text{ and } \beta < \delta.$$

Let $\Phi:\langle \mathit{On}^2, <^* \rangle \cong \langle \mathit{On}, < \rangle$. Then Φ may be defined by the recursion

$$\Phi(0, \beta) = \sup \{ \Phi(\nu, \nu) | \nu < \beta \},$$

$$\Phi(\alpha, \beta) = \Phi(0, \beta) + \alpha \text{ if } \alpha < \beta,$$

$$\Phi(\alpha, \beta) = \Phi(0, \alpha) + \alpha + \beta \text{ if } \alpha \ge \beta.$$

So there is a uniform map from α onto $\alpha \times \alpha$ for all α that are closed under Gödel's pairing function. Such a map exists for all $\alpha \in Lim$. But then we have to give up uniformity.

Lemma 14. For all $\alpha \in Lim$, there exists a function from α onto $\alpha \times \alpha$ that is Σ_1 -definable over I_{α}^0 .

Proof. by induction on $\alpha \in Lim$. If α is closed under Gödel's pairing function, then Lemma 13 does the job. Therefore, if $\alpha = \beta + \omega$ for some $\beta \in Lim$, we may assume $\beta \neq 0$. But then there is some over $I_{\alpha}^{0} \Sigma_{1}$ -definable bijection $j: \alpha \to \beta$. And by the induction hypothesis, there is an over $I_{\alpha}^{0} \Sigma_{1}$ -definable function from β onto $\beta \times \beta$. Thus there exists a Σ_{1} formula $\phi(x, y, p)$ and α parameter $\beta \in I_{\beta}^{X}$ such that there is some $\beta \in I_{\beta}^{X}$ such that $\beta \in I_{\beta}^{X}$ such that $\beta \in I_{\beta}^{X}$ such that there is some $\beta \in I_{\beta}^{X}$ such that $\beta \in I_{\beta}^{X}$ such tha

$$h(v) = f^{-1}(v) \text{ if } v \in rng(f),$$

 $h(v) = \langle 0, 0 \rangle \text{ else.}$

For $rng(f) = rng(g) \in J_{\alpha}^{X}$.

Now, assume $\alpha \in Lim^2$ is not closed under Gödel's pairing function. Then $v, \tau \in \alpha$ for $\langle v, \tau \rangle = \Phi^{-1}(\alpha)$, and $c := \{z \mid z <^* \langle v, \tau \rangle\}$ lies in J_α^X . Thus $\Phi^{-1} \upharpoonright c : c \to \alpha$ is an over $I_\alpha^0 \Sigma_1$ -definable bijection. Pick a $\gamma \in Lim$ such that $v, \tau < \gamma$. Then $\Phi^{-1} \upharpoonright \alpha : \alpha \to \gamma^2$ is an over $I_\alpha^0 \Sigma_1$ -definable injective function. Like in the first case, there exists an injective function $g : \gamma \times \gamma \to \gamma$ in J_α^X by the induction hypothesis. So $f(\langle \xi, \zeta \rangle) = g(\langle g\Phi^{-1}(\xi), g\Phi^{-1}(\zeta)) \rangle$ defines an over $I_\alpha^0 \Sigma_1$ -definable bijection $f : \alpha^2 \to d$ such that $d := g[g[c] \times g[c]]$. Again, we define h by

$$h(\xi) = f^{-1}(\xi) \text{ if } \xi \in d,$$

$$h(\xi) = \langle 0, 0 \rangle \text{ else.}$$

Lemma 15. Let $\alpha \in Lim - \omega + 1$. Then there is some over $I_{\alpha}^{0} \Sigma_{1}$ -definable function from α onto J_{α}^{X} . This function is uniformly definable for all α closed under Gödel's pairing function.

Proof. Let $f:\alpha \to \alpha \times \alpha$ be a surjective function which is Σ_1 -definable over I^0_α with parameter p. Let p be minimal with respect to the canonical well-ordering such that such an f exists. Define f^0 , f^1 by $f\langle v\rangle = \langle f^0(v), f^1(v)\rangle$ and, by induction, define $f_1 = id \upharpoonright \alpha$ and $f_{n+1}(v) = \langle f^0(v), f_n \circ f^1(v)\rangle$. Let $h:=h_\alpha$ be the canonical Σ_1 -Skolem function and $H=h[\omega \times (\alpha \times \{p\})]$. Then H is closed under ordered pairs. For, if $y_1=h(j_1,\langle v_1,p\rangle)$, $y_2=h(j_2,\langle v_2,p\rangle)$ and $\langle v_1,v_2\rangle = f(\tau)$, then $\langle y_1,y_2\rangle$ is Σ_1 -definable over I^0_α with the parameters τ , p. Hence it is in H. Since H is closed under ordered pairs, we have $H \prec_1 I^0_\alpha$. Let $\sigma: H \to I^0_\beta$ be the collapse of H. Then $\alpha=\beta$, because $\alpha\subseteq H$ and $\sigma \upharpoonright \alpha=id \upharpoonright \alpha$. Thus $\sigma[f]=f$, and $\sigma[f]$ is Σ_1 -definable over I^0_α with the parameter $\sigma(p)$. Since σ is a collapse, $\sigma(p) \leq p$. So $\sigma(p)=p$ by the minimality of p. In general, $\pi(h(i,x)) \simeq h(i,\pi(x))$ for Σ_1 -elementary π . Therefore, $\sigma(h(i,\langle v,p\rangle)) \simeq h(i,\langle v,p\rangle)$ holds in our case for all $i\in \omega$ and $v\in \alpha$. But then $\sigma\upharpoonright H=id\upharpoonright H$ and $H=J^X_\alpha$. Thus we may define the needed surjective map by $g\circ f_3$, where

$$g(i, v, \tau) = y \text{ if } (\exists z \in S_{\tau}) \varphi(z, y, i, \langle v, p \rangle),$$

 $g(i, v, \tau) = \emptyset \text{ else.}$

Here, S_{τ} shall be defined as in Lemma 10 and

$$y = h(i, x) \Leftrightarrow (\exists t \in J_{\alpha}^{X}) \varphi(t, i, x, y).$$

$$\Box$$
 Let $\langle I_{\nu}^{0}, A \rangle := \langle J_{\nu}^{X}, X \upharpoonright \nu, A \rangle.$

The idea of the fine structure theory is to code Σ_n predicates over large structures in Σ_1 predicates over smaller structures. In the simplest case, one codes the Σ_1 information of the given structure I_{β}^0 in a rudimentary closed structure $\langle I_{\rho}^0, A \rangle$, i.e., we want to have something like:

Over I_{β}^{0} , there exists a Σ_{1} function f such that

$$f[J_{\rho}^{X}] = J_{\beta}^{X}.$$

For the Σ_1 formulae ϕ_1 ,

$$\langle i, x \rangle \in A \Leftrightarrow I_{\beta}^{0} \vDash \varphi_{i}(f(x))$$

holds. And

$$\langle I_{\rho}^{0}, A \rangle$$
 is rudimentary closed.

Now, suppose we have such an $\langle I_{\rho}^{0}, A \rangle$. Then every $B \subseteq J_{\rho}^{X}$ that is Σ_{1} -definable over I_{β}^{0} is of the form

$$B = \{x \mid A(i, \langle x, p \rangle)\} \text{ for some } i \in \omega, p \in J_{\rho}^{X}.$$

So $\langle I_{\rho}^{0}, B \rangle$ is rudimentary closed for all $B \in \Sigma_{1}(I_{\beta}^{0}) \cap \mathfrak{P}(J_{\rho}^{X})$.

The ρ is uniquely determined.

Lemma 16. Let $\beta > \omega$ and $\langle I_{\rho}^{0}, C \rangle$ be rudimentary closed. Then there is at most one $\rho \in Lim$ such that

$$\langle I_{\rho}^{0}, C \rangle$$
 is rudimentary closed for all $C \in \Sigma_{1}(\langle I_{\beta}^{0}, B \rangle) \cap \mathfrak{P}(J_{\rho}^{X})$

and

there is an over $\langle I_{\rho}^0, B \rangle \Sigma_1$ -definable function f such that $f[J_{\rho}^X] = J_{\beta}^X$.

Proof. Assume $\rho < \overline{\rho}$ both had these properties. Let f be an over $\langle I_{\beta}^{0}, B \rangle$ Σ_{1} -definable function such that $f[J_{\rho}^{X}] = J_{\beta}^{X}$ and $C = \{x \in J_{\rho}^{X} \mid x \notin f(x)\}$. Then $C \subseteq J_{\rho}^{X}$ is Σ_{1} -definable over $\langle I_{\beta}^{0}, B \rangle$ So $\langle I_{\overline{\rho}}^{0}, C \rangle$ is rudimentary closed. But then $C = C \cap J_{\rho}^{X} \in J_{\overline{\rho}}^{X}$. Hence there is an $x \in J_{\rho}^{X}$ such that C = f(x). From this, the contradiction $x \in f(x) \Leftrightarrow x \in C \Leftrightarrow x \notin f(x)$ follows.

The uniquely determined ρ from Lemma 16 is called the *projectum* of $\langle I_{\beta}^{0}, B \rangle$. If there is some over $\langle I_{\beta}^{0}, B \rangle$ Σ_{1} -definable function f such that $f[J_{\rho}^{X}] = J_{\beta}^{X}$, then $h_{\beta,B}[\omega \times (J_{\rho}^{X} \times \{p\})] = J_{\beta}^{X}$ for a $p \in J_{\beta}^{X}$. Using the canonical function $h_{\beta,B}$, we can define a canonical A:

Let p be minimal with respect to the canonical well-ordering such that the above property holds. Define

$$A = \{\langle i, x \rangle | i \in \omega \text{ and } x \in J_{\rho}^{X} \text{ and } \langle I_{\beta}^{0}, B \rangle \vDash \varphi_{i}(x, p) \}.$$

We say p is the *standard parameter* of $\langle I_{\beta}^{0}, B \rangle$ and A the standard code of it.

Lemma 17. Let $\beta > 0$ and $\langle I_{\beta}^{0}, B \rangle$ be rudimentary closed. Let ρ be the projectum and A the standard code of it. Then for all $m \geq 1$, the following holds:

$$\Sigma_{1+m}(\langle I_{\beta}^0, B \rangle) \cap \mathfrak{P}(J_{\rho}^X) = \Sigma_m(\langle I_{\rho}^0, A \rangle).$$

Proof. First, let $R \in \Sigma_{1+m}(\langle I_{\beta}^0, B \rangle) \cap \mathfrak{P}(J_{\rho}^X)$ and let m be even. Let P be a relation being Σ_1 -definable over $\langle I_{\beta}^0, B \rangle$ with parameter q_1 such that, for $x \in J_{\rho}^X$, R(x) holds $\exists y_0 \forall y_1 \exists y_3 \cdots \forall y_{m-1} P(y_i, x)$. Let f be some over $\langle I_{\beta}^0, B \rangle$ with parameter $q_2\Sigma_1$ -definable function such that $f[J_{\rho}^X] = J_{\beta}^X$. Define $Q(z_i, x)$ by $z_i, x \in J_{\rho}^X$ and $(\exists y_i)(y_i = f(z_i) \text{ and } P(y_i, x))$. Let p be the standard parameter of $\langle I_{\beta}^0, B \rangle$. Then, by definition, there is some $u \in J_{\rho}^X$ such that $\langle q_1, q_2 \rangle$ is Σ_1 -definable in $\langle I_{\beta}^0, B \rangle$ with the parameters u, p, i.e., there is some $i \in \omega$ such that $Q(z_i, x)$ holds $z_i, x \in J_{\rho}^X$ and $\langle I_{\beta}^0, B \rangle \models \varphi_i(\langle z_i, x, u \rangle, p)$, i.e., iff $z_i, x \in J_{\rho}^X$ and $A(i, \langle z_i, x, u \rangle)$. Analogously there is a $j \in \omega$ and a $v \in J_{\rho}^X$ such that $z \in dom(f) \cap J_{\rho}^X$ iff $z \in J_{\rho}^X$ and $A(j, \langle z, v \rangle)$. Abbreviate this by D(z). But then, for $x \in J_{\rho}^X$, R(x) holds iff

 $\exists y_0 \forall y_1 \exists y_3 \cdots \forall y_{m-1}(D(z_0) \wedge \cdots \wedge D(z_{m-2}) \ and \ (D(z_1) \wedge D(z_3) \wedge \cdots \wedge) \Rightarrow Q(z_i, \ x)).$ So the claim holds. If m is odd, then we proceed correspondingly. Thus $\Sigma_{1+m}(\langle I_\beta^0, B \rangle) \cap \mathfrak{P}(J_\rho^X) \subseteq \Sigma_m(\langle I_\rho^0, A \rangle) \text{ is proved.}$

Conversely, let φ be a Σ_0 formula and $q \in J_\rho^X$ such that, for all $x \in J_\rho^X$, R(x) holds iff $\langle I_\rho^0, A \rangle \vDash \varphi(x, q)$. Since $\langle I_\rho^0, A \rangle$ is rudimentary closed, R(x) holds

iff $(\exists u \in J_{\rho}^{X})(\exists a \in J_{\rho}^{X})$ (u transitive and $x \in u$ and $q \in u$ and $a = A \cap u$ and $\langle u, a \rangle \vDash \varphi(x, q)$). Write $a = A \cap u$ as formula: $(\forall v \in a)(v \in u \text{ and } v \in A)$ and $(\forall v \in u)(v \in A \Rightarrow v \in a)$. If m = 1, we are done provided we can show that this is Σ_{2} over $\langle I_{\beta}^{0}, B \rangle$. If m > 1, then the claim follows immediately by induction. The second part is Π_{1} . So we only have to prove that the first part is Σ_{2} over $\langle I_{\beta}^{0}, B \rangle$. By the definition of $A, v \in A$ is Σ_{1} -definable over $\langle I_{\beta}^{0}, B \rangle$, i.e., there is some Σ_{0} formula and some parameter p such that $v \in A \Leftrightarrow \langle I_{\beta}^{0}, B \rangle \vDash (\exists y) \psi(v, y, p)$. Now, we have two cases.

In the first case, there is no over $\langle I_{\beta}^{0},B\rangle$ Σ_{1} -definable function from some $\gamma<\rho$ cofinal in β . Then $(\forall v\in a)(v\in A)$ is Σ_{2} over $\langle I_{\beta}^{0},B\rangle$ because some kind of replacement axiom holds, and $(\forall v\in a)(\exists y)\psi(v,y,p)$ is over $\langle I_{\beta}^{0},B\rangle$ equivalent to $(\exists z)(\forall v\in a)(\exists y\in z)\psi(v,y,p)$. For $\rho=\omega$, this is obvious. If $\rho\neq\omega$, then $\rho\in Lim^{2}$ and we can pick $\gamma<\rho$ such that $a\in J_{\gamma}^{X}$. Let $j:\gamma\to J_{\gamma}^{X}$ an over I_{γ} Σ_{1} -definable surjection, and g an over $\langle I_{\beta}^{0},B\rangle$ -definable function that maps $v\in J_{\beta}^{X}$ to $g(v)\in J_{\beta}^{X}$ such that $\psi(v,g(v),p)$ if such an element exists. We can find such a function with the help of the Σ_{1} -Skolem function. Now, define a function $f:\gamma\to\beta$ by

$$f(v)$$
 = the least $\tau < \beta$ such that $g \circ j(v) \in S_{\tau}$ if $j(v) \in a$ $g(v) = 0$ else.

Since f is Σ_1 , there is, in the given case, a $\delta < \beta$ such that $f[\gamma] \subseteq \delta$. So we have as collecting set $z = S_{\delta}$, and the equivalence is clear.

Now, let us come to the second case. Let $\gamma < \rho$ be minimal such that there is some over $\langle I_{\beta}^0, B \rangle$ Σ_1 -definable function g from cofinal in β . Then $(\forall v \in a)(\exists y)\psi(v, y, p)$ is equivalent to $(\forall v \in a)(\exists v \in \gamma)(\exists y \in S_{g(v)})\psi(v, y, p)$. If we define a predicate $C \subseteq J_{\rho}^X$ by $\langle v, v \rangle \in C \Leftrightarrow y \in S_{g(v)}$ and $\psi(v, y, p)$, then

 $\langle I_{\beta}^{0}, B \rangle \vDash (\forall v \in a)(\exists y) \psi(v, y, p)$ is equivalent to $\langle I_{\beta}^{0}, C \rangle \vDash (\forall v \in a)(\exists v \in \gamma)(\exists y)$ $\cdot (\langle v, v \rangle \in C)$. But this holds iff $\langle I_{\beta}^{0}, B \rangle \vDash (\exists w)$ (w transitive and $a, \gamma \in w$ and $\langle w, C \cap w \rangle \vDash (\forall v \in a)(\exists v \in y)(\exists y)(\langle v, v \rangle \in C \cap w)$). Since C is Σ_{1} over $\langle I_{\beta}^{0}, B \rangle$, $\langle I_{\rho}^{0}, C \rangle$ is rudimentary closed by the definition of the projectum, i.e., the statement is equivalent to $\langle I_{\rho}^{0}, C \rangle \vDash (\exists w)(\exists c)$ (w transitive and $a, \gamma \in w$ and $c = C \cap w$ and $\langle w, c \rangle \vDash (\forall v \in a)(\exists v \in y)(\exists y)(\langle v, v \rangle \in c)$). So, to prove that this is Σ_{2} , it suffices to show that $c = C \cap w$ is Σ_{2} . In its full form, this is $(\forall z)(z \in a \Leftrightarrow z \in w)$ and $z \in C$. But $z \in C$ is even Δ_{1} over $\langle I_{\beta}^{0}, B \rangle$ by the definition. So we are finished.

П

Lemma 18. (a) Let $\pi: \langle J_{\beta}^{\underline{X}}, X \upharpoonright \overline{\beta}, \overline{B} \rangle \to \langle J_{\beta}^{X}, X \upharpoonright \beta, B \rangle$ be Σ_{0} -elementary and $\pi[\overline{\beta}]$ be cofinal in β . Then π is even Σ_{1} -elementary.

(b) Let $\langle J_{\overline{v}}^X, X \upharpoonright \overline{v}, \overline{A} \rangle$ be rudimentary closed and $\pi : \langle J_{\overline{v}}^X, X \upharpoonright \overline{v} \rangle \rightarrow \langle J_{\overline{v}}^X, Y \upharpoonright v \rangle$ be Σ_0 -elementary and cofinal. Then there is a uniquely determined $A \subseteq J_{\overline{v}}^Y$ such that $\pi : \langle J_{\overline{v}}^X, X \upharpoonright \overline{v}, \overline{A} \rangle \rightarrow \langle J_{\overline{v}}^X, X \upharpoonright v, A \rangle$ is Σ_0 -elementary and $\langle J_{\overline{v}}^X, X \upharpoonright v, A \rangle$ is rudimentary closed.

Proof. (a) Let φ be a Σ_0 formula such that $\langle J_{\beta}^X, X \upharpoonright \beta, B \rangle \vDash (\exists z) \varphi(z, \pi(x_i))$. Since $\pi[\overline{\beta}]$ is cofinal in β , there is $a \lor \in \overline{\beta}$ such that $\langle J_{\beta}^X, X \upharpoonright \beta, B \rangle \vDash (\exists z \in S_{\pi(v)}) \varphi(z, \pi(x_i))$. Here, the S_v is defined as in Lemma 10. If $\pi(S_v) = S_{\pi(v)}$, then $\langle J_{\beta}^X, X \upharpoonright \beta, B \rangle \vDash (\exists z \in \pi(S_v)) \varphi(z, \pi(x_i))$. So, by the Σ_0 -elementarity of π , $\langle J_{\overline{\beta}}^X, X \upharpoonright \overline{\beta}, \overline{B} \rangle \vDash (\exists z \in S_v) \varphi(z, x_i)$, i.e., $\langle J_{\overline{\beta}}^X, X \upharpoonright \overline{\beta}, \overline{B} \rangle \vDash (\exists z) \varphi(z, x_i)$. The converse is trivial.

It remains to prove $\pi(S_{\nu}) = S_{\pi(\nu)}$. This is done by induction on ν . If $\nu = 0$ or $\nu \notin Lim$, then the claim is obvious by the definition of S_{ν} and the induction hypothesis. So let $\lambda \in Lim$ and $M := \pi(S_{\lambda})$. Then M is transitive by the Σ_0 -elementarity of π . And since $\lambda \in Lim$ (i.e. $S_{\lambda} = J_{\lambda}^X$), $\langle S_{\nu} | \nu < \lambda \rangle$ is definable over

 $\langle J_{\lambda}^{X}, X \upharpoonright \lambda \rangle$ by (the proof of) Lemma 10. Let φ be the formula $(\forall x)(\exists v)(x \in S_{v})$. Since π is Σ_{0} -elementary, $\pi \upharpoonright S_{\lambda} : \langle J_{\lambda}^{X}, X \upharpoonright \lambda \rangle \to \langle M, (X \upharpoonright \lambda) \cap M \rangle$ is elementary. Thus, if $\langle J_{\lambda}^{X}, X \upharpoonright \lambda \rangle \vDash \varphi$, then also $\langle M, (X \upharpoonright \lambda) \cap M \rangle \vDash \varphi$. Since M is transitive, we get $M = S_{\tau}$ for a $\tau \in Lim$. And, by $\pi(\lambda) = \pi(S_{\lambda} \cap On) = S_{\tau} \cap On = \tau$, it follows that $\pi(S_{\lambda}) = S_{\pi(\lambda)}$.

(b) Since $\langle J_{\overline{v}}^X, X \upharpoonright \overline{v}, \overline{A} \rangle$ is rudimentary closed, $\overline{A} \cap S_{\mu} \in J_{\overline{v}}^X$ for all $\mu < \overline{v}$, where S_{μ} is defined as in Lemma 10. As in the proof of (a), $\pi(S_{\mu}) = S_{\pi(\mu)}$. So we need $\pi(\overline{A} \cap S_{\mu}) = A \cap S_{\pi(\mu)}$ to get that $\pi : \langle J_{\overline{v}}^X, X \upharpoonright \overline{v}, \overline{A} \rangle \to \langle J_{v}^X, X \upharpoonright v, A \rangle$ is Σ_0 -elementary. Since π is cofinal, we necessarily obtain $A = \bigcup \{\pi(\overline{A} \cap S_{\mu}) \mid \mu < \overline{v}\}$. But then $\langle J_{v}^Y, X \upharpoonright v, A \rangle$ is rudimentary closed. For, if $x \in J_{v}^X$, we can choose some $\mu < \overline{v}$ such that $x \in S_{\pi(\mu)}$. And $x \cap A = x \cap (A \cap S_{\pi(\mu)}) = x \cap \pi(\overline{A} \cap S_{\mu})$ $\in J_{v}^X$. Now, let $\langle J_{\overline{v}}^X, X \upharpoonright \overline{v}, \overline{A} \rangle \vDash \varphi(x_i)$, where φ is a Σ_0 formula and $u \in J_{\overline{v}}^X$ is transitive such that $x_i \in u$. Then $\langle u, X \upharpoonright \overline{v} \cap u, A \cap u \rangle \vDash \varphi(x_i)$ holds. Since $\pi : \langle J_{\overline{v}}^Y, X \upharpoonright \overline{v} \rangle \to \langle J_{v}^Y, X \upharpoonright v \rangle$ is Σ_0 -elementary, $\langle \pi(u), Y \upharpoonright v \cap \pi(u), A \cap \pi(u) \rangle \vDash \varphi(\pi(x_i))$. Because $\pi(u)$ is transitive, we get $\langle J_{v}^Y, X \upharpoonright v \rangle \vDash \varphi(\pi(x_i))$. This argument works as well for the converse.

Write $Cond_B(I_{\beta}^0)$ if there exists for all $H \prec_1 \langle I_{\beta}^0, B \rangle$ some $\overline{\beta}$ and some \overline{B} such that $H \cong \langle I_{\overline{\beta}}^0, \overline{B} \rangle$.

Lemma 19 (Extension of embeddings). Let $\beta > \omega$, $m \ge 0$ and $\langle I_{\beta}^0, B \rangle$ be a rudimentary closed structure. Let $Cond_B(I_{\beta}^0)$ hold. Let ρ be the projectum of $\langle I_{\beta}^0, B \rangle$, A the standard code and p the standard parameter of $\langle I_{\beta}^0, B \rangle$. Then $Cond_A(I_{\rho}^0)$ holds. And if $\langle I_{\overline{\rho}}^0, \overline{A} \rangle$ is rudimentary closed and $\pi : \langle I_{\overline{\rho}}^0, \overline{A} \rangle \to \langle I_{\rho}^0, A \rangle$ is Σ_m -elementary, then there is an uniquely determined Σ_{m+1} -elementary extension $\widetilde{\pi} : \langle I_{\overline{\beta}}^0, \overline{B} \rangle \to \langle I_{\beta}^0, B \rangle$ of π where $\overline{\rho}$ is the projectum of $\langle I_{\overline{\beta}}^0, \overline{B} \rangle$, \overline{A} is the standard code and $\widetilde{\pi}^{-1}(p)$ is the standard parameter of $\langle I_{\overline{\beta}}^0, \overline{B} \rangle$.

Proof. Let $H = h_{\beta,B}[\omega \times (rng(\pi) \times \{p\})] \prec_1 \langle I_{\beta}^0, B \rangle$ and $\widetilde{\pi} : \langle I_{\overline{\beta}}^0, \overline{B} \rangle \to \langle I_{\beta}^0, B \rangle$ be the uncollapse of H.

(1) $\tilde{\pi}$ is an extension of π

Let $\widetilde{\rho}=\sup(\pi[\overline{\rho}])$ and $\widetilde{A}=A\cap J_{\widetilde{\rho}}^X$. Then $\pi:\langle J_{\overline{\rho}}^Y,X\upharpoonright \overline{\rho}\overline{A}\rangle \to \langle J_{\widetilde{\rho}}^X,X\upharpoonright \widetilde{\rho},\widetilde{A}\rangle$ is Σ_0 -elementary, and by Lemma 18, it is even Σ_1 -elementary. We have $rng(\pi)=H\cap J_{\overline{\rho}}^X$. Obviously, $rng(\pi)\subseteq H\cap J_{\widetilde{\rho}}^X$. So let $y\in H\cap J_{\widetilde{\rho}}^X$. Then there is an $i\in \omega$ and an $x\in rng(\pi)$ such that y is the unique $y\in J_{\widetilde{\rho}}^X$ that satisfies $\langle I_{\widetilde{\rho}}^0,B\rangle\models \varphi_i(\langle y,x\rangle,p)$. So by definition of A, y is the unique $y\in J_{\widetilde{\rho}}^X$ such that $\widetilde{A}(i,\langle y,x\rangle)$. But $x\in rng(\pi)$ and $\pi:\langle J_{\overline{\rho}}^Y,X\upharpoonright \overline{\rho},\overline{A}\rangle \to \langle J_{\widetilde{\rho}}^X,X\upharpoonright \widetilde{\rho},\widetilde{A}\rangle$ is Σ_1 -elementary. Therefore $y\in rng(\pi)$. So we have proved that H is an \in -end-extension of $rng(\pi)$. Since π is the collapse of $rng(\pi)$ and $\widetilde{\pi}$ the collapse of H, we obtain $\pi\subseteq\widetilde{\pi}$.

(2)
$$\widetilde{\pi}: \langle I_{\overline{\beta}}^0, \overline{B} \rangle \to \langle I_{\beta}^0, B \rangle$$
 is Σ_{m+1} -elementary

We must prove $H \prec_{m+1} \langle I_{\beta}^0, B \rangle$. If m=0, this is clear. So let m>0 and let y be Σ_{m+1} -definable in $\langle I_{\beta}^0, B \rangle$ with parameters from $rng(\pi) \cup \{p\}$. Then we have to show $y \in H$. Let φ be a Σ_{m+1} formula and $x_i \in rng(\pi)$ such that y is uniquely determined by $\langle I_{\beta}^0, B \rangle \vDash \varphi(y, x_i, p)$. Let $\widetilde{h}(\langle i, x \rangle) \simeq h(i, \langle x, p \rangle)$. Then $\widetilde{h}[J_{\rho}^X] = J_{\beta}^X$ by the definition of p. So there is a $z \in J_{\rho}^X$ such that $y = \widetilde{h}(z)$. If such a z lies in $J_{\rho}^X \cap H$, then also $y \in H$, since $z, p \in H \prec_1 \langle I_{\beta}^0, B \rangle$. Let $D = dom(\widetilde{h}) \cap J_{\rho}^X$. Then it suffices to show

(*)
$$(\exists z_0 \in D)(\forall z_1 \in D) \cdots \langle I_B^0, B \rangle \models \psi(\widetilde{h}(z_i), \widetilde{h}(z), x_i p)$$

for some $z \in H \cap J_{\rho}^{X}$, where ψ is Σ_{1} for even m and Π_{1} for odd m such that $\phi(y, x_{i}, p) \Leftrightarrow \langle I_{\beta}^{0}, B \rangle \models (\exists z_{0})(\forall z_{1}) \cdots \psi(z_{i}, y, x_{i}, p)$. First, let m be even. Since A is the standard code, there is an $i_{0} \in \omega$ such that $z \in D \Leftrightarrow A(i_{0}, x)$ holds for all

 $z\in J_{\rho}^{X}$ — and a $j_{0}\in\omega$ such that, for all $z_{i},z\in D\langle I_{\beta}^{0},B\rangle\models\psi(\widetilde{h}(z_{i}),\widetilde{h}(z),x_{i}p)$ Thus (*) is, for $z\in J_{\rho}^{X}$, equivalent with an obvious Σ_{m} formula. If m is odd, then write in $(*)\cdots\neg\langle I_{\beta}^{0},B\rangle\models\neg\psi(\cdots)$. Then $\neg\psi$ is Σ_{1} and we can proceed as above. Eventually $\pi:\langle I_{\rho}^{0},\overline{A}\rangle\to\langle I_{\rho}^{0},A\rangle$ is Σ_{m} -elementary by the hypothesis and $\pi\subseteq\widetilde{\pi}$ by (1) — i.e., $H\cap J_{\rho}^{X}\prec_{m}\langle I_{\rho}^{0},A\rangle$. Since there is a $z\in J_{\rho}^{X}$ which satisfies (*) and $x_{i},\ p\in H\cap J_{\rho}^{X}$, there exists such a $z\in H\cap J_{\rho}^{X}$. Let $H\prec_{1}\langle I_{\rho}^{0},A\rangle$. Let π be the uncollapse of H. Then π has a Σ_{1} -elementary extension $\widetilde{\pi}=\langle I_{\overline{\rho}}^{0},\overline{B}\rangle\to\langle I_{\beta}^{0},B\rangle$. So $H\cong\langle I_{\overline{\rho}}^{0},\overline{A}\rangle$ for some $\overline{\rho}$ and \overline{A} , i.e., $Cond_{A}(I_{\rho}^{0})$.

$$(3) \ \widetilde{A} = \{\langle i, x \rangle | i \in \omega \text{ and } x \in J^{\underline{X}}_{\overline{\rho}} \text{ and } \langle I^{\underline{0}}_{\overline{\beta}}, \overline{B} \rangle \vDash \varphi_i(x, \widetilde{\pi}^{-1}(p)) \}$$

Since $\pi:\langle I^0_{\overline{\rho}},\overline{A}\rangle \to \langle I^0_{\overline{\rho}},A\rangle$ is Σ_0 -elementary, $\overline{A}(i,x)\Leftrightarrow A(i,\pi(x))$ for $x\in J^{\overline{X}}_{\overline{\rho}}$. Since A is the standard code of $\langle I^0_{\beta},\beta\rangle$, $A(i,\pi(x))\Leftrightarrow \langle I^0_{\beta},B\rangle \vDash \varphi_i(\pi(x),p)$. Finally, $\langle I^0_{\beta},B\rangle \vDash \varphi_i(\pi(x),p)\Leftrightarrow \langle I^0_{\overline{\beta}},\overline{B}\rangle \vDash \varphi_j(x,\widetilde{\pi}^{-1}(p))$, because $\widetilde{\pi}:\langle I^0_{\overline{\beta}},\overline{B}\rangle \to \langle I^0_{\beta},B\rangle$ is Σ_1 -elementary.

(4) $\overline{\rho}$ is the projectum of $\langle I_{\overline{\beta}}^0, \overline{B} \rangle$

By the definition of H, $J_{\overline{\beta}}^{X} = h_{\overline{\rho},\overline{B}}[\omega \times (J_{\overline{\rho}}^{X} \times \{\widetilde{\pi}^{-1}(p)\})]$. So $f(\langle i,x\rangle) \cong h_{\overline{\rho},\overline{B}}(i,\langle x,\widetilde{\pi}^{-1}(p)\rangle)$ is a over $\langle I_{\overline{\rho}}^{0},\overline{B}\rangle$ Σ_{1} -definable function such that $f[J_{\overline{\rho}}^{X}]$ = $J_{\overline{\rho}}^{X}$. It remains to prove that $\langle I_{\overline{\rho}}^{0},C\rangle$ is rudimentary closed for all $C\in \Sigma_{1}(\langle I_{\overline{\rho}}^{0},\overline{B}\rangle)\cap \mathfrak{P}(J_{\overline{\rho}}^{X})$. By the definition of H, there exists an $i\in \omega$ and a $y\in J_{\overline{\rho}}^{X}$ such that $x\in C\Leftrightarrow \langle I_{\overline{\rho}}^{0},\overline{B}\rangle\models \varphi_{i}(\langle x,y\rangle,\widetilde{\pi}^{-1}(p))$ for all $x\in J_{\overline{\rho}}^{X}$. Thus, by (3), $x\in C\Leftrightarrow \overline{A}(i,\langle x,y\rangle)$. For $u\in J_{\overline{\rho}}^{X}$, let $v=\{\langle i,\langle x,y\rangle\rangle|x\in u\}$. Then $v\in J_{\overline{\rho}}^{X}$ and $\overline{A}\cap v\in J_{\overline{\rho}}^{X}$, because $\langle I_{\overline{\rho}}^{0},\overline{A}\rangle$ is rudimentary closed by the hypothesis. But $x\in C\cap u$ holds iff $\langle i,\langle x,y\rangle\rangle\in \overline{A}\cap v$. Finally, $J_{\overline{\rho}}^{X}$ is rudimentary closed and therefore $C\cap u\in J_{\overline{\rho}}^{X}$.

(5) $\tilde{\pi}^{-1}(p)$ is the standard parameter of $\langle I_{\overline{B}}^0, \overline{B} \rangle$

By the definition of H, $J_{\overline{\beta}}^X = h_{\overline{\beta}, \overline{B}}[\omega \times (J_{\overline{\rho}}^X \times \{\widetilde{\pi}^{-1}(p)\})]$ and, by (4), $\overline{\rho}$ is the projectum of $\langle I_{\overline{\beta}}^0, \overline{B} \rangle$. So we just have to prove that $\widetilde{\pi}^{-1}(p)$ is the least with this property. Suppose that $\overline{p}' < \widetilde{\pi}^{-1}(p)$ had this property as well. Then there were an $i \in \omega$ and an $x \in J_{\overline{\rho}}^X$ such that $\pi^{-1}(p) = h_{\overline{\beta}, \overline{B}}(i, \langle x, \overline{p}' \rangle)$. Since $\widetilde{\pi} : \langle I_{\overline{\beta}}^0, \overline{B} \rangle \to \langle I_{\overline{\beta}}^0, B \rangle$ is Σ_1 -elementary, we had $p = h_{\beta, B}(i, \langle x, p' \rangle)$ for $p' = \pi(\overline{p}') < p$. And so also $h_{\beta, B}[\omega \times (J_{\overline{\rho}}^X \times \{p'\})] = J_{\beta}^X$. That contradicts the definition of p.

(6) Uniqueness

Assume $\langle I_{\overline{\beta}_0}^0, \, \overline{B}_0 \rangle$ and $\langle I_{\overline{\beta}_1}^0, \, \overline{B}_1 \rangle$ both have $\overline{\rho}$ as projectum and \overline{A} as standard code. Let \overline{p}_i be the standard parameter of $\langle I_{\overline{\beta}_i}^0, \, \overline{B}_i \rangle$. Then, for all $j \in \omega$ and $x \in J_{\overline{\rho}}^X$, $\langle I_{\overline{\beta}_0}^0, \, \overline{B}_0 \rangle \vDash \varphi_j(x, \, \overline{p}_0)$ iff $\overline{A}(j, x)$ iff $\langle I_{\overline{\beta}_1}^0, \, \overline{B}_1 \rangle \vDash \varphi_j(x, \, \overline{p}_1)$. So $\sigma(h_{\overline{\beta}_0}, \overline{B}_0)(j, (x, \, \overline{p}_0))) \simeq h_{\widetilde{\beta}_1, \, \overline{B}_1}(j, \langle x, \, \overline{p}_1 \rangle)$ defines an isomorphism $\sigma : \langle I_{\overline{\beta}_0}^0, \, \overline{B}_0 \rangle \cong \langle I_{\overline{\beta}_0}^0, \, \overline{B}_0 \rangle$, because, for both $h_{\overline{\beta}_i, \, \overline{B}_i}[\omega \times (J_{\overline{\rho}}^X \times \{\overline{p}_i\})] = J_{\overline{\beta}_i}^X$ holds. But since both structures are transitive, σ must be the identity. Finally, let $\overline{\pi}_0 : \langle I_{\overline{\beta}}^0, \, \overline{B} \rangle \to \langle I_{\overline{\beta}}^0, \, B \rangle$ and $\widetilde{\pi}_1 : \langle I_{\overline{\beta}}^0, \, \overline{B} \rangle \to \langle I_{\overline{\beta}}^0, \, B \rangle$ be Σ_1 -elementary extensions of π . Let \overline{p} be the standard parameter of $\langle I_{\overline{\beta}}^0, \, \overline{B} \rangle$. Then, for every $y \in J_{\overline{\beta}}^X$, there is an $x \in J_{\overline{\rho}}^X$ and a $j \in \omega$ such that $y = h_{\overline{\beta}, \, \overline{B}}(j, \, \langle x, \, \overline{p} \rangle)$ and $\widetilde{\pi}_0(y) = h_{\overline{\beta}, \, B}(j, \, \pi(x), \, \pi(p)) = \widetilde{\pi}_1(y)$. Thus $\widetilde{\pi}_0 = \widetilde{\pi}_1$.

To code the Σ_n information of I_{β} , where $\beta \in S^X$ in a structure $\langle I_{\rho}^0, A \rangle$, one iterates this process.

For
$$n \ge 0$$
, $\beta \in S^X$, let
$$\rho^0 = \beta, \ p^0 = \emptyset, \ A^0 = X_\beta,$$

$$\rho^{n+1} = \text{the projectum of } \langle I^0_{\rho^n}, \ A^n \rangle,$$

 p^{n+1} = the standard parameter of $\langle I_{\rho^n}^0, A^n \rangle$,

 A^{n+1} = the standard code of $\langle I_{\rho^n}^0, A^n \rangle$.

Call

 ρ^n the *n*th projectum of β ,

 p^n the *n*th (standard) parameter of β ,

 A^n the *n*th (standard) code of β .

By Lemma 17, $A^n \subseteq J_{\rho^n}^X$ is Σ_n -definable over I_{β} and, for all $m \ge 1$,

$$\Sigma_{n+m}(I_{\beta}) \cap \mathfrak{P}(J_{\rho^n}^X) = \Sigma_m(\langle I_{\rho^n}^0, A^n \rangle).$$

From Lemma 19, we get by induction:

For $\beta > \omega$, $n \ge 1$, $m \ge 0$, let ρ^n be the nth projectum and A^n be the nth code of β . Let $\langle I^0_{\overline{\rho}}, \overline{A} \rangle$ be a rudimentary closed structure and $\pi := \langle I^0_{\overline{\rho}}, \overline{A} \rangle \to \langle I^0_{\overline{\rho}^n}, A^n \rangle$ be Σ_m -elementary. Then:

(1) There is a unique $\overline{\beta} \ge \overline{\rho}$ such that $\overline{\rho}$ is the *n*th projectum and \overline{A} is the *n*th code of $\overline{\beta}$.

For $k \le n$, let

 ρ^k be the *k*th projectum of β ,

 p^k be the kth parameter of β ,

 A^k be the *k*th code of β

and

 $\overline{\rho}^k$ be the *k*th projectum of $\overline{\beta}$,

 \overline{p}^k be the kth parameter of $\overline{\beta}$,

 \overline{A}^k be the kth code of $\overline{\beta}$.

(2) There exists a unique extension $\tilde{\pi}$ of π such that, for all $0 \le k \le n$,

$$\widetilde{\pi} \upharpoonright \langle I^0_{\overline{\rho}^k}, A^k \rangle \to \langle I^0_{\overline{\rho}^k}, A^k \rangle$$
 is Σ_{m+n-k} -elementary and $\widetilde{\pi}(\overline{\rho}^k) = p^k$.

Lemma 20. Let $\omega < \beta \in S^X$. Then all projecta of β exist.

Proof. By induction on n. That ρ^0 exists is clear. So suppose that the first projecta ρ^0 , ..., ρ^{n-1} , $\rho \coloneqq \rho^n$, the parameters p^0 , ..., p^n and the codes A^0 , ..., A^{n-1} , $A \coloneqq A^n$ of β exist. Let $\gamma \in Lim$ be minimal such that there is some over $\langle I_\rho^0, A \rangle$ Σ_1 -definable function f such that $f[J_\gamma^X] = J_\rho^X$. Let $C \in \Sigma_1(\langle I_\rho^0, A \rangle) \cap \mathfrak{P}(J_\gamma^X)$. We have to prove that $\langle I_\gamma^0, C \rangle$ is rudimentary closed. If $\gamma = \omega$, then $J_\gamma^X = H_\omega$, and this is obvious. If $\gamma > \omega$, then $\gamma \in Lim^2$ by the definition of γ . Then it suffices to show $C \cap J_\delta^X \in J_\gamma^X$ for $\delta \in Lim \cap \gamma$. Let $B \coloneqq C \cap J_\delta^X$ be definable over $\langle I_\rho^0, A \rangle$ with parameter q. Since obviously $\gamma \le \rho$, $C \cap J_\delta^X$ is Σ_n -definable over I_β with parameters $p_1, ..., p^n, q$ by Lemma 17. So let φ be a Σ_n formula such that $x \in C \Leftrightarrow I_\beta \vDash \varphi(x, p^1, ..., p^n, q)$. Let

$$\begin{split} H_{n+1} &\coloneqq h_{\rho^n,\,A^n} \big[\omega \times (J_\delta^X \times \{q\}) \big], \\ H_n &\coloneqq h_{\rho^{n-1},\,A^{n-1}} \big[\omega \times (H_n \times \{p^n\}) \big], \\ H_{n-1} &\coloneqq h_{\rho^{n-2},\,A^{n-2}} \big[\omega \times (H_{n-1} \times \{p^{n-1}\}) \big], \\ \text{etc.} \end{split}$$

Since L[X] has condensation, there is an I_{μ} such that $H_1 \cong I_{\mu}$. Let π be the uncollapse of H_1 . Then π is the extension of the collapse of H_{n+1} defined in the proof of Lemma 19. Therefore, it is Σ_{n+1} -elementary. Since $B \subseteq J_{\delta}^X$ and $\pi \upharpoonright J_{\delta}^X = id \upharpoonright J_{\delta}^X$, we get $x \in B \Leftrightarrow I_{\mu} \vDash \varphi(x, \pi^{-1}(p^1), ..., \pi^{-1}(p^n), \pi^{-1}(q))$. So B is indeed

already Σ_n -definable over I_{μ} . Thus $B \in J_{\mu+1}^X$ by Lemma 8. But now we are done because $\mu < \rho$. For, if

$$h_{n+1}(\langle i, x \rangle) = h_{\rho^n, A^n}(i, \langle x, p \rangle),$$

$$h_n(\langle i, x \rangle) = h_{0^{n-1}, A^{n-1}}(i, \langle x, p^n \rangle),$$

etc..

then the function $h=h_1\circ\cdots\circ h_{n+1}$ is Σ_{n+1} -definable over I_{β} . Thus the function $\overline{h}=\pi[h\cap(H_1\times H_1)]$ is Σ_{n+1} -definable over I_{μ} and $\overline{h}[J_{\delta}^X]=J_{\mu}^X$. So $\overline{h}\cap(J_{\rho}^X)^2$ is Σ_1 -definable over $\langle I_{\rho}^0, A\rangle$ by Lemma 17 and Lemma 19. And by the definition of γ , there is an over $\langle I_{\rho}^0, A\rangle$ Σ_1 -definable function f such that $f[J_{\gamma}^X]=J_{\rho}^X$. So if we had $\mu \geq \rho$, then $f\circ \overline{h}$ was an over $\langle I_{\rho}^0, A\rangle$ Σ_1 -definable function such that $(f\circ \overline{h})[J_{\delta}^X]=J_{\rho}^X$. That contradicts the minimality of γ .

Let $\omega < v \in S^X$, ρ^n be the *n*th projectum of v, p^n be the *n*th parameter and A^n be the *n*th Code. Let

$$h_{n+1}(\langle i, x \rangle) = h_{\rho^n, A^n}(i, x),$$

$$h_n(\langle i, x \rangle) = h_{\rho^{n-1}, A^{n-1}}(i, \langle x, p^n \rangle),$$

etc.

Then define

$$h_{v}^{n+1}=h_{1}\circ\cdots\circ h_{n+1}.$$

We have:

- (1) h_{v}^{n} is Σ_{n} -definable over I_{v}
- (2) $h_{\mathbf{v}}^n[\omega \times Q] \prec_n I_{\mathbf{v}}$, if $Q \subseteq J_{\rho^{n-1}}^X$ is closed under ordered pairs.

Lemma 21. Let $\omega < \beta \in S^X$ and $n \ge 1$. Then

- (1) the least ordinal $\gamma \in Lim$ such that there is a over $I_{\beta}\Sigma_n$ -definable function f such that $f[J_{\gamma}^X] = J_{\beta}^X$,
- (2) the last ordinal $\gamma \in Lim$ such that $\langle I_{\gamma}^{0}, C \rangle$ is rudimentary closed for all $C \in \Sigma_{n}(I_{\beta}) \cap \mathfrak{P}(J_{\gamma}^{X})$,
- (3) the least ordinal $\gamma \in Lim$ such that $\mathfrak{P}(\gamma) \cap \Sigma_n(I_{\beta}) \nsubseteq J_{\beta}^X$, is the nth projectum of β .

Proof. (1) By the definition of the nth projectum, there is an over $\langle I^0_{\rho^{n-1}}, A^{n-1} \rangle$ Σ_1 -definable f^n such that $f^n[J^X_{\rho^n}] = J^X_{\rho^{n-1}}$, an over $\langle I^0_{\rho^{n-2}}, A^{n-2} \rangle$ Σ_1 -definable f^{n-1} such that $f^{n-1}[J^X_{\rho^{n-1}}] = J^X_{\rho^{n-2}}$, etc. But then f^k is Σ_k -definable over I_β by Lemma 17. So $f = f^1 \circ f^2 \circ \cdots \circ f^n$ is Σ_n -definable over I_β and $f[J^X_{\rho^n}] = J^X_\beta$.

On the other hand, the projectum $\overline{\rho}$ of a rudimentary closed structure $\langle I_{\beta}^{0}, B \rangle$ is the least $\overline{\rho}$ such that there is an over $\langle I_{\beta}^{0}, B \rangle$ Σ_{1} -definable function f such that $f[J_{\overline{\rho}}^{X}] = J_{\beta}^{X}$. For, suppose there is no such $\rho < \overline{\rho}$ such that such an f, $f[J_{\rho}^{X}] = J_{\beta}^{X}$, exists. Then the proof of Lemma 16 provides a contradiction. So if there was a $\gamma < \rho^{n}$ such that there is an over $I_{\beta} \Sigma_{n}$ -definable function f such that $f[J_{\rho}^{X}] = J_{\beta}^{X}$, then $g := f \cap (J_{\rho^{n-1}}^{X})^{2}$ would be an over $\langle I_{\rho^{n-1}}^{0}, A^{n-1} \rangle \Sigma_{1}$ -definable function such that $g[J_{\gamma}^{X}] = J_{\rho^{n-1}}^{X}$. But this is impossible.

(2) By the definition of the nth projectum, $\langle I_{\rho^n}^0, C \rangle$ is rudimentary closed for all $C \in \Sigma_1(\langle I_{\rho^{n-1}}^0, A^{n-1} \rangle) \cap \mathfrak{P}(J_{\rho^n}^X)$. But by Lemma 17, $\Sigma_1(\langle I_{\rho^{n-1}}^0, A^{n-1} \rangle) = \Sigma_n(I_{\beta}) \cap \mathfrak{P}(J_{\rho^{n-1}}^X)$. So, since $\rho^n \leq \rho^{n-1}$, $\langle I_{\rho^n}^0, C \rangle$ is rudimentary closed for all $C \in \Sigma_n(I_{\beta}) \cap \mathfrak{P}(J_{\rho^n}^X)$.

139

Assume γ was a larger ordinal \in Lim having this property. Let f be, by (1), an over I_{β} Σ_n -definable function such that $f[J_{\rho^n}^X] = J_{\beta}^X$. Set $C = \{u \in J_{\rho^n}^X \mid u \notin f(u)\}$. Then C is Σ_n -definable over I_{β} and $C \subseteq J_{\rho^n}^X$. So $\langle J_{\gamma}^X, C \rangle$ was rudimentary closed. And therefore $C = C \cap J_{\rho^n}^X \in J_{\gamma}^X \subseteq J_{\beta}^X$ and C = f(u) for some $u \in J_{\rho^n}^X$. But this implies the contradiction that $u \in f(u) \Leftrightarrow u \in C \Leftrightarrow u \notin f(u)$.

(3) Let $\rho:=\rho^n$ and f by (1) an over $I_{\beta} \Sigma_n$ -definable function such that $f[J_{\rho^n}^X]=J_{\beta}^X$. Let j be an over $I_{\rho}^0 \Sigma_1$ -definable function from ρ onto J_{ρ}^X . Let $C=\{v\in\rho|v\not\in f\circ j(n)\}$. Then C is an over $I_{\beta} \Sigma_n$ -definable subset of ρ . If $C\in J_{\beta}^X$, then there would be a $v\in\rho$ such that $C=f\circ j(v)$, and we had the contradiction $v\in C\Leftrightarrow v\not\in f\circ j(v)\Leftrightarrow v\not\in C$. Thus $\mathfrak{P}(\rho)\cap\Sigma_n(I_{\beta})\not\subseteq J_{\beta}^X$. But if $\gamma\in Lim\cap\rho$ and $D\in\mathfrak{P}(\gamma)\cap\Sigma_n(I_{\beta})$, then $D=D\cap J_{\gamma}^X\in J_{\rho}^X\subseteq J_{\beta}^X$. So $\mathfrak{P}(\gamma)\cap\Sigma_n(I_{\beta})\subseteq J_{\beta}^X$.

3. Morasses

Let
$$\omega_1 \leq \beta$$
, $S = Lim \cap \omega_{1+\beta}$ and $\kappa := \omega_{1+\beta}$.

We write *Card* for the class of cardinals and *RCard* for the class of regular cardinals.

Let \triangleleft be a binary relation on *S* such that:

(a) If $v \triangleleft \tau$, then $v < \tau$.

For all $v \in S - RCard$, $\{\tau \mid v \triangleleft \tau\}$ is closed.

For $v \in S - RCard$, there is a largest μ such that $v \leq \mu$.

Let μ_{ν} be this largest μ with $\nu \leq \mu$.

Let

$$v \sqsubseteq \tau :\Leftrightarrow v \in \mathit{Lim}(\{\delta | \delta \triangleleft \tau\}) \bigcup \{\delta | \delta \triangleleft \tau\}.$$

(b) \sqsubseteq is a (many-rooted) tree.

Hence, if $v \notin RCard$ is a successor in \sqsubseteq , then μ_v is the largest μ such that $v \sqsubseteq \mu$. To see this, let μ_v^* be the largest μ such that $v \sqsubseteq \mu$. It is clear that $\mu_v \leq \mu_v^*$, since $v \unlhd \mu$ implies $v \sqsubseteq \mu$. So assume that $\mu_v < \mu_v^*$. Then $v \not = \mu_v^*$ by the definition of μ_v . Hence $v \in Lim(\{\delta \mid \delta \vartriangleleft \mu_v^*\})$ and $v \in Lim(\{\delta \mid \delta \sqsubseteq \mu_v^*\})$. Therefore, $v \in Lim(\sqsubseteq)$ since v is a tree. That contradicts our assumption that \sqsubseteq is a successor in \sqsubseteq .

For $\alpha \in S$, let $|\alpha|$ be the rank of α in this tree. Let

$$S^{+} := \{ v \in S \mid v \text{ is a successor in } \sqsubseteq \},$$

$$S^{0} := \{ \alpha \in S \mid \mid \alpha \mid = 0 \},$$

$$\hat{S}^{+} := \{ \mu_{\tau} \mid \tau \in S^{+} - RCard \},$$

$$\hat{S} := \{ \mu_{\tau} \mid \tau \in S - RCard \}.$$

Let $S_{\alpha} := \{ v \in S \mid v \text{ is a direct successor of } \alpha \text{ in } \Gamma \}$. For $v \in S^+$, let α_v be the direct predecessor of v in Γ . For $v \in S^0$, let $\alpha_v := 0$. For $v \notin S^+ \cup S^0$, let $\alpha_v := v$.

(c) For $v, \tau \in (S^+ \cup S^0)$ -RCard such that $\alpha_v = \alpha_\tau$, suppose:

$$\nu < \tau \Rightarrow \mu_{\nu} < \tau$$
.

For all $\alpha \in S$, suppose:

- (d) S_{α} is closed.
- (e) $card(S_{\alpha}) \le \alpha^{+}$, $card(S_{\alpha}) \le card(\alpha)$ if $card(\alpha) < \alpha$.

(f)
$$\omega_1 = \max(S^0) = \sup(S^0 \cap \omega_1),$$

$$\omega_{1+i+1} = \max(S_{\omega_{1+i}}) = \sup(S_{\omega_{1+i}} \cap \omega_{1+i+1}) \text{ for all } i < \beta.$$

Let $D = \langle D_{v} | v \in \hat{S} \rangle$ be a sequence such that $D_{v} \subseteq J_{v}^{D}$.

Let an $\langle S, \triangleleft, D \rangle$ -maplet f be a triple $\langle \overline{\mathbf{v}}, \mid f \mid, \mathbf{v} \rangle$ such that $\overline{\mathbf{v}}, \mathbf{v} \in S - RCard$ and $\mid f \mid : J^D_{\mu_{\overline{\mathbf{v}}}} \to J^D_{\mu_{\mathbf{v}}}$.

Let $f\langle \overline{\mathbf{v}}, \mid f \mid, \mathbf{v} \rangle$ be an $\langle S, \triangleleft, D \rangle$ -maplet. Then we define d(f) and r(f) by $d(f) = \overline{\mathbf{v}}$ and $r(f) = \mathbf{v}$. Set $f(x) \coloneqq \mid f \mid (x)$ for $x \in J^D_{\mu_{\overline{\mathbf{v}}}}$ and $f(\mu_{\overline{\mathbf{v}}}) \coloneqq \mu_{\mathbf{v}}$. But $dom(f), rng(f), f \mid X$, etc. keep their usual set-theoretical meaning, i.e., $dom(f) = dom(\mid f \mid)$, $rng(f) = rng(\mid f \mid)$, $f \mid X$, etc.

For $\overline{\tau} \leq \mu_{\overline{\nu}}$, let $f^{(\overline{\tau})} = \langle \overline{\tau}, | f | | J^D_{\mu_{\overline{\tau}}} \rangle$, where $\tau = f(\overline{\tau})$. Of course, $f^{(\overline{\tau})}$ needs not to be a maplet. The same is true for the following definitions. Let $f^{-1} = \langle v, | f |^{-1} \overline{v} \rangle$. For $g = \langle v, | g |, v' \rangle$ and $f = \langle \overline{v}, | f |, v \rangle$, let $g \circ f = \langle \overline{v}, | g | \circ | f |, v' \rangle$. If $g = \langle v', | g |, v \rangle$ and $f = \langle \overline{v}, | f |, v \rangle$ such that $rng(f) \subseteq rng(g)$, then set $g^{-1}f = \langle v, | f |^{-1} | f |, v' \rangle$. Finally, set $id_v = \langle v, id | J^D_{\mu_v} v \rangle$.

Let \mathfrak{F} be a set of (S, \triangleleft, D) -maplets $f = \langle \overline{\nu}, | f |, \nu \rangle$ such that the following holds:

- (0) $f(\overline{v}) = v$, $f(\alpha_{\overline{v}}) = \alpha_{v}$ and |f| is order-preserving.
- (1) For $f \neq id_{\overline{v}}$, there is some $\beta \sqsubseteq \alpha_{\overline{v}}$ such that $f \upharpoonright \beta = id \upharpoonright \beta$ and $f(\beta) > \beta$.
- (2) If $\overline{\tau} \in S^+$ and $\overline{v} \sqsubset \overline{\tau} \sqsubseteq \mu_{\overline{v}}$, then $f^{(\overline{\tau})} \in \mathfrak{F}$.
- (3) If $f, g \in \mathfrak{F}$ and d(g) = r(f), then $g \circ f \in \mathfrak{F}$.
- (4) If $f, g \in \mathfrak{F}, r(g) = r(f)$ and $rng(f) \subseteq rng(g)$, then $g^{-1} \circ f \in \mathfrak{F}$.

We write $f: \overline{\mathbf{v}} \Rightarrow \mathbf{v}$ if $f = \langle \overline{\mathbf{v}}, | f |, \mathbf{v} \rangle \in \mathfrak{F}$. If $f \in \mathfrak{F}$ and $r(f) = \mathbf{v}$, then we write $f \Rightarrow \mathbf{v}$. The uniquely determined β in (1) shall be denoted by $\beta(f)$. Say $f \in \mathfrak{F}$ is minimal for a property P(f) if P(g) holds and P(g) implies $g^{-1}f \in \mathfrak{F}$.

Let

 $f_{(u,x,v)}$ = the unique minimal $f \in \mathfrak{F}$ for $f \Rightarrow v$ and $u \cup \{x\} \subseteq rng(f)$,

if such an f exists. The axioms of the morass will guarantee that $f_{(u,x,v)}$ always exists if $v \in S - RCard^{L_{\kappa}[D]}$ Therefore, we will always assume and explicitly mention that $v \in S - RCard^{L_{\kappa}[D]}$ when $f_{(u,x,v)}$ is mentioned.

Say $v \in S - RCard^{L_{\kappa}[D]}$ is independent if $d(f_{(\beta,0,v)}) < \alpha_v$ holds for all $\beta < \alpha_v$.

For $\tau \sqsubseteq v \in S - RCard^{L_{\kappa}[D]}$, say v is ξ -dependent on τ if $f_{(\alpha_{\tau}, \xi, v)} = id_{v}$.

For $f \in \mathfrak{F}$, let $\lambda(f) := \sup(f[d(f)])$.

For $v \in S - RCard^{L_{\kappa}[D]}$ let

$$C_{\mathbf{v}} = \{\lambda(f) < \mathbf{v} | f \Rightarrow \mathbf{v}\},$$

$$\Lambda(x, \mathbf{v}) = \{\lambda(f_{(\beta, x, \mathbf{v})}) < \mathbf{v} \mid \beta < \mathbf{v}\}.$$

It will be shown that C_{ν} and $\Lambda(x, \nu)$ are closed in ν .

Recursively define a function $q_v: k_v + 1 \to On$, where $k_v \in \omega$:

$$q_{v}(0) = 0$$
,

$$q_{\nu}(k+1) = \max(\Lambda(q_{\nu} \upharpoonright (k+1), \nu))$$

if $\max(\Lambda(q_{v} \upharpoonright (k+1), v))$ exists. The axioms will guarantee that this recursion breaks off (see Lemma 4 of [6]), i.e. there is some k_{v} such that either

$$\Lambda(q_{\nu} \upharpoonright (k_{\nu} + 1), \nu) = \emptyset$$

or

$$\Lambda(q_{\nu} \upharpoonright (k_{\nu} + 1), \nu)$$
 is unbounded in ν .

Define by recursion on $1 \le n \in \omega$, simultaneously for all $v \in S - RCard^{L_{\kappa}[D]}$, $\beta \in v$ and $x \in J^D_{\mu_{\nu}}$ the following notions:

$$f^1_{(\beta, x, v)} = f_{(\beta, x, v)},$$

 $\tau(n, \nu) = \text{ the least } \tau \in S^0 \cup S^+ \cup \hat{S} \text{ such that for some } x \in J^D_{\mu_{\nu}},$

$$f_{(\alpha_{\tau}, x, \nu)}^{1} = id_{\nu},$$

$$x(n, v) = \text{ the least } x \in J^D_{\mu_v} \text{ such that } f^n_{(\alpha_{\tau(n,v)},x,v)} = id_v,$$

$$K^n_{\mathbf{v}} = \{d(f^n_{(\beta,x(n,\mathbf{v}),\mathbf{v})}) < \alpha_{\tau(n,\mathbf{v})} | \beta < \mathbf{v}\},$$

 $f \Rightarrow_n v \text{ iff } f \Rightarrow v \text{ and for all } 1 \leq m < n,$

$$rng(f) \cap J^D_{\alpha_{\tau(m,v)}} \prec_1 \langle J^D_{\alpha_{\tau(m,v)}}, D \upharpoonright \alpha_{\tau(m,v)}, K^m_v \rangle,$$

$$x(m, v) \in rng(f),$$

$$f_{(u,v)}^n$$
 = the minimal $f \Rightarrow_n v$ such that $u \subseteq rng(f)$,

$$f_{(\beta, x, v)}^n = f_{(\beta \cup \{x\}, v)}^n,$$

$$f: \overline{\mathbf{v}} \Rightarrow_n \mathbf{v} : \Leftrightarrow f \Rightarrow_n \mathbf{v} \text{ and } f: \overline{\mathbf{v}} \Rightarrow \mathbf{v}.$$

Here definitions are to be understood in Kleene's sense, i.e., that the left side is defined iff the right side is, and in that case, both are equal.

Let

 $n_{\rm v}=$ the least n such that $f^n_{\left(\gamma,\,x,\,\mu_{\rm v}\right)}$ is confinal in ${\rm v}$ for some $x\in J^D_{\mu_{\rm v}}$, $\gamma\sqsubset{\rm v},$

$$x_{v}$$
 = the least x such that $f_{(\alpha_{v}, x, \mu_{v})}^{n_{v}} = id_{\mu_{v}}$.

Let

$$\alpha_{\nu}^* = \alpha_{\nu} \text{ if } \nu \in S^+,$$

$$\alpha_{v}^{*} = \sup\{\alpha < v | \beta(f_{(\alpha, x_{v}, \mu_{v})}^{n_{v}}) = \alpha\} \text{ if } v \notin S^{+}.$$

Let
$$P_{\nu} := \{x_{\tau} \mid \nu \sqsubset \tau \sqsubseteq \mu_{\nu}, \ \tau \in S^{+}\} \cup \{x_{\nu}\}.$$

We say that $\mathfrak{M} = \langle S, \triangleleft, \mathfrak{F}, D \rangle$ is an (ω_1, β) -morass if the following axioms hold:

(MP - minimum principle)

If
$$v \in S - RCard^{L_{\kappa}[D]}$$
 and $x \in J^{D}_{\mu_{v}}$, then $f_{(0,x,v)}$ exists.

(LP1 - first logical preservation axiom)

If
$$f: \overline{\mathbf{v}} \Rightarrow \mathbf{v}$$
, then $|f|: \langle J_{\mathbf{u}_{\overline{\mathbf{v}}}}^D, D \upharpoonright \mathbf{\mu}_{\overline{\mathbf{v}}} \rangle \rightarrow \langle J_{\mathbf{u}_{\mathbf{v}}}^D, D \upharpoonright \mathbf{\mu}_{\mathbf{v}} \rangle$ is Σ_1 -elementary.

(LP2 - second logical preservation axiom)

Let
$$f: \overline{v} \Rightarrow v$$
 and $f(\overline{x}) = x$. Then

$$(f \upharpoonright J^D_{\overline{v}}) : \langle J^D_{\overline{v}}, D \upharpoonright \overline{v}, \Lambda(\overline{x}, \overline{v}) \rangle \to \langle J^D_{v}, D \upharpoonright v, \Lambda(x, v) \rangle$$

is Σ_0 -elementary.

(CP1 - first continuity principle)

For $i \leq j < \lambda$, let $f_i : v_i \Rightarrow v$ and $g_{ij} : v_i \Rightarrow v_j$ such that $g_{ij} = f_j^{-1} f_i$. Let $\langle g_i | i < \lambda \rangle$ be the transitive, direct limit of the directed system $\langle g_{ij} | i \leq j < \lambda \rangle$ and $h_{g_i} = f_i$ for all $i < \lambda$. Then g_i , $h \in \mathfrak{F}$.

(CP2 - second continuity principle)

Let $f: \overline{\mathbf{v}} \Rightarrow \mathbf{v}$ and $\lambda = \sup(f[\overline{\mathbf{v}}])$. If, for some $\overline{\lambda}, h: \langle J_{\overline{\lambda}}^{\overline{D}}, \overline{D} \rangle \rightarrow \langle J_{\lambda}^{D}, \overline{D} \upharpoonright \lambda \rangle$ is Σ_1 -elementary and $rng(f \upharpoonright J_{\overline{\mathbf{v}}}^{D}) \subseteq rng(h)$, then there is some $g: \overline{\lambda} \Rightarrow \lambda$ such that $g \upharpoonright J_{\overline{\lambda}}^{\overline{D}} = h$.

(CP3 - third continuity principle)

If $C_{\mathbf{v}} = \{\lambda(f) < \mathbf{v} \mid f \Rightarrow \mathbf{v}\}$ is unbounded in $\mathbf{v} \in S - RCard^{L_{\mathbf{k}}[D]}$, then the following holds for all $x \in J_{\mathbf{u}_{\mathbf{v}}}^D$:

$$rng(f_{(0,x,v)}) = \bigcup \{rng(f_{(0,x,\lambda)}) | \lambda \in C_v \}.$$

(DP1 - first dependency axiom)

If $\mu_{\nu} < \mu_{\alpha_{\nu}}$, then $\nu \in \mathit{S-RCard}^{L_{\kappa}[\mathit{D}]}$ is independent.

(DP2 - second dependency axiom)

If $v \in S - RCard^{L_{\kappa}[D]}$ is η -dependent on $\tau \sqsubseteq v$, $\tau \in S^+$, $f : \overline{v} \Rightarrow v$, $f(\overline{\tau}) = \tau$ and $\eta \in rng(f)$, then $f^{(\overline{\tau})} : \overline{\tau} \Rightarrow \tau$.

(DP3 - third dependency axiom)

For $v \in \hat{S} - RCard^{L_{\kappa}[D]}$ and $1 \le n \in \omega$, the following holds:

(a) If
$$f_{(\alpha_{\tau},x,\nu)}^n = id_{\nu}$$
, $\tau \in S^+ \cup S^0$ and $\tau \sqsubseteq \nu$, then $\mu_{\nu} = \mu_{\tau}$.

(b) If
$$\beta < \alpha_{\tau(n, \nu)}$$
, then also $d(f_{(\beta, x(n, \nu), \nu)}^n) < \alpha_{\tau(n, \nu)}$.

(DF - definability axiom)

(a) If
$$f_{(0,z_0,v)} = id_v$$
 for some $v \in \hat{S} - RCard^{L_{\kappa}[D]}$ and $z_0 \in J_{\mu_v}^D$, then

$$\{\langle z, x, f_{(0,z,v)}(x)\rangle | z \in J_{\mu_v}^D, x \in dom(f_{(0,z,v)})\}$$

is uniformly definable over $\langle J_{\mu_{\nu}}^{D}, D \upharpoonright \mu_{\nu}, D_{\mu_{\nu}} \rangle$.

(b) For all $v \in S - RCard^{L_{\kappa}[D]}$, $x \in J_{\mu_{v}}^{D}$, the following holds:

$$f_{(0, x, v)} = f_{(0, \langle x, v, \alpha_v^*, P_v \rangle, \mu_v)}^{n_v}.$$

This finishes the definition of an (ω_1, β) -morass.

A consequence of the axioms is (\times) by [6]:

Theorem.

$$\{\langle z, \tau, x, f_{(0,z,\tau)}(x) \rangle | \tau < \nu, \mu_{\tau} = \nu, z \in J_{\mu_{\tau}}^{D}, x \in dom(f_{(0,z,\tau)})\}$$

$$\bigcup \{\langle z, x, f_{(0,z,\nu)}(x) \rangle | \mu_{\nu} = \nu, z \in J_{\mu_{\nu}}^{D}, x \in dom(f_{(0,z,\nu)})\}$$

$$\bigcup (\Box \cap \nu^{2})$$

is for all $v \in S$ uniformly definable over $\langle J_v^D, D | v, D_v \rangle$.

A structure $\mathfrak{M} = \langle S, \triangleleft, \mathfrak{F}, D \rangle$ is called an $\omega_{1+\beta}$ -standard morass if it satisfies all axioms of an (ω_1, β) -morass except (DF) which is replaced by:

$$v \triangleleft \tau \Rightarrow v$$
 is regular in J_{τ}^{D}

and there are functions $\sigma_{(x,v)}$ for $v \in \hat{S}$ and $x \in J_v^D$ such that:

 $(MP)^+$

$$\sigma_{(x,v)}[\omega] = rng(f_{(0,x,v)})$$

 $(CP1)^{+}$

If $f: \overline{v} \Rightarrow v$ and $f(\overline{x}) = x$, then $\sigma_{(x,v)} = f \circ \sigma_{(\overline{x},\overline{v})}$.

 $(CP3)^{+}$

If C_{ν} is unbounded in ν , then $\sigma_{(x,\nu)} = \bigcup \{\sigma_{(x,\lambda)} | \lambda \in C_{\nu}, x \in J_{\lambda}^{D} \}.$

 $(\mathbf{DF})^+$

(a) If $f_{(0,x,v)} = id_v$ for some $x \in J_v^D$, then

$$\{\langle i,\,z,\,\sigma_{(z,\,\nu)}(i)\rangle\,|\,z\in J^D_\nu,\,i\in dom(\sigma_{(z,\,\nu)})\}$$

is uniformly definable over $\langle J_{\mu_{\nu}}^{D}, D \upharpoonright \mu_{\nu}, D_{\mu_{\nu}} \rangle$.

(b) If $C_{\rm v}$ is unbounded in v, then $D_{\rm v}=C_{\rm v}$. If it is bounded, then $D_{\rm v}=\{\langle i,\,\sigma_{(q_{\rm v},\,{\rm v})}(i)\rangle|\,i\in dom(\sigma_{(q_{\rm v},\,{\rm v})})\}.$

Now, I am going to construct a κ -standard morass.

Let $\beta(v)$ be the least β such that $J_{\beta+1}^X \models v$ singular.

Let $L_{\kappa}[X]$ satisfy amenability, condensation and coherence such that $S^X = \{\beta(v) | v \text{ singular in } L_{\kappa}[X] \}$ and $Card^{L_{\kappa}[X]} = Card \cap \kappa$.

Let

$$v \triangleleft \tau : \Leftrightarrow v \text{ regular in } I_{\tau}.$$

Let

$$E = Lim - RCard^{L_{\kappa}[X]}.$$

For $v \in E$, let

 $\beta(v)=$ the least β such that there is a cofinal $f:a \to v \in Def(I_{\beta})$ and $a \subseteq v' < v$,

n(v) = the least $n \ge 1$ such that such an f is Σ_n -definable over $I_{\beta(v)}$,

 $\rho(v)$ = the (n(v) - 1) th projectum of $I_{\beta(v)}$,

 A_{ν} = the $(n(\nu) - 1)$ th standard code of $I_{\beta(\nu)}$,

 $\gamma(v)$ = the n(v)th projectum of $I_{\beta(v)}$.

If $v \in S^+ - Card$, then the n(v)th projectum of $\beta(v)$ is less or equal $\alpha_v :=$ the largest cardinal in I_v : Since α_v is the largest cardinal in I_v , there is, by definition of $\beta(v)$ and n(v), some over $I_{\beta(v)} \Sigma_{n(v)}$ -definable function f such that $f[\alpha_v]$ is cofinal in v. But, since v is regular in $\beta(v)$, f cannot be an element of $J_{\beta(v)}^X$. So $\mathfrak{P}(v \times v) \cap \Sigma_{n(v)}(I_{\beta(v)}) \not\subseteq J_{\beta(v)}^X$. By Lemma 14, also $\mathfrak{P}(v) \cap \Sigma_{n(v)}(I_{\beta(v)}) \not\subseteq J_{\beta(v)}^X$. Using Lemma 21(3), we get $\gamma \leq v$, i.e., there is an over $I_{\beta(v)} \Sigma_{n(v)}$ -definable function g such that $g[v] = J_{\beta(v)}^X$. On the other hand, there is, for every $\tau < v$ in J_v^X , a surjection from α_v onto τ , because α_v is the largest cardinal in I_v . Let f_τ be the $<_v$ -least such. Define $j_1(\sigma,\tau) = f_{f(\tau)}(\sigma)$ for $\sigma,\tau < v$. Then j_1 is $\Sigma_{n(v)}$ -definable over $I_{\beta(v)}$ and $j_1[\alpha_v \times \alpha_v] = v$. By Lemma 15, we obtain an over $I_{\beta(v)} \Sigma_{n(v)}$ -definable function j_2 from a subset of α_v onto v. Thus $g \circ j_2$ is an over $I_{\beta(v)} \Sigma_{n(v)}$ -definable map such that $g \circ j_2[\alpha_v] = J_{\beta(v)}^X$.

Moreover, $\alpha_{\nu} < \nu \leq \rho(\nu)$: By definition of $\rho(\nu)$, there is an over $I_{\beta(\nu)} \sum_{n(\nu)-1^-}$ -definable function f such that $f[\rho(\nu)] = \beta(\nu)$ if $n(\nu) > 1$. But ν is $\sum_{n(\nu)-1^-}$ -regular over $I_{\beta(\nu)}$. Thus $\nu \leq \rho(\nu)$. If $n(\nu) = 1$, then $\rho(\nu) = \beta(\nu) \geq \nu$.

By the first inequality, there is a q such that every $x \in J_{\rho(\nu)}^X$ is Σ_1 -definable in $\langle I_{\rho(\nu)}^0, A_{\nu} \rangle$ with parameters from $\alpha_{\nu} \cup \{q\}$. Let p_{ν} be the $<_{\rho(\nu)}$ -least such.

Obviously, $p_{\tau} \leq p_{\nu}$ if $\nu \sqsubseteq \tau \sqsubseteq \mu_{\nu}$.

Thus $P_{\mathbf{v}} := \{ p_{\tau} | \mathbf{v} \sqsubseteq \tau \sqsubseteq \mu_{\mathbf{v}}, \, \tau \in S^+ \}$ is finite.

Now, let $v \in E - S^+$. By definition of $\beta(v)$, there exists no cofinal $f: a \to v$ in J_{β}^X such that a $a \subseteq v' < v$. So $\mathfrak{P}(v \times v) \cap \Sigma_{n(v)}(I_{\beta(v)}) \not\subseteq J_{\beta(v)}^X$. Then, by Lemma 14, $\mathfrak{P}(v) \cap \Sigma_{n(v)}(I_{\beta(v)}) \not\subseteq J_{\beta(v)}^X$. Hence, by Lemma 21(3),

$$\gamma(v) \leq v$$
.

Assume $\rho(v) < v$. Then there was an over $I_{\beta(v)} \sum_{n(v)-1}$ -definable f such that $f[\rho(v)] = v$. But this contradicts the definition of n(v). So

$$v \leq \rho(v)$$
.

Using Lemma 21(1), it follows from the first inequality that there is some over $I_{\beta(\nu)} \Sigma_{n(\nu)}$ -definable function f such that $f[J_{\nu}^{X}] = J_{\beta(\nu)}^{X}$. So there is a $p \in J_{\rho(\nu)}^{X}$ such that every $x \in J_{\rho(\nu)}^{X}$ is Σ_{1} -definable in $\langle I_{\rho(\nu)}^{0}, A_{\nu} \rangle$ with parameters from $\nu \cup \{p\}$. Let p_{ν} be the least such.

Let

$$\alpha_{\nu}^* = \sup\{\alpha < \nu \mid h_{\rho(\nu), A_{\nu}}[\omega \times (J_{\alpha}^X \times \{p_{\nu}\})] \cap \nu = \alpha\}.$$

Then $\alpha_{\rm v}^* < {\rm v}$ because, by definition of $\beta({\rm v})$, there exists a ${\rm v}' < {\rm v}$ and a $p \in J_{\rho({\rm v})}^X$ such that $h_{\rho({\rm v}),A_{\rm v}}[\omega \times (J_{{\rm v}'}^X \times \{p_{\rm v}\})]$. is cofinal in ${\rm v}$. But p is in $h_{\rho({\rm v}),A_{\rm v}}[\omega \times (J_{{\rm v}}^X \times \{p_{\rm v}\})]$. So there is an $\alpha < {\rm v}$ such that $h_{\rho({\rm v}),A_{\rm v}}[\omega \times (J_{\alpha}^X \times \{p_{\rm v}\})]$ \cap ${\rm v}$ is cofinal in ${\rm v}$. Thus $\alpha_{\rm v}^* < \alpha < {\rm v}$.

If $v \in S^+$, then we set $\alpha_v^* := \alpha_v$.

For $v \in E$, let $f : \overline{v} \Rightarrow v$ iff, for some f^* ,

$$(1)\ f=\left\langle \overline{\mathbf{v}},\,f^{*}\!\upharpoonright\!J_{\mu_{\overline{\mathbf{v}}}}^{D},\,\mathbf{v}\right\rangle ,$$

(2)
$$f^*: I_{\mu_{\overline{\nu}}} \to I_{\mu_{\nu}}$$
 is $\Sigma_{n(\nu)}$ -elementary,

(3)
$$\alpha_{v}^{*}$$
, p_{v} , α_{uv}^{*} , $P_{v} \in rng(f^{*})$,

(4)
$$v \in rng(f^*)$$
 if $v < \mu_v$,

(5)
$$f(\overline{v}) = v$$
 and $\overline{v} \in S^+ \Leftrightarrow v \in S^+$.

By this, \mathfrak{F} is defined.

Set D = X.

Let P_{ν}^* be minimal such that $h_{\mu_{\nu}}^{n(\nu)-1}(i, P_{\nu}^*) = P_{\nu}$ for an $i \in \omega$.

Let $\alpha_{\mu_{\nu}}^{**}$ be minimal such that $h_{\mu_{\nu}}^{n(\nu)-1}(i, \alpha_{\mu_{\nu}}^{**}) = \alpha_{\mu_{\nu}}^{*}$ for some $i \in \omega$.

Set

$$v^* = \emptyset$$
 if $v = \rho(v)$,

$$v^* = v \text{ if } v < \rho(v).$$

For $\tau \in On$, let S_{τ} be defined as in Lemma 10. For $\tau \in On$, $E_i \subseteq S_{\tau}$ and a Σ_0 formula φ , let

 $h_{\tau,E_i}^{\phi}(x_1,...,x_m)$ the least $x_0 \in S_{\tau}$ w.r.t. the canonical well-ordering such that $\langle S_{\tau}, E_i \rangle \models \varphi(x_i)$ if such an element exists,

and

$$h_{\tau, E_i}^{\varphi}(x_1, ..., x_m) = \emptyset$$
 else.

For $\tau \in On$ such that v^* , α_v^* , p_v , $\alpha_{\mu_v}^{**}$, $P_v^* \in S_\tau$, let $H_v(\alpha, \tau)$ be the closure of

 $S_{\alpha} \cup \{v^*, \alpha_v^*, p_v, \alpha_{\mu_v}^{**}, P_v^*\}$ under all $h_{\tau, X \cap S_{\tau}, A_v \cap S_{\tau}}^{\phi}$. Then

$$H_{\mathcal{V}}(\alpha, \tau) \prec_1 \langle S_{\tau}, X \cap S_{\tau}, A_{\mathcal{V}} \cap S_{\tau}, \{ v^*, \alpha_{\mathcal{V}}^*, p_{\mathcal{V}}, \alpha_{\mathfrak{u}_{\mathcal{V}}}^{**}, P_{\mathcal{V}}^* \} \rangle$$

by the definition of $h^{\phi}_{\tau, X \cap S_{\tau}, A_{\nu} \cap S_{\tau}}$. Let $M_{\nu}(\alpha, \tau)$ be the collapse of $H_{\nu}(\alpha, \tau)$. Let τ_0 be the minimal τ such that ν^* , α^*_{ν} , p_{ν} , $\alpha^{**}_{\mu_{\nu}}$, $P^*_{\nu} \in S_{\tau}$. Define by induction for $\tau_0 \leq \tau < \rho(\nu)$:

$$\alpha(\tau_0) = \alpha_{\nu},$$

$$\alpha(\tau + 1) = \sup\{M_{\nu}(\alpha(\tau), \tau + 1) \cap \nu\},$$

$$\alpha(\lambda) = \sup\{\alpha(\tau) | \tau < \lambda\} \text{ if } \lambda \in Lim.$$

Set

$$\begin{split} B_{\mathbf{v}} &= \{ \langle \alpha(\tau), \, M_{\mathbf{v}}(\alpha(\tau), \, \tau) \rangle \, | \, \tau_0 < \tau \in \rho(\mathbf{v}) \} \text{ if } \mathbf{v} < \rho(\mathbf{v}), \\ B_{\mathbf{v}} &= \{0\} \times A_{\mathbf{v}} \, \bigcup \, \{ \langle 1, \, \mathbf{v}^*, \, \alpha_{\mathbf{v}}^*, \, p_{\mathbf{v}}, \, \alpha_{\mu_{\mathbf{v}}}^{**}, \, P_{\mathbf{v}}^* \rangle \} \text{ else.} \end{split}$$

Lemma 22. $B_{\nu} \subseteq J_{\nu}^{X}$ and $\langle I_{\nu}^{0}, B_{\nu} \rangle$ is rudimentary closed.

Proof. If $v = \rho(v)$, then both claims are clear. Otherwise, we first prove $M^{\nu}(\alpha, \tau) \in J^X_{\nu}$ for all $\alpha < \nu$ and all $\tau \in \rho(\nu)$ such that $\tau_0 \le \tau < \rho(\nu)$. Let such a τ be given and $\tau' \in \rho(\nu) - Lim$ be such that $X \cap S_{\tau}$, $A_{\nu} \cap S_{\tau} \in S_{\tau'}$ (rudimentary closedness of $\langle I^0_{\rho(\nu)}, A_{\nu} \rangle$). Let $\eta := \sup(\tau' \cap Lim)$. Let H be the closure of

$$\alpha \cup \{\mathbf{v}^*,\, \alpha_{\mathbf{v}}^*,\, p_{\mathbf{v}},\, \alpha_{\mu_{\mathbf{v}}}^{**},\, P_{\mathbf{v}}^*,\, X \cap S_{\mathbf{t}},\, S_{\mathbf{t}},\, A_{\mathbf{v}} \cap S_{\mathbf{t}},\, \eta\}$$

under all $h_{\tau'}^{\varphi}$. Let $\sigma: H \cong S$ be the collapse of H and $\sigma(\eta) = \overline{\eta}$. If $\eta \in S^X$, then $S = S_{\overline{\tau}'}$ for some $\overline{\tau}'$ by the condensation property of L[X]. If $\eta \notin S^X$, then $S = S_{\overline{\tau}'}^{X \upharpoonright \overline{\eta}}$ for some $\overline{\tau}'$, where $S_{\overline{\tau}'}^{X \upharpoonright \overline{\eta}}$ is defined like $S_{\overline{\tau}'}$ with $X \upharpoonright \overline{\eta}$ instead of X. The reason is that, even if $\eta \notin S^X$, it is the supremum of points in S^X , because $S^X = \{\beta(\nu) | \nu \text{ singular in } L_{\kappa}[X]\}$. In both cases, $S \in J_{\rho_{\nu}}^X$ and there is a function

in $I_{\overline{\eta}+\omega}$ that maps

$$\alpha \cup \{ \sigma(v^*), \, \sigma(\alpha_v^*), \, \sigma(p_v), \, \sigma(\alpha_{\mu_v}^{**}), \, \sigma(P_v^*), \, \sigma(X \cap S_\tau), \, \sigma(S_\tau), \, \sigma(A_v \cap S_\tau), \, \sigma(\eta) \}$$

onto *S*. So ν would be singular in $J_{\rho_{\nu}}^{X}$ if $\nu \leq \overline{\tau}'$. But this contradicts the definition of $\beta(\nu)$. Therefore,

$$\sigma(v^*)$$
, $\sigma(\alpha_v^*)$, $\sigma(p_v)$, $\sigma(\alpha_{\mu_v}^{**})$, $\sigma(P_v^*)$,
$$\sigma(X \cap S_\tau)$$
, $\sigma(S_\tau)$, $\sigma(A_v \cap S_\tau)$, $\sigma(\eta) \in J_v^X$.

Let $\overline{H}_{\nu}(\alpha, \tau)$ be the closure of

$$S_{\alpha} \cup \{ \sigma(v^*), \, \sigma(\alpha_v^*), \, \sigma(p_v), \, \sigma(\alpha_{\mu_v}^{**}), \, \sigma(P_v^*),$$

$$\sigma(X \cap S_{\tau}), \, \sigma(S_{\tau}), \, \sigma(A_v \cap S_{\tau}), \, \sigma(\eta) \}$$

under all $h^{\varphi}_{\sigma(S_{\tau}), \, \sigma(X \cap S_{\tau}), \, \sigma(A_{V} \cap S_{\tau})}$, where these are defined like $h^{\varphi}_{\tau, \, E_{i}}$ but with $\sigma(S_{\tau})$ instead of S_{τ} . Then

$$\begin{split} & \overline{H}_{\mathbf{v}}(\alpha,\,\tau) \prec_{1} \langle \sigma(S_{\tau}),\,\sigma(X \cap S_{\tau}),\,\sigma(A_{\mathbf{v}} \cap S_{\tau}),\,\{\sigma(\mathbf{v}^{*}),\\ & \sigma(\alpha_{\mathbf{v}}^{*}),\,\sigma(p_{\mathbf{v}}),\,\sigma(\alpha_{\mu_{\mathbf{v}}}^{**}),\,\sigma(P_{\mathbf{v}}^{*}),\,\sigma(X \cap S_{\tau}),\,\sigma(S_{\tau}),\,\sigma(A_{\mathbf{v}} \cap S_{\tau}),\,\sigma(\eta)\} \end{split}$$

and $M_{\nu}(\alpha, \tau)$ is the collapse of $\overline{H}_{\nu}(\alpha, \tau)$. Since $\nu < \rho(\nu)$ and ν is a cardinal in $I_{\beta(\nu)}, J_{\nu}^{X} \models ZF^{-}$. So we can form the collapse inside J_{ν}^{X} . Thus $M_{\nu}(\alpha, \tau) \in J_{\nu}^{X}$.

Now, we turn to rudimentary closedness. Since B_{ν} is unbounded in ν , it suffices to prove that the initial segments of B_{ν} are elements of J_{ν}^{X} . Such an initial segment is of the form $\langle M_{\nu}(\alpha(\tau),\tau)|\tau<\gamma\rangle$, where $\gamma<\rho(\nu)$, and we have $H_{\nu}(\alpha(\tau),\delta_{\tau})=H_{\nu}(\alpha(\tau),\tau)$, where δ_{τ} is for $\tau<\gamma$ the least $\eta\geq\tau$ such that $\eta\in H_{\nu}(\alpha(\tau),\gamma)\cup\{\gamma\}$. Since $\delta_{\tau}\in H_{\nu}(\alpha(\tau),\gamma)\prec_{1}\langle S_{\gamma},X\cap S_{\gamma},A_{\nu}\cap S_{\gamma},\{\cdots\}\rangle$, $(H_{\nu}(\alpha(\tau),\delta_{\tau}))^{H_{\nu}(\alpha(\gamma),\gamma)}=H_{\nu}(\alpha(\tau),\tau)$. Let $\pi:M_{\nu}(\alpha(\gamma),\gamma)\to S_{\gamma}$ be the uncollapse of $H_{\nu}(\alpha(\gamma),\gamma)$. Then, by the Σ_{1} -elementarity of π , $M_{\nu}(\alpha(\tau),\tau)=M_{\nu}(\alpha(\tau),\delta_{\tau})$

is the collapse of $(H(\alpha(\tau), \pi^{-1}(\delta_{\tau})))^{M_{\nu}(\alpha(\gamma), \gamma)}$. So $\langle M_{\nu}(\alpha(\tau), \tau) | \tau < \gamma \rangle$ is definable from $M_{\nu}(\alpha(\gamma), \gamma) \in J_{\nu}^{X}$.

Lemma 23. For $x, y_i \in J_v^X$, the following are equivalent:

(i) x is Σ_1 -definable in $\langle I_{\rho(\nu)}^0, A_{\nu} \rangle$ with the parameters y_i , ν^* , α_{ν}^* , p_{ν} , $\alpha_{\mu\nu}^{**}$, P_{ν}^* .

(ii) x is Σ_1 -definable in $\langle I_{\nu}^0, B_{\nu} \rangle$ with the parameters y_i .

Proof. For $v = \rho(v)$, this is clear. Otherwise, let first x be uniquely determined in $\langle I_{\rho(v)}^0, A_v \rangle$ by $(\exists z) \psi(z, x, \langle y_i, v^*, \alpha_v^*, p_v, \alpha_{\mu_v}^{**}, P_v^* \rangle)$, where is a Σ_0 formula. That is equivalent to $(\exists \tau) (\exists z \in S_\tau) \psi(z, x, \langle y_i, v^*, \alpha_v^*, p_v, \alpha_{\mu_v}^{**}, P_v^* \rangle)$ and that again to $(\exists \tau) H_v(\alpha(\tau), \tau) \vDash (\exists z) \psi(z, x, \langle y_i, v^*, \alpha_v^*, p_v, \alpha_{\mu_v}^{**}, P_v^* \rangle)$. If τ is large enough, the y_i are not moved by the collapsing map, since then $y_i \in J_{\alpha(\tau)}^X \subseteq H_v(\alpha(\tau), \tau)$. Let \overline{v} , α , p, α' , P be the images of v^* , α_v^* , p_v , $\alpha_{\mu_v}^{**}$, P_v^* under the collapse. Then

$$(\exists \tau)(y_i \in J_{\alpha(\tau)}^X \text{ and } M_{\nu}(\alpha(\tau), \tau) \vDash (\exists z) \psi(z, x, \langle y_i, \overline{\nu}, \alpha, p, \alpha', P \rangle))$$

defines x. So it is definable in $\langle I_{\nu}^{0}, B_{\nu} \rangle$.

Since B_{ν} and the satisfaction relation of $\langle I_{\gamma}^{0}, B \rangle$ are Σ_{1} -definable over $\langle I_{\rho(\nu)}^{0}, A_{\nu} \rangle$, the converse is clear.

Lemma 24. Let $H \prec_1 \langle I_{\nu}^0, B_{\nu} \rangle$ for a $\nu \in E$ and $\pi : \langle I_{\mu}^0, B \rangle \rightarrow \langle I_{\nu}^0, B_{\nu} \rangle$ be the uncollapse of H. Then $\mu \in E$ and $B = B_{\mu}$.

Proof. First, we extend π like in Lemma 19. Let

$$M = \{x \in J_{\rho(\nu)}^X \mid x \text{ is } \Sigma_1 \text{-definable in } \langle I_{\rho(\nu)}^0, A_{\nu} \rangle \text{ with parameters from}$$

$$rng(\pi) \cup \{p_{\nu}, \, \nu^*, \, \alpha_{\nu}^*, \, \alpha_{\mu_{\nu}}^{**}, \, P_{\nu}^* \} \}.$$

Then $rng(\pi) = M \cap J_{\nu}^{X}$. For, if $x \in M \cap J_{\nu}^{X}$, then there are by definition of M $y_{i} \in rgn(\pi)$ such that x is Σ_{1} -definable in $\langle I_{\rho(\nu)}^{0}, A_{\nu} \rangle$ with the parameters y_{i} and p_{ν} , ν^{*} , $\alpha_{\mu_{\nu}}^{**}$, P_{ν}^{*} . Thus it is Σ_{1} -definable in $\langle I_{\nu}^{0}, B_{\nu} \rangle$ with the y_{i} by Lemma 23. Therefore, $x \in rng(\pi)$ because $y_{i} \in rng(\pi) \prec_{1} \langle I_{\nu}^{0}, B_{\nu} \rangle$. Let $\hat{\pi} : \langle I_{\rho}^{0}, A \rangle \rightarrow \langle I_{\rho(\nu)}^{0}, A_{\nu} \rangle$ be the uncollapse of M. Then $\hat{\pi}$ is an extension of π , since $M \cap J_{\nu}^{X}$ is an ϵ -initial segment of M and $rng(\pi) = M \cap J_{\nu}^{X}$. In addition, there is by Lemma 19, a $\Sigma_{n(\nu)}$ -elementary extension $\tilde{\pi} : I_{\beta} \to I_{\beta(\nu)}$ such that ρ is the $(n(\nu)-1)$ th projectum of I_{β} and A is the $(n(\nu)-1)$ th standard code of it. Let $\tilde{\pi}(p) = p_{\nu}$ and $\tilde{\pi}(\alpha) = \alpha_{\nu}^{*}$. And we have $\tilde{\pi}(\mu) = \nu$ if $\nu < \beta(\nu)$. In this case, $\nu \in rng(\pi)$ by the definition of ν^{*} . Since $\tilde{\pi}$ is Σ_{1} -elementary, cardinals of J_{μ}^{X} are mapped on cardinals of J_{ν}^{X} .

Assume $v \in S^+$. Suppose there was a cardinal $\tau > \alpha$ of J_{μ}^X . Then $\pi(\tau) > \alpha_{\tau}$ was a cardinal in J_{ν}^X . But this is a contradiction.

Next, we note that μ is $\Sigma_{n(\nu)}$ -singular over I_{β} . If $\nu \in S^+$, then, by the definition of p_{ν} , $J_{\rho}^X = h_{\rho,A}[\omega \times (\alpha \times \{p\})]$ is clear. So there is an over $\langle I_{\nu}^0, A \rangle$ Σ_1 -definable function from α cofinal into μ . But since ρ is the $(n(\nu)-1)$ th projectum and A is the $(n(\nu)-1)$ th code of it, this function is Σ_n -definable over I_{β} . Now, suppose $\nu \notin S^+$. Let $\lambda := \sup(\pi[\mu])$. Since $\lambda > \alpha_{\nu}^*$, there is a $\gamma < \lambda$ such that

$$\sup(h_{\rho(v), A_{v}}[\omega \times (J_{\gamma}^{X} \times \{q_{v}\})] \cap v) \geq \lambda.$$

And since $rng(\pi)$ is cofinal in λ , there is such a $\gamma \in rng(\pi)$. Let $\gamma = \pi(\overline{\gamma})$. By the Σ_1 -elementarity of $\widetilde{\pi}$, $\overline{\gamma} < \mu$ and setting $\widetilde{\pi}(q) = q_{\nu}$ we have for every $\eta < \mu$,

$$\langle I_{\rho}, A \rangle \vDash (\exists x \in J_{\bar{\gamma}}^{X})(\exists i) h_{\rho, A}(i, \langle x, p \rangle) > \eta.$$

Hence $h_{\rho,A}[\omega \times (J_{\overline{\gamma}}^X \times \{q\})]$ is cofinal in μ . This shows $\mu \in E$.

On the other hand, μ is $\Sigma_{n(\nu)-1}$ -regular over I_{β} if $n(\nu) > 1$. Assume there was an over I_{β} $\Sigma_{n(\nu)-1}$ -definable function f and some $x \in \mu$ such that f[x] was cofinal in μ , i.e., $(\forall y \in \mu)(\exists z \in x)(f(x) > y)$ would hold in I_{β} . Over I_{β} , $(\exists z \in x)(f(z) > y)$ is $\Sigma_{n(\nu)-1}$. So it is Σ_0 over $\langle I_{\rho}^0, A \rangle$. But then also $(\forall y \in \mu)(\exists z \in x)(f(z) > y)$ is Σ_0 over $\langle I_{\rho}^0, A \rangle$ if $\mu < \rho$. Hence it is $\Sigma_{n(\nu)}$ over I_{β} . But then the same would hold for $\widetilde{\pi}(x)$ in $I_{\beta(\nu)}$. This contradicts the definition of $n(\nu)!$ Now, let $\mu = \rho$. Since λ is the largest cardinal in I_{μ} , we had in f also an over I_{β} $\Sigma_{n(\nu)-1}$ -definable function from α onto ρ and therefore one from α onto β . But this contradicts Lemma 21 and the fact that ρ is the $(n(\nu)-1)$ th projectum of β . If $n(\nu)=1$, then we get with the same argument that μ is regular in I_{β} .

The previous two paragraphs show $\beta = \beta(\mu)$ and $n(\mu) = n(\nu)$. We are done if we can also show that $\alpha = \alpha_{\mu}^*$, $\pi(\alpha_{\mu_{\mu}}^{**}) = \alpha_{\mu_{\nu}}^{**}$, $p = p_{\mu}$, $\pi(P_{\mu}^*) = P_{\nu}^*$, because $\widetilde{\pi}$ is Σ_1 -elementary, $\widetilde{\pi}(h_{\tau, X \cap S_{\tau}, A_{\mu}, A_{\mu} \cap S_{\tau}}(x_i)) = h_{\widetilde{\pi}(\tau), X \cap S_{\widetilde{\pi}(\tau)}, A_{\nu} \cap S_{\widetilde{\pi}(\tau)}}^{\varphi}(x_i)$ for all Σ_1 formulas φ and $x_i \in S_{\tau}$.

For $v \in S^+$, $\alpha = \alpha_{\mu}$ was shown above. So let $v \notin S^+$. By the Σ_1 -elementarity of $\widetilde{\pi}$, we have for all $\alpha \in \mu$,

$$h_{\rho,A}[\omega \times (J_{\alpha}^{X} \times \{p\})] \cap \mu = \alpha \Leftrightarrow h_{\rho(\nu),A_{\nu}}[\omega \times (J_{\pi(\alpha)}^{X} \times \{p_{\nu}\})] \cap \nu = \pi(\alpha).$$

The same argument proves $\pi(\alpha_{\mu_{\mu}}^{**}) = \alpha_{\mu_{\nu}}^{**}$. Finally, $p = p_{\mu}$ and $\pi(P_{\mu}^{*}) = P_{\nu}^{*}$ can be shown as in (5) in the proof of Lemma 19.

Lemma 25. Let $H \prec_1 \langle I_{\nu}^0, B_{\nu} \rangle$ and $\lambda = \sup(H \cap \nu)$ for $a \nu \in E$. Then $\lambda \in E$ and $B_{\nu} \cap J_{\lambda}^X = B_{\lambda}$.

Proof. Let $\pi_0: \langle I^0_\mu, B_\mu \rangle \to \langle I^0_\lambda, B_\nu \cap J^X_\lambda \rangle$ be the uncollapse of H and let $\pi_1: \langle I^0_\lambda, B_\nu \cap J^X_\lambda \rangle \to \langle I^0_\nu, B_\nu \rangle$ be the identity. Since L[X] has coherence, π_0 and π_1 are Σ_0 -elementary. By Lemma 18, π_0 is even Σ_1 -elementary, because it is

cofinal. To show $B_{\lambda} = B_{\nu} \cap J_{\lambda}^{X}$, we extend π_{0} and π_{1} to $\hat{\pi}_{0} : \langle I_{\rho(\mu)}^{0}, A_{\mu} \rangle \rightarrow \langle I_{\rho(\mu)}^{0}, A \rangle$ and $\hat{\pi}_{1} : \langle I_{\rho}^{0}, A \rangle \rightarrow \langle I_{\rho(\mu)}^{0}, A_{\nu} \rangle$ in such a way that $\hat{\pi}_{0}$ is Σ_{1} -elementary and $\hat{\pi}_{1}$ is Σ_{0} -elementary. Then we know from Lemma 19 that ρ is the $(n(\nu) - 1)$ th projectum of some β and A is the $(n(\nu) - 1)$ th code of it. So there is a $\Sigma_{n(\nu)}$ -elementary extension of $\tilde{\pi}_{0} : I_{\overline{\beta}} \rightarrow I_{\beta}$. We can again use the argument from Lemma 24 to show that λ is $\Sigma_{n(\nu)-1}$ -regular over I_{β} . But on the other hand, λ is as supremum of $H \cap On \Sigma_{n(\nu)}$ -singular over I_{β} . From this, we conclude as in the proof of Lemma 24 that $B_{\lambda} = B_{\nu} \cap J_{\lambda}^{X}$.

First, suppose $v \in S^+$. Since $\alpha_v \in H \prec_1 \langle I_v^0, B_v \rangle$, $\alpha_v < \lambda \leq v$. Since $I_v \vDash (\alpha_v)$ is the largest cardinal), we therefore have $\lambda \notin Card$. In addition, α_v is the largest cardinal in I_λ . Assume τ was the next larger cardinal. Then τ was Σ_1 -definable in I_λ with parameter α_v and some $\tau' \in H$ and hence it was in H. By the Σ_1 -elementarity of π_0 , $\pi_0^{-1}(\tau) > \pi_0^{-1}(\alpha_v) = \alpha_\mu$ was also a cardinal in I_μ . But this contradicts the definition of α_μ .

But now to $B_{\lambda} = B_{\nu} \cap J_{\lambda}^{X}$. First, assume $\nu \notin S^{+}$. Let $\pi = \pi_{1} \circ \pi_{0} : \langle I_{\mu}^{0}, B_{\mu} \rangle$ $\rightarrow \langle I_{\nu}^{0}, B_{\nu} \rangle$ and $\hat{\pi} : \langle I_{\rho(\mu)}^{0}, A_{\mu} \rangle \rightarrow \langle I_{\rho(\nu)}^{0}, A_{\nu} \rangle$ be the extension constructed in the proof of Lemma 24. Let $\gamma = \sup(rng(\hat{\pi}))$. Then $\hat{\pi}' = \hat{\pi} \cap (J_{\rho(\mu)}^{X} \times J_{\gamma}^{X}) : \langle I_{\rho(\mu)}^{0}, A_{\mu} \rangle$ $\rightarrow \langle I_{\gamma}^{0}, A_{\nu} \cap J_{\gamma}^{X} \rangle$ is Σ_{0} -elementary, by coherence of $L_{\kappa}[X]$, and cofinal. Thus $\hat{\pi}'$ is Σ_{1} -elementary. Let $H' = h_{\gamma, A_{\nu} \cap J_{\gamma}^{X}} [\omega \times (J_{\lambda}^{X} \times \{p_{\nu}\})]$ and $\hat{\pi}_{1} : \langle I_{\rho}^{0}, A \rangle \rightarrow \langle I_{\rho(\nu)}^{0}, A_{\nu} \rangle$ be the uncollapse of H'. Then $H = rng(\hat{\pi}') \subseteq H'$. To see this, let $z \in rng(\hat{\pi}')$ and $z = \hat{\pi}'(y)$. Then, by definition of p_{μ} , there is an $x \in J_{\mu}^{X}$ and an $i \in \omega$ such that $y = h_{\rho(\mu), A_{\mu}}(i, \langle x, p_{\mu} \rangle)$. By the Σ_{1} -elementarity of $\hat{\pi}'$, we therefore have $z = h_{\gamma, A_{\nu} \cap J_{\nu}^{X}}(i, \langle \hat{\pi}'(x), \hat{\pi}'(p_{\mu}) \rangle)$. But $\hat{\pi}'(p_{\mu}) = \hat{\pi}(p_{\mu}) = p_{\nu}$ and $\hat{\pi}'(x) \in J_{\lambda}^{X}$.

In addition, $\sup(H' \cap v) = \lambda$. That $\sup(H' \cap v) \ge \lambda$ is clear. Conversely, let

 $x\in H'\cap v$, i.e., $x=h_{\gamma,A_v\cap J_\gamma^X}(i,\langle y,\,p_v\rangle)$ for some $i\in \omega$ and a $y\in J_\lambda^X$. Then x is uniquely determined by $\langle I_\gamma^0,\,A_v\cap J_\gamma^X\rangle \vDash (\exists z)\psi_i(z,\,x,\langle y,\,p_v\rangle)$. But such a z exists already in a $H_v^0(\alpha,\,\tau)$, where $H_v^0(\alpha,\,\tau)$ is the closure of S_α under all $h_{\tau,\,X\cap S_\tau,\,A_v\cap S_\tau}^{\sigma}$. Since $\gamma=\sup(rng(\hat\pi))$ and $\lambda=\sup(rng(\pi))$ we can pick such $\tau\in rng(\hat\pi)$ and $\alpha\in rng(\pi)$. Let $\overline\tau=\hat\pi^{-1}(\tau)$ and $\overline\alpha=\hat\pi^{-1}(\alpha)$. Let $\vartheta=\sup(v\cap H_v^0(\alpha,\,\tau))$ and $\overline\vartheta=\sup(\mu\cap H_\mu^0(\overline\alpha,\,\overline\tau))$. Since v is regular in $I_{\rho(v)},\,\vartheta< v$. Analogously, $\overline\vartheta<\mu$. But of course $\widehat\pi(\overline\vartheta)=\vartheta$. So $x<\vartheta=\widehat\pi(\overline\vartheta)<\sup(\widehat\pi[\mu])=\lambda$.

If $v \in S^+$, then we may define H' as $h_{\gamma, A_{\mathbf{v}} \cap J_{\gamma}^X} [\omega \times (J_{\alpha_{\mathbf{v}}}^X \times \{p_{\mathbf{v}}\})]$ and still conclude that $H = rng(\hat{\pi}') \subseteq H'$ and $\sup(H' \cap \mathbf{v}) = \lambda$ by the definition of $p_{\mathbf{v}}$.

By Lemma 19, $\hat{\pi}: \langle I_{\rho}^0, A \rangle \to \langle I_{\rho(\nu)}^0, A_{\nu} \rangle$ may be extended to a $\Sigma_{n(\nu)-1}^-$ elementary embedding $\tilde{\pi}_1: I_{\beta} \to I_{\beta(\nu)}$ such that ρ is the $(n(\nu)-1)$ th projectum of I_{β} and A is the $(n(\nu)-1)$ th standard code of it. Let $\hat{\pi}_0=\hat{\pi}_1^{-1}\circ\hat{\pi}$. Then $\hat{\pi}_0: \langle I_{\rho(\mu)}^0, A_{\mu} \rangle \to \langle I_{\rho}^0, A \rangle$ is Σ_0 -elementary, by the coherence of $L_{\kappa}[X]$, and cofinal. Thus it is Σ_1 -elementary by Lemma 18. Applying again Lemma 19, we get a $\Sigma_{n(\nu)}$ -elementary $\tilde{\pi}_0: I_{\beta(\mu)} \to I_{\beta}$.

As in Lemma 24, it suffices to prove $\beta = \beta(\lambda)$, $n(\nu) = n(\lambda)$, $\rho = \rho(\lambda)$, $A = A_{\lambda}$, $\hat{\pi}_{1}^{-1}(p_{\nu}) = p_{\lambda}$, $\hat{\pi}_{1}^{-1}(P_{\nu}^{*}) = P_{\lambda}^{*}$, $\alpha_{\nu}^{*} = \alpha_{\lambda}^{*}$ and $\hat{\pi}_{1}^{-1}(\alpha_{\mu_{\nu}}^{**}) = \alpha_{\mu_{\lambda}}^{**}$. So, if $n(\nu) > 1$, we have to show that λ is $\Sigma_{n(\nu)-1}$ -regular over I_{β} . If $n(\nu) = 1$, then $I_{\beta} \models (\lambda \text{ regular})$ suffices. In addition, λ must be $\Sigma_{n(\nu)}$ -singular over I_{β} . For regularity, consider $\tilde{\pi}_{0}$ and, as in Lemma 24, the least $x \in \lambda$ proving the opposite if such an x exists. This is again Σ_{n} -definable and therefore in $rng(\tilde{\pi}_{0})$. But then $\tilde{\pi}_{0}^{-1}(x)$ had the same property in $I_{\beta(\mu)}$. Contradiction!

Now, assume $v \in S^+$. Since $I_v \models (\alpha_v \text{ is the largest cardinal})$, $H' \cap v$ is transitive. Thus $H' \cap v = \lambda$. Since $\hat{\pi}_1 : \langle I_\rho^0, A \rangle \to \langle I_\gamma^0, A \cap J_\gamma^X \rangle$ is Σ_1 -elementary

and $\lambda \subseteq H' = rng(\hat{\pi}_1)$, we have $\lambda = \lambda \cap h_{\rho,A}[\omega \times (J_{\alpha_{\nu}}^X \times \{\hat{\pi}_1^{-1}(p_{\nu})\})]$, i.e., there is a Σ_1 -map over $\langle I_{\rho}, A \rangle$ from α_{ν} onto λ . But this is then $\Sigma_{n(\nu)}$ -definable over I_{β} and λ is $\Sigma_{n(\nu)}$ -singular over I_{β} .

If $v \notin S^+$, then the fact that λ is $\Sigma_{n(v)}$ -singular over I_{β} , $\alpha_v^* = \alpha_{\lambda}^*$ and $\hat{\pi}_1^{-1}(\alpha_{\mu_v}^{**}) = \alpha_{\mu_\lambda}^{**}$ may be seen as in Lemma 24 because $\pi_0(\alpha_{\mu}^*) = \alpha_v^* \in rng(\pi_0)$.

That $\hat{\pi}_1^{-1}(p_v) = p_\lambda$ and $\hat{\pi}_1^{-1}(P_v^*) = P_\lambda^*$ can again be proved as in (5) in the proof of Lemma 19.

Lemma 26. Let $v \in E$ and

$$\Lambda(\xi, \mathbf{v}) = \{ \sup(h_{\mathbf{v}, B_{\mathbf{v}}}[\omega \times (J_{\beta}^{X} \times \{\xi\})] \cap \mathbf{v}) < \mathbf{v} | \beta \in Lim \cap \mathbf{v} \}.$$

Let $\overline{\eta} < \overline{v}$ and $\pi : \langle I_{\overline{v}}^0, B \rangle \to \langle I_{v}^0, B_{v} \rangle$ be Σ_1 -elementary. Then $\Lambda(\overline{\xi}, \overline{v}) \cap \overline{\eta} \in J_{\overline{v}}^X$ and $\pi(\Lambda(\overline{\xi}, \overline{v}) \cap \overline{\eta}) = \Lambda(\xi, v) \cap \pi(\overline{\eta})$ where $\pi(\overline{\xi}) = \xi$ and $\pi(\overline{\eta}) = \eta$.

Proof. (1) Let
$$\lambda \in \Lambda(\xi, \nu)$$
. Then $\Lambda(\xi, \lambda) = \Lambda(\xi, \nu) \cap \lambda$.

Let β_0 be minimal such that

$$\sup(h_{\nu, B_{\nu}}[\omega \times (J_{\beta_0}^X \times \{\xi\})] \cap \nu) = \lambda.$$

Then, by Lemma 25, for all $\beta \leq \beta_0$,

$$h_{\lambda, B_{\lambda}} \left[\omega \times (J_{\beta}^{X} \times \{\xi\}) \right] = h_{\nu, B_{\lambda}} \left[\omega \times (J_{\beta}^{X} \times \{\xi\}) \right]$$

and for all $\beta_0 \leq \beta$,

$$h_{\lambda,\,B_{\lambda}}\big[\omega\times (J^X_{\beta_0}\times\{\xi\})\big]\subseteq h_{\lambda,\,B_{\lambda}}\big[\omega\times (J^X_{\beta}\times\{\xi\})\big]$$

$$\subseteq h_{v, B_v}[\omega \times (J_{\beta}^X \times \{\xi\})].$$

So $\Lambda(\xi, \lambda) = \Lambda(\xi, \nu) \cap \lambda$.

(2)
$$\Lambda(\overline{\xi}, \overline{\nu}) \cap \overline{\eta} \in J_{\overline{\nu}}^X$$

Let $\overline{\lambda}:=\sup((\overline{\xi},\,\overline{v})\cap\overline{\eta}+1)$. Then, by (1), $\Lambda(\overline{\xi},\,\overline{v})\cap\overline{\eta}+1=\Lambda(\overline{\xi},\,\overline{v})\cup\{\overline{\lambda}\}$. But $\Lambda(\overline{\xi},\,\overline{v})$ is definable over $I_{\beta(\overline{\lambda})}$. Since $\beta(\overline{\lambda})<\overline{v}$, we get $\Lambda(\overline{\xi},\,\overline{v})\cap\overline{\eta}+1$ $\in J^{\underline{X}}_{\overline{v}}$.

(3) Let
$$\sup(h_{\overline{\nu}, B_{\overline{\nu}}}[\omega \times (J_{\overline{\beta}}^{\underline{X}} \times {\overline{\xi}})]) < \overline{\nu} \text{ and } \pi(\overline{\beta}) = \beta.$$
 Then
$$\pi(\sup(h_{\overline{\nu}, B_{\overline{\nu}}}[\omega \times (J_{\overline{\beta}}^{\underline{X}} \times {\overline{\beta}})] \cap \overline{\nu})) = \sup(h_{\nu, B_{\nu}}[\omega \times (J_{\beta}^{\underline{X}} \times {\xi})] \cap \nu).$$

Let
$$\overline{\lambda}:=\sup(h_{\overline{\mathbf{v}},\,B_{\overline{\mathbf{v}}}}[\omega\times(J_{\overline{\beta}}^{\underline{X}}\times\{\overline{\xi}\})]\cap\overline{\mathbf{v}})$$
. Then

$$\big\langle I_{\overline{v}}^0,\,B_{\overline{v}}\big\rangle \vDash \neg \big(\exists \overline{\lambda} < \theta\big)\big(\exists i \in \omega\big)\big(\exists \xi_i < \overline{\beta}\big)\big(\theta = h_{\overline{v},\,B_{\overline{v}}}(i,\,\big\langle \xi_i,\,\overline{\xi}\big\rangle)\big).$$

So

$$\langle I_{v}^{0}, B_{v} \rangle \models \neg (\exists \lambda < \theta) (\exists i \in \omega) (\exists \xi_{i} < \beta) (\theta = h_{v,B_{v}}(i, \langle \xi_{i}, \xi \rangle)),$$

where $\pi(\overline{\lambda}) = \lambda$, i.e., $\sup(h_{\nu, B_{\nu}}[\omega \times (J_{\beta}^{X} \times \{\xi\})] \cap \nu) \leq \lambda$. But $(\pi \upharpoonright J_{\overline{\lambda}}^{X}) : \langle I_{\overline{\lambda}}^{0}, B_{\overline{\lambda}} \rangle$ $\rightarrow \langle I_{\lambda}^{0}, B_{\lambda} \rangle$ is elementary. So, if

$$\langle I_{\overline{\lambda}}^0, B_{\overline{\lambda}} \rangle \vDash (\forall \eta) (\exists \xi_i \in \overline{\beta}) (\exists n \in \omega) (n \leq h_{\overline{\lambda}, B_{\overline{\lambda}}}(n, \langle \xi_i, \overline{\xi} \rangle)),$$

then

$$\langle I_{\lambda}^{0}, B_{\lambda} \rangle \vDash (\forall \eta) (\exists \xi_{i} \in \beta) (\exists n \in \omega) (n \leq h_{\lambda, B_{\lambda}} (n, \langle \xi_{i}, \xi \rangle)).$$

But by Lemma 25, $h_{\lambda, B_{\lambda}}[\omega \times (J_{\beta}^{X} \times \{\xi\})] \subseteq h_{\nu, B_{\nu}}[\omega \times (J_{\beta}^{X} \times \{\xi\})]$, i.e., it is indeed $\lambda = \sup(h_{\nu, B_{\nu}}[\omega \times (J_{\beta}^{X} \times \{\xi\})] \cap \nu).$

$$(4) \ \pi(\Lambda(\overline{\xi}, \, \overline{\nu}) \cap \overline{\eta}\,) = \Lambda(\xi, \, \nu) \cap \pi(\overline{\eta})$$

For $\overline{\lambda} \in \Lambda(\overline{\xi}, \overline{\nu})$,

$$\pi(\Lambda(\overline{\xi},\,\overline{\nu})\cap\overline{\lambda})$$

by (1)

$$=\pi(\Lambda(\overline{\xi},\,\overline{\lambda}))$$

by Σ_1 -elementarity of π

$$=\Lambda(\xi, \pi(\overline{\lambda})).$$

by (1) and (3),

$$= \Lambda(\xi, \, \nu) \cap \pi(\overline{\lambda}).$$

So, if $\Lambda(\overline{\xi}, \overline{\lambda})$ is cofinal in \overline{v} , then we are finished. But if there exists $\overline{\lambda} := \max(\Lambda(\overline{\xi}, \overline{v}))$, then, by (1) and (2), $\Lambda(\overline{\xi}, \overline{\lambda}) \in J_{\overline{v}}^X$, and it suffices to show $\pi(\Lambda(\overline{\xi}, \overline{v})) = \Lambda(\xi, v)$. To this end, let $\overline{\beta}$ be maximal such that $\overline{\lambda} = \sup(h_{\overline{v}, B_{\overline{v}}}[\omega \times (J_{\overline{\beta}}^X \times \{\overline{\xi}\})] \cap \overline{v})$, i.e., $h_{\overline{v}, B_{\overline{v}}}[\omega \times (J_{\overline{\beta}+1}^X \times \{\overline{\xi}\})]$ is cofinal in \overline{v} . So, since $\pi[h_{\overline{v}, B_{\overline{v}}}[\omega \times (J_{\overline{\beta}+1}^X \times \{\overline{\xi}\})]] \subseteq h_{v, B_{\overline{v}}}[\omega \times (J_{\overline{\beta}+1}^X \times \{\xi\})]$, where

$$\pi(\overline{\xi}) = \beta$$
, $\sup(rng(\pi) \cap \nu) \le \sup(h_{\nu, B_{\nu}}[\omega \times (J_{\beta+1}^X \times \{\xi\})] \cap \nu)$.

Hence indeed $\pi(\Lambda(\overline{\xi}, \overline{\nu})) = \Lambda(\xi, \nu)$.

Lemma 27. Let $v \in E$, $H \prec_1 \langle I_{\lambda}^0, B_{\lambda} \rangle$ and $\lambda = \sup(H \cap v)$. Let $h : I_{\overline{\lambda}}^0 \to I_{\lambda}^0$ be Σ_1 -elementary and $H \subseteq rng(h)$. Then $\lambda \in E$ and $h : \langle I_{\overline{\lambda}}^0, B_{\overline{\lambda}} \rangle \to \langle I_{\lambda}^0, B_{\lambda} \rangle$ is Σ_1 -elementary.

Proof. By Lemma 25, $B_{\lambda} = B_{\nu} \cap J_{\lambda}^{X}$. So it suffices, by Lemma 24, to show $rng(h) \prec_{1} \langle I_{\lambda}^{0}, B_{\lambda} \rangle$. Let $x_{i} \in rng(h)$ and $\langle I_{\lambda}^{0}, B_{\lambda} \rangle \vDash (\exists z) \psi(z, x_{i})$ for a Σ_{0} formula ψ . Then we have to prove that there exists a $z \in rng(h)$ such that $\langle I_{\lambda}^{0}, B_{\lambda} \rangle \vDash \psi(z, x_{i})$. Since $\lambda = \sup(H \cap \nu)$, there is a $\eta \in H \cap Lim$ such that $\langle I_{\eta}^{0}, B_{\lambda} \cap J_{\eta}^{X} \rangle \vDash (\exists z) \psi(z, x_{i})$. And since $H \prec_{1} \langle I_{\nu}^{0}, B_{\nu} \rangle$, we have $\langle I_{\lambda}^{0}, B_{\lambda} \cap J_{\eta}^{X} \rangle \in H \subseteq rng(h)$. So also

$$rng(h) \vDash (\langle I^0_{\eta}, B_{\lambda} \cap J^X_{\eta} \rangle \vDash (\exists z) \psi(z, x_i))$$

because $rng(h) \prec_1 I_{\lambda}^0$. Hence there is a $z \in rng(h)$ such that $\langle I_{\eta}^0, B_{\lambda} \cap J_{\eta}^X \rangle \models \psi(z, x_i)$, i.e., $\langle I_{\eta}^0, B_{\lambda} \rangle \models \psi(z, x_i)$.

Lemma 28. Let $f: \overline{\mathbf{v}} \Rightarrow \mathbf{v}, \quad \overline{\mathbf{v}} \sqsubseteq \overline{\mathbf{\tau}} \sqsubseteq \mu_{\overline{\mathbf{v}}} \text{ and } f(\overline{\mathbf{\tau}}) = \mathbf{\tau}. \text{ If } \overline{\mathbf{\tau}} \in S^+ \bigcup \hat{S} \text{ is independent, then } (f \upharpoonright J^D_{\alpha \overline{\mathbf{\tau}}}) : \langle J^D_{\alpha_{\overline{\mathbf{\tau}}}}, D_{\alpha_{\overline{\mathbf{\tau}}}}, K_{\overline{\mathbf{\tau}}} \rangle \rightarrow \langle J^D_{\alpha_{\overline{\mathbf{\tau}}}}, D_{\alpha_{\overline{\mathbf{\tau}}}}, K_{\tau} \rangle \text{ is } \Sigma_1 \text{-elementary.}$

Proof. If $\bar{\tau} = \mu_{\bar{\tau}} < \mu_{\bar{\nu}}$, then the claim holds since $|f|: I_{\mu_{\bar{\nu}}} \to I_{\mu_{\nu}}$ is Σ_1 -elementary. If $\mu_{\tau} = \mu_{\nu}$ and $n(\tau) = n(\nu)$, then $P_{\tau} \subseteq P_{\nu}$. I.e. τ is dependent on ν . Thus $\bar{\tau}$ is not independent. So let $\mu := \mu_{\tau} = \mu_{\nu}$, $n := n(\tau) < n(\nu)$ and $\tau \in S^+ \cup \hat{S}$ be independent. Then, by the definition of the parameters, α_{τ} is the nth projectum of μ .

Let

$$\gamma_{\beta} := crit(f_{(\beta, 0, \tau)}) < \alpha_{\tau}$$

for a β and

$$H_{\beta} := \text{the } \Sigma_n \text{-hull of } \beta \cup P_{\tau} \cup \{\alpha_{\mu}^*, \tau\} \text{ in } I_{\mu},$$

i.e.,
$$H_{\beta} = h_{\mu}^{n} [\omega \times (J_{\beta}^{X} \times {\alpha'_{\mu}, \tau', P'_{\tau}})],$$
 where

 $\alpha'_{\mu} := \text{minimal such that } h^n_{\mu}(i, \, \alpha'_{\mu}) = \alpha^*_{\mu} \text{ for an } i \in \omega,$

 $P'_{\tau}:=$ minimal such that $h^n_{\mu}(i,\,P'_{\tau})=P_{\tau}$ for an $i\in\omega$,

 $\tau':=$ minimal such that $h^n_\mu(i,\,\tau')=\tau$ for an $i\in\omega$ (resp. $\tau':=0$ for $\tau=\mu$).

For the standard parameters are in P_{τ} .

So H_{β} is Σ_n -definable over I_{μ} with the parameters $\{\beta, \tau, \alpha_{\mu}^*\} \cup P_{\tau}$. Let

 $\rho := \alpha_{\tau} = \text{ the } n \text{th projectum of } \mu,$

 $A := \text{the } n \text{th standard code of } \mu$,

$$p := \langle \alpha'_{\mathfrak{U}}, \, \tau', \, P'_{\mathfrak{T}} \rangle.$$

So $H_{\beta} \cap J_{\rho}^{X}$ is Σ_{0} -definable over $\langle I_{\rho}^{0}, A \rangle$ with parameters β and p (fine structure theory!).

And γ_{β} is defined by

$$\gamma_{\beta} \notin H_{\beta}$$
 and $(\forall \delta \in \gamma_{\beta})(\delta \in H_{\beta})$,

i.e., γ_{β} is also Σ_0 -definable over $\langle I_{\rho}^0, A \rangle$ with parameters β and p.

Let $f_0:=f_{(\beta,0,\tau)}$ for a $\beta, \, \overline{\tau}_0:=d(f_0)<\alpha_{\tau}$ and $\gamma:=crit(f_0)<\alpha_{\tau}$. Let $f_1:=f_{(\beta,\gamma,\tau)}, \, \overline{\tau}_1:=d(f_1)<\alpha_{\tau}$ and $\delta:=crit(f_1)<\alpha_{\tau}$. Then $\mu_{\overline{\tau}_1}$ is the direct successor of $\mu_{\overline{\tau}_0}$ in K_{τ} . So $f_{(\beta,\gamma,\overline{\tau}_1)}=id_{\overline{\tau}_1}$. Hence $\mu_{\eta}=\mu_{\overline{\tau}_1}$ holds for the minimal $\eta\in S^+\cup S^0$ such that $\gamma<\eta\sqsubseteq\delta$. Thus

$$\mu' \in K_{\tau}^{+} := K_{\tau} - (Lim(K_{\tau}) \bigcup \{\min(K_{\tau})\})$$

$$\Leftrightarrow$$

$$(\exists \beta, \, \gamma, \, \delta, \, \eta) (\gamma = \gamma_{\beta} \, \text{ and } \, \delta = \gamma_{(\gamma_{\beta} + 1)}$$

$$\text{and } \, \eta \in S^{+} \bigcup S^{0} \, \text{ minimal such that } \, \gamma < \eta \sqsubseteq \delta \, \text{ and } \, \mu' = \mu_{\eta}).$$

Therefore, K_{τ}^{+} is Σ_{1} -definable over $\langle I_{\rho}^{0}, A \rangle$ with parameter p.

Now, consider $\langle I_{\alpha_{\tau}}^0, K_{\tau} \rangle \vDash \varphi(x)$, where φ is a Σ_1 formula. Then, since K_{τ} is unbounded in α_{τ} ,

$$\langle I^0_{\alpha_{\tau}}, K_{\tau} \rangle \vDash \varphi(x)$$

$$\Leftrightarrow$$

$$(\exists \gamma)(\gamma \in K_{\tau}^+ \ and \ \langle I^0_{\alpha}, K_{\gamma} \rangle \vDash \varphi(x)).$$

So $\langle I_{\alpha_{\overline{\tau}}}^0, K_{\tau} \rangle \vDash \varphi(x)$ is Σ_1 over $\langle I_{\rho}^0, A \rangle$ with parameter p, resp. Σ_{n+1} over I_{μ} with parameters α_{μ}^* , τ , P_{τ} . But since $n = n(\tau) < n(\nu)$, f is at least Σ_{n+1} -elementary. In addition, $f(\alpha_{\overline{\tau}}^*) = \alpha_{\tau}^*$, $f(\overline{\tau}) = \tau$, $f(P_{\overline{\tau}}) = P_{\tau}$. So, for $x \in rng(f)$, $\langle I_{\alpha_{\overline{\tau}}}^0, K_{\overline{\tau}} \rangle \vDash \varphi(f^{-1}(x))$ holds $\langle I_{\alpha_{\tau}}^0, K_{\tau} \rangle \vDash \varphi(x)$.

Theorem 29. $\mathfrak{M} := \langle S, \triangleleft, \mathfrak{F}, D \rangle$ is a κ -standard morass.

Proof. Set

$$\sigma_{(\xi, v)}(i) = h_v^{n(v)}(i, \langle \xi, \alpha_v^*, p_v \rangle).$$

Then D is uniquely determined by the axioms of standard morasses and

- (1) D^{V} is uniformly definable over $\langle J_{V}^{X}, X | V, X_{V} \rangle$,
- (2) X_{v} is uniformly definable over $\langle J_{v}^{D}, D_{v}, D^{v} \rangle$.
- (1) is clear. For (2), assume first that $v \in \hat{S}$ and $f_{(0,q_v,v)} = id_v$. Since the set $\{i \mid \sigma_{(q_v,v)}(i) \in X_v\}$ is $\Sigma_{n(v)}$ -definable over $\langle J_v^X, X \mid v, X_v \rangle$ with the parameters p_v , α_v^* , q_v , there is a $j \in \omega$ such that

$$\sigma_{(q_{\nu},\nu)}(\langle i, j \rangle)$$
 exists $\Leftrightarrow \sigma_{(q_{\nu},\nu)}(i) \in X_{\nu}$.

Using this j, we have

$$X_{\mathcal{V}} = \{ \sigma_{(q_{\mathcal{V}}, \mathcal{V})}(i) | \langle i, j \rangle \in dom(\sigma_{(q_{\mathcal{V}}, \mathcal{V})}) \}.$$

So, in case that $f_{(0, q_v, v)} = id_v$, there is the desired definition of X_v .

Let $v \in \hat{S}$, $f_{(0, q_v, v)} : \overline{v} \Rightarrow v$ cofinal and $f(\overline{q}) = q_v$. Then $f_{(0, \overline{q}, \overline{v})} = id_{\overline{v}}$. And by Lemma 6(b) of [6], $\overline{q} = q_{\overline{v}}$. So, if $\overline{v} = v$, then $f_{(0, q_v, v)} = id_v$. Thus let $\overline{v} < v$. Then $f_{(0, q_v, v)}(x) = y$ is defined by: There is a $\overline{v} \leq v$ such that, for all $r, s \in \omega$,

$$\sigma_{(q_{\overline{\mathsf{v}}},\,\overline{\mathsf{v}})}(r) \leq \sigma_{(q_{\overline{\mathsf{v}}},\,\overline{\mathsf{v}})}(s) \Leftrightarrow \sigma_{(q_{\mathsf{v}},\,\mathsf{v})}(r) \leq \sigma_{(q_{\mathsf{v}},\,\mathsf{v})}(s)$$

holds and for all $z \in J_{\overline{v}}^{X}$ there is an $s \in \omega$ such that

$$z = \sigma_{(q_{\overline{v}}, \overline{v})}(s)$$

and there is an $s \in \omega$ such that

$$\sigma_{(q_{\overline{v}},\overline{v})}(s) = x \Leftrightarrow \sigma_{(q_{v},v)}(s) = y.$$

And since $\langle J_{\nu}^{X}, X_{\nu} \rangle$ is rudimentary closed,

$$X_{\mathbf{v}} = \bigcup \{ f(X_{\overline{\mathbf{v}}} \cap \mathbf{\eta}) | \mathbf{\eta} < \overline{\mathbf{v}} \}.$$

Finally, if $v \in \hat{S}$ and $f_{(0,\,q_{_{\rm V}},\,{\rm V})}$ is not cofinal in v, then $C_{_{\rm V}}$ is unbounded in v and

$$X_{v} = \bigcup \{X_{\lambda} \mid \lambda \in C_{v}\}$$

by the coherence of $L_{\kappa}[X]$.

So (2) holds. From this, (DF)⁺ follows.

By (1) and (2), $J_{\nu}^{X}=J_{\nu}^{D}$ for all $\nu\in\mathit{Lim}$, and for all $H\subseteq J_{\nu}^{X}=J_{\nu}^{D}$,

$$H \prec_1 \langle J_{\nu}^X, X \upharpoonright \nu \rangle \Leftrightarrow H \prec_1 \langle J_{\nu}^D, D_{\nu} \rangle.$$

Now, we check the axioms.

(MP) and $(MP)^+$

 $\mid f_{(0,\xi,\nu)} \mid$ is the uncollapse of $h_{\mu_{\nu}}^{n(\nu)}[\omega \times \{\xi^*,\,\nu^*,\,\alpha_{\nu}^*,\,\alpha_{\mu_{\nu}}^{**},\,P_{\nu}^*\}^{<\omega}]$, where ξ^* is minimal such that $h_{\mu_{\nu}}^{n(\nu)-1}(i,\,\xi^*)=\xi$. Therefore, (MP) and (MP)⁺ hold.

(LP1)

holds by (2) above.

(LP2)

This is Lemma 26.

(CP1) and $(CP1)^+$

This follows from Lemma 24 and the definition of $\sigma_{(\xi, \nu)}$.

(CP2)

This is Lemma 27.

(CP3) and $(CP3)^+$

Let $x \in J_{\mathbf{v}}^X$, $i \in \omega$ and $y = h_{\mathbf{v}, B_{\mathbf{v}}}(i, x)$. Since $C_{\mathbf{v}}$ is unbounded in \mathbf{v} , there is a $\lambda \in C_{\mathbf{v}}$ such that $x, y \in J_{\lambda}^X$. By Lemma 25, $B_{\lambda} = B_{\mathbf{v}} \cap J_{\lambda}^X$. So $y = h_{\lambda, B_{\lambda}}(i, x)$.

(DP1)

Holds by the definition of μ_{ν} .

(DF)

Let
$$\mu := \mu_{\nu}$$
, $k := n(\mu)$ and

$$\pi(n,\,\beta,\,\xi) := \text{ the uncollapse of } \ h_{\mu}^{k+n} \big[\omega \times \big(J_{\beta}^{X} \times \{\alpha_{\mu}^{**},\; p_{\mu}^{*},\; \xi^{*}\}^{<\omega} \big) \big],$$

where

$$\xi^* := \text{minimal such that } h_{\mu_{\nu}}^{k+n-1}(i, \, \xi^*) = \xi \text{ for an } i \in \omega,$$

$$p_{\mu}^* := \text{minimal such that } h_{\mu}^{k+n-1}(i, p_{\mu}^*) = p_{\mu} \text{ for some } i \in \omega,$$

$$\alpha_{\mu}^{**}:=$$
 minimal such that $h_{\mu}^{k+n-1}(i,\,\alpha_{\mu}^{**})=\alpha_{\mu}^{*}$ for some $i\in\omega$.

Prove

$$\mid f_{(\beta,\,\xi,\,\mu)}^{1+n}\mid = \pi(n,\,\beta,\,\xi).$$

for all $n \in \omega$ by induction.

For n=0, this holds by definition of $f^1_{(\beta,\xi,\mu)}=f_{(\beta,\xi,\mu)}$. So assume that $|f^m_{(\beta,\xi,\mu)}|=\pi(m-1,\beta,\xi)$ is already proved for all $1\leq m\leq n$. Then, by definition of $\tau(m,\mu)$,

 $\alpha_{\tau(m, \mu)}$ = the (k + m - 1) th projectum of μ .

Let
$$\pi(n, \beta, \xi): I_{\overline{\mu}} \to I_{\mu}$$
. Then

(*)
$$\xi(m, \mu) = \pi(n, \beta, \xi)\xi(m, \overline{\mu})$$
 for all $1 \le m \le n$:

Let
$$\pi := \pi(n, \beta, \xi)$$
, $\alpha := \pi^{-1}[\alpha_{\tau(m, \mu)} \cap rng(\pi)]$, $\rho := \pi(\alpha)$,

$$r:=$$
 minimal such that $h_{\mu}^{k+m-2}(i,\,r)=p_{\mu}$ for an $i\in\omega$,

$$\alpha':=$$
 minimal such that $h_{\mu}^{k+m-2}(i,\,\alpha')=\alpha_{\mu}^*$ for an $i\in\omega,$

$$p := \text{the } (k + m - 1) \text{ th parameter of } \mu$$

and

$$\pi(\overline{r}) = r$$
, $\pi(\overline{p}) = p$, $\pi(\overline{\alpha}') = \alpha'$.

Let $\overline{\xi}:=\xi(m,\overline{\mu})$. Then $\overline{p}=h^{k+m-1}_{\overline{\mu}}(i,\langle\overline{x},\overline{\xi},\overline{r},\overline{\alpha'}\rangle)$ for a $\overline{x}\in J^X_{\alpha}$, because $\alpha=\alpha_{\tau(m,\overline{\mu})}$. So $p=h^{k+m-1}_{\mu}(i,\langle x,\xi,r,\alpha'\rangle)$, where $\pi(\overline{x})=x$ and $\pi(\overline{\xi})=\xi$. Thus $h^{k+m-1}_{\mu}[\omega\times(J^X_{\alpha_{\tau(m,\mu)}}\times\{\alpha',r,\xi\}^{<\omega})]=J^X_{\mu}$ by definition of p. So $\xi(m,\mu)\leq\xi$. Assume $\xi(m,\mu)<\xi$. Then

$$I_{\mu} \vDash \big(\exists \eta < \xi\big) \big(\exists i \in \omega\big) \big(\exists x \in J^X_{\rho}\big) \big(\xi = h^{k+m-1}_{\mu}(i, \left\langle x, \, \eta, \, r, \, \alpha' \right\rangle\big).$$

So

$$I_{\overline{\mu}} \vDash \big(\exists \eta < \overline{\xi}\big) \big(\exists i \in \omega\big) \big(\exists x \in J^X_\alpha\big) \big(\overline{\xi} = h^{\underline{k}+m-1}_{\overline{\mu}}(i, \big\langle x, \, \eta, \, \overline{r}, \, \overline{\alpha}' \big\rangle\big).$$

But this contradicts the definition of $\overline{\xi} = \xi(m, \overline{\mu})$.

So, for all $1 \le m \le n$,

$$\xi(m, \mu) \in rng(\pi(n, \beta, \xi)).$$

In addition, for all $\beta < \alpha_{\tau(m,\mu)}$,

$$d(f_{(\beta,\xi(m,\mu),\mu)}^m) < \alpha_{\tau(m,\mu)}.$$

Consider $\pi := \pi(m-1, \beta, \xi) = |f_{(\beta, \xi, \mu)}^m|$, where $\xi = \xi(m, \mu)$. Then $\pi : I_{\overline{\mu}}$ $\to I_{\mu}$ is the uncollapse of $h_{\mu}^{k+m-1}[\omega \times (\beta \times \{\xi, \alpha', r\}^{<\omega})]$, where

r:= minimal such that $h_{\mu}^{k+m-2}(i,\,r)=p_{\mu}$ for some $i\in\omega$,

 $\alpha':=$ minimal such that $h_{\mu}^{k+m-2}(i,\,\alpha')=\alpha_{\mu}^*$ for some $i\in\omega$.

And $h_{\overline{\mu}}^{k+m-1}[\omega \times (\beta \times \{\overline{\xi}, \overline{\alpha}', \overline{r}\}^{<\omega})] = J_{\overline{\mu}}^X$, where $\pi(\overline{\xi}) = \xi$, $\pi(\overline{\alpha}') = \alpha'$ and $\pi(\overline{r}) = r$. Assume $\alpha_{\tau(m, \mu)} \leq \overline{\mu} < \mu$. Then there were a function over $I_{\overline{\mu}}$ from $\beta < \alpha_{\tau(m, \mu)}$ onto $\alpha_{\tau(m, \mu)}$. This contradicts the fact that $\alpha_{\tau(m, \mu)}$ is a cardinal in I_{μ} . If $\overline{\mu} = \mu$, then $f_{(\beta, \overline{\xi}, \mu)}^m = id_{\mu}$. This contradicts the minimality of $\tau(m, \mu)$.

Since $\xi(m, \mu) \in rng(\pi(n, \beta, \xi))$, we can prove

$$rng(\pi(n, \beta, \xi)) \cap J^D_{\alpha_{\tau(m, \mu)}} \prec_1 \langle J^D_{\alpha_{\tau(m, \mu)}}, D_{\alpha_{\tau(m, \mu)}}, K^m_{\mu} \rangle$$

for all $1 \le m \le n$ as in Lemma 28.

We still must prove minimality. Let $f\Rightarrow \mu$ and $\beta \cup \{\xi\} \subseteq \mathit{rng}(f)$ such that

$$rng(f) \cap J^{D}_{\alpha_{\tau(m,\mu)}} \prec_1 \langle J^{D}_{\alpha_{\tau(m,\mu)}}, D_{\alpha_{\tau(m,\mu)}}, K^m_{\mu} \rangle,$$

$$\xi(m, \mu) \in rng(f)$$

holds for all $1 \le m \le n$. Show that f is Σ_{k+n} -elementary and that the first standard parameters including the (k+n-1)th are in rng(f). That suffices because $\pi(n, \beta, \xi)$ is minimal.

Let p_{μ}^{k+m} be the (k+m)th standard parameter of μ .

Prove, by induction on $0 \le m \le n$,

f is Σ_{k+m} -elementary,

$$p_{\mu}^{1}, ..., p_{\mu}^{k+m-1} \in rng(f).$$

For m=0, this is clear because $f f \Rightarrow \mu$. So assume it to be proved for m < n already. Then let $\alpha := \alpha_{\tau(m+1,\mu)}$ and $\overline{\alpha} = f^{-1}[\alpha \cap rng(f)]$. Consider $\pi := (f \upharpoonright J_{\overline{\alpha}}^D) : \langle J_{\overline{\alpha}}^D, D_{\overline{\alpha}}, \overline{K} \rangle \rightarrow \langle J_{\alpha}^D, D_{\alpha}, K_{\mu}^{m+1} \rangle$. Construct a Σ_{k+m+1} -elementary extension $\widetilde{\pi}$ of π . To do so, set

$$f_{\mu} = f_{(\beta, \xi(m+1, \mu), \mu)}^{m+1},$$

$$\mu(\beta) = d(f_{\beta}),$$

$$H = \bigcup \{ f_{\beta}[rng(\pi) \cap J_{\mu(\beta)}^{D}] | \beta < \alpha \}.$$

Then $H \cap J_{\alpha}^{D} = rng(\pi)$. For $rng(\pi) \subseteq H \cap J_{\alpha}^{D}$ is clear because $f_{\beta} \upharpoonright J_{\beta}^{D} = id \upharpoonright J_{\beta}^{D}$. So let $y \in H \cap J_{\alpha}^{D}$, i.e., $y = f_{\beta}(x)$ for some $x \in rng(\pi)$ and a $\beta < \alpha$. Let $K^{+} = rng(\pi)$ $K_{\mu}^{m+1} - Lim(K_{\mu}^{m+1})$ and $\beta(\eta) = \sup\{\beta \mid f_{(\beta, \xi(m+1, \eta), \eta)}^{m+1} \neq id_{\eta}\}$. Then

$$\langle J_{\alpha}^{D}, D_{\alpha}, K_{\mu}^{m+1} \rangle \vDash (\exists y) (\exists \eta \in K^{+}) (y = f_{(\beta, \xi(m+1, \eta), \eta)}^{m+1}(x) \in J_{\beta(\eta)}^{D}).$$

Since $rng(\pi) \prec_1 \langle J_{\alpha}^D, D_{\alpha}, K_{\mu}^{m+1} \rangle$, $y = f_{(\beta, \xi(m+1, \eta), \eta)}^{m+1}(x) \in rng(\pi)$ if $x \in rng(\pi)$ for such an η . But since $y = f_{(\beta, \xi(m+1, \eta), \eta)}^{m+1}(x) \in J_{\beta(\eta)}^D$, we get $f_{\beta}(x) = f_{(\beta, \xi(m+1, \eta), \eta)}^{m+1}(x) \in rng(\pi)$.

Show $H \prec_{k+m+1} I_{\mu}$. Since $f_{(\beta,\xi,\mu)}^{m+1} = \pi(m,\beta,\xi)$, $\alpha_{\tau(m+1,\mu)}$ is the (k+m)th projectum of μ . Like in (*) above, we can show that the (k+m)th standard parameter p_{μ}^{k+m} of μ is in $rng(f_{\beta})$. Now, let $I_{\mu} \vDash (\exists x) \phi(x,y,p_{\mu}^{1},...,p_{\mu}^{k+m})$, where ϕ is a Π_{k+m} formula and $y \in H \cap J_{\alpha}^{D}$. Since f_{β} is Σ_{k+m} -elementary, the following holds:

$$\begin{split} I_{\mu} &\vDash (\exists x) \phi(x, \ y, \ p_{\mu}^{1}, ..., \ p_{\mu}^{k+m}) \\ &\Leftrightarrow (\exists \gamma \in K_{\mu}^{m+1}) (\exists x) (I_{\gamma} \vDash \phi(x, \ y, \ p_{\gamma}^{1}, ..., \ p_{\gamma}^{k+m})). \end{split}$$

And since $rng(\pi) \prec_1 \langle J_{\alpha}^D, D_{\alpha}, K_{\mu}^{m+1} \rangle$,

$$rng(\pi) \vDash (\exists \gamma \in K_{\mu}^{m+1})(\exists x) (I_{\gamma} \vDash \varphi(x, y, p_{\gamma}^{1}, ..., p_{\gamma}^{k+m})).$$

Thus there is such an x in $rng(\pi)$ and therefore in H.

Let $\widetilde{\pi}$ be the uncollapse of H. Then $\widetilde{\pi}$ is Σ_{k+m} -elementary and, since $p_{\mu}^{1},...,p_{\mu}^{k+m}\in rng(f_{\beta})$ for all $\beta<\alpha$, we have $p_{\mu}^{1},...,p_{\mu}^{k+m}\in rng(\pi)=H$. In addition, by the induction hypothesis, f is Σ_{k+m} -elementary and $p_{\mu}^{1},...,p_{\mu}^{k+m-1}\in rng(f)$. Again as in (*) above, we can show that $p_{\mu}^{k+m}\in rng(f)$ using $\xi(m+1,\mu)\in rng(f)$. But since $\widetilde{\pi}$ and f are the same on the (k+m)th projectum, we get $\widetilde{\pi}=f$.

(SP) follows from $|f_{(\beta,\xi,\mu)}^{1+n}| = \pi(n,\beta,\xi)$, because for all $v \sqsubset \tau \sqsubseteq \mu_v$ such

that $\tau \in S^+$ (resp. $\tau = v$) the following holds:

$$p_{\tau} \in rng(\pi(n, \beta, \xi)) \Leftrightarrow \xi_{\tau} \in rng(\pi(n, \beta, \xi)).$$

This may again be shown as (*).

(DP2)

It is like (*) in (DF).

- (DP3)
- (a) is clear.
- (b) was already proved with (DF)⁺.

Theorem 30. Let $\langle X_{v} | v \in S^{X} \rangle$ be such that

- (1) $L[X] \models S^X = \{\beta(v) | v \text{ singular}\}$
- (2) L[X] is amenable
- (3) L[X] has condensation
- (4) L[X] has coherence.

Then there is a sequence $C = \langle C_{\nu} | \nu \in \hat{S} \rangle$ such that

- (1) L[C] = L[X],
- (2) L[C] has condensation,
- (3) C_{v} is club in J_{v}^{C} w.r.t. the canonical well-ordering $<_{v}$ of J_{v}^{C} ,
- (4) $opt(\langle C_{v}, <_{v} \rangle) > \omega \Rightarrow C_{v} \subseteq v$,
- (5) $\mu \in Lim(C_{\nu}) \Rightarrow C_{\mu} = C_{\nu} \cap \mu$,
- (6) $opt(C_{v}) < v$.

Proof. First, construct from L[X] a standard morass as in Theorem 29. Then construct an inner model L[C] from it as in [6].

Acknowledgements

The present paper is a part of my dissertation [5]. I thank Dieter Donder for being my adviser, Hugh Woodin for an invitation to Berkeley, where part of the work was done, and the DFG-Graduiertenkolleg 'Sprache, Information, Logik' in Munich for their support.

References

- [1] A. Beller, R.-B. Jensen and P. Welch, Coding the universe, London Mathematical Society Lecture Notes Series, Cambridge University Press, London, 1982.
- [2] K. Devlin, Aspects of constructibility, Lecture Notes in Mathematics, 354, Springer-Verlag, Berlin, 1973.
- [3] K. Devlin, Constructibility, Springer-Verlag, Berlin, 1984.
- [4] H.-D. Donder, R.-B. Jensen and L. J. Stanley, Condensation-coherent global square systems, Recursion Theory, Proceedings of Symposia in Pure Mathematics, Vol. 42, American Mathematical Society, Providence, 1985, pp. 237-258.
- [5] B. Irrgang, Kondensation und Moraste, Dissertation, München, 2002.
- [6] B. Irrgang, Proposing (ω_l, β) -Morasses, $\omega_l \le \beta$.
- [7] R.-B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308.
- [8] R.-B. Jensen, Higher-gap morasses, Hand-written Notes, 1972/73.