CONSTRUCTING $\left(\omega_{1}, \beta\right)$-MORASSES FOR $\omega_{1} \leq \beta$

BERNHARD IRRGANG

Mathematisches Institut
Universitaet Bonn
Endenicher Allee 60
53115 Bonn, Germany
e-mail: irrgang@math.uni-bonn.de

Abstract

Let $\kappa \in$ Card and $L_{\kappa}[X]$ be such that the fine structure theory, condensation and $\operatorname{Card}^{L_{\kappa}[X]}=\operatorname{Card} \bigcap \kappa$ hold. Then it is possible to prove the existence of morasses. In particular, I will prove that there is a κ-standard morass, a notion that I introduced in a previous paper. This shows the consistency of (ω_{1}, β)-morasses for all $\beta \geq \omega_{1}$.

1. Introduction

R. Jensen formulated in the 1970's the concept of an $\left(\omega_{\alpha}, \beta\right)$-morass whereby objects of size $\omega_{\alpha+\beta}$ could be constructed by a directed system of objects of size less than ω_{α}. He defined the notion of an $\left(\omega_{\alpha}, \beta\right)$-morass only for the case that $\beta<\omega_{\alpha}$. I introduced in a previous paper [6] a definition of an $\left(\omega_{\alpha}, \beta\right)$-morass for the case that $\omega_{1} \leq \beta$.

This definition of an $\left(\omega_{1}, \beta\right)$-morass for the case that $\omega_{1} \leq \beta$ seems to be an 2010 Mathematics Subject Classification: 03E05.
Keywords and phrases: higher gap morasses, inner model, condensation, fine structure, coherence

Submitted by Qi Feng
Received August 24, 2009; Revised December 17, 2010
axiomatic description of the condensation property of Gödel's constructible universe L and the whole fine structure theory of it. I was, however, not able to formulate and prove this fact in form of a mathematical statement. Therefore, I defined a seemingly innocent strengthening of the notion of an $\left(\omega_{1}, \beta\right)$-morass, which I actually expect to be equivalent to the notion of $\left(\omega_{1}, \beta\right)$-morass. I call this strengthening an $\omega_{1+\beta}-$ standard morass. As will be seen, if we construct a morass in the usual way in L, the properties of a standard morass hold automatically.

Using the notion of a standard morass, I was able to prove a theorem which can be interpreted as saying that standard morasses fully cover the condensation property and fine structure of L. More precisely, I was able to show the following [6].

Theorem. Let $\kappa \geq \omega_{1}$ be a cardinal and assume that a κ-standard morass exists. Then there exists a predicate X such that Card $\cap \kappa=\operatorname{Card}^{L_{\kappa}[X]}$ and $L_{\mathrm{K}}[X]$ satisfies amenability, coherence and condensation.

Let me explain this. The predicate X is a sequence $X=\left\langle X_{v} \mid v \in S^{X}\right\rangle$, where $S^{X} \subseteq \operatorname{Lim} \cap \kappa$, and $L_{\mathrm{K}}[X]$ is endowed with the following hierarchy: Let $I_{\mathrm{v}}=$ $\left\langle J_{v}^{X}, X \upharpoonright v\right\rangle$ for $v \in \operatorname{Lim}-S^{X}$ and $I_{v}=\left\langle J_{v}^{X}, X \upharpoonright v, X_{v}\right\rangle$ for $v \in S^{X}$, where $X_{v} \subseteq J_{v}^{X}$ and

$$
\begin{aligned}
& J_{0}^{X}=\varnothing, \\
& J_{v+\omega}^{X}=\operatorname{rud}\left(I_{v}^{X}\right), \\
& J_{\lambda}^{X}=\bigcup\left\{J_{v}^{X} \mid v \in \lambda\right\} \text { for } \lambda \in \operatorname{Lim}^{2}:=\operatorname{Lim}(\operatorname{Lim}),
\end{aligned}
$$

where $\operatorname{rud}\left(I_{v}^{X}\right)$ is the rudimentary closure of $J_{v}^{X}=\bigcup\left\{J_{v}^{X}\right\}$ relative to $X \upharpoonright v$ if $v \in \operatorname{Lim}-S^{X}$ and relative to $X \upharpoonright v$ and X_{v} if $v \in S^{X}$. Now, the properties of $L_{\kappa}[X]$ are defined as follows:
(Amenability) The structures I_{v} are amenable.
(Coherence) If $v \in S^{X}, H \prec_{1} I_{v}$ and $\lambda=\sup (H \cap O n)$, then $\lambda \in S^{X}$ and $X_{\lambda}=X_{v} \cap J_{\lambda}^{X}$.
(Condensation) If $\lambda \in S^{X}$ and $H \prec_{1} I_{v}$, then there is some $\mu \in S^{X}$ such that $H \cong I_{\mu}$.

Moreover, if we let $\beta(v)$ be the least β such that $J_{\beta+\omega}^{X} \vDash v$ singular, then $S^{X}=\left\{\beta(v) \mid v\right.$ singular in $\left.I_{\kappa}\right\}$.

As will be seen, these properties suffice to develop the fine structure theory. In this sense, the theorem shows indeed what I claimed. In the present paper, I shall show the converse:

Theorem. If $L_{\kappa}[X], \kappa \in$ Card, satisfies condensation, coherence, amenability, $S^{X}=\left\{\beta(v) \mid v\right.$ singular in $\left.I_{\kappa}\right\}$ and $\operatorname{Card}^{L_{\kappa}[X]}=\operatorname{Card} \cap \kappa$, then there is a кstandard morass.

Since L itself satisfies the properties of $L_{\kappa}[X]$, this also shows that the existence of κ-standard morasses and (ω_{1}, β) -morasses is consistent for all $\kappa \geq \omega_{2}$ and all $\lambda \geq \omega_{1}$.

Most results that can be proved in L from condensation and the fine structure theory also hold in the structures $L_{\kappa}[X]$ of the above form. As examples, I proved in my dissertation the following two theorems whose proofs can also be seen as applications of morasses:

Theorem. Let $\lambda \geq \omega_{1}$ be a cardinal, $S^{X} \subseteq \operatorname{Lim} \cap \lambda, \quad \operatorname{Card} \cap \lambda=\operatorname{Card}^{L_{\lambda}[X]}$ and $X=\left\langle X_{v} \mid v \in S^{X}\right\rangle$ be a sequence such that amenability, coherence, condensation and $S^{X}=\left\{\beta(v) \mid v\right.$ singular in $\left.I_{\kappa}\right\}$ hold. Then \square_{k} holds for all infinite cardinals $\kappa<\lambda$.

Theorem. Let $S^{X} \subseteq$ Lim and $X=\left\langle X_{v} \mid v \in S^{X}\right\rangle$ be a sequence such that amenability, coherence, condensation and $S^{X}=\{\beta(v) \mid v$ singular in $L[X]\}$ hold. Then the weak covering lemma holds for $L[X]$. That is, if there is no non-trival, elementary embedding $\pi: L[X] \rightarrow L[X], \quad \kappa \in \operatorname{Card}^{L[X]}-\omega_{2}$ and $\tau=\left(\kappa^{+}\right)^{L[X]}$, then

$$
\tau<\kappa^{+} \Rightarrow c f(\tau)=\operatorname{card}(\kappa) .
$$

2. The Inner Model $L[X]$

We say a function $f: V^{n} \rightarrow V$ is rudimentary for some structure $\mathfrak{W}=$ $\left\langle W, X_{i}\right\rangle$ if it is generated by the following schemata:

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}\right)=x_{i} \text { for } 1 \leq i \leq n, \\
& f\left(x_{1}, \ldots, x_{n}\right)=\left\{x_{i}, x_{j}\right\} \text { for } 1 \leq i, j \leq n, \\
& f\left(x_{1}, \ldots, x_{n}\right)=x_{i}-x_{j} \text { for } 1 \leq i, j \leq n, \\
& f\left(x_{1}, \ldots, x_{n}\right)=h\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{n}\right)\right),
\end{aligned}
$$

where h, g_{1}, \ldots, g_{n} are rudimentary

$$
f\left(y, x_{2}, \ldots, x_{n}\right)=\bigcup\left\{g\left(z, x_{2}, \ldots, x_{n}\right) \mid z \in y\right\}
$$

where g is rudimentary

$$
f\left(x_{1}, \ldots, x_{n}\right)=X_{i} \cap x_{j} \text {, where } 1 \leq j \leq n .
$$

Lemma 1. A function is rudimentary iff it is a composition of the following functions:

$$
\begin{aligned}
& F_{0}(x, y)=\{x, y\}, \\
& F_{1}(x, y)=x-y, \\
& F_{2}(x, y)=x \times y \\
& F_{3}(x, y)=\{\langle u, z, v\rangle \mid z \in x \text { and }\langle u, v\rangle \in y\}, \\
& F_{4}(x, y)=\{\langle z, u, v\rangle \mid z \in x \text { and }\langle u, v\rangle \in y\}, \\
& F_{5}(x, y)=\bigcup x, \\
& F_{6}(x, y)=d o m(x), \\
& F_{7}(x, y)=\in \cap(x \times x), \\
& F_{8}(x, y)=\{x[\{z\}] \mid z \in y\} \\
& F_{9+i}(x, y)=x \cap X_{i}
\end{aligned}
$$

for the predicates X_{i} of the structure under consideration.

Proof. See, for example, in [3].
A relation $R \subseteq V^{n}$ is called rudimentary if there is a rudimentary function $f: V^{n} \rightarrow V$ such that $R\left(x_{i}\right) \Leftrightarrow f\left(x_{i}\right) \neq \varnothing$.

Lemma 2. Every relation that is Σ_{0} over the considered structure is rudimentary.

Proof. Let χ_{R} be the characteristic function of R. The claim follows from the facts (i)-(vi):
(i) R rudimentary $\Leftrightarrow \chi_{R}$ rudimentary.
\Leftarrow is clear. Conversely, $\chi_{R}=\bigcup\left\{g(y) \mid y \in f\left(x_{i}\right)\right\}$, where $g(y)=1$ is constant and $R\left(x_{i}\right) \Leftrightarrow f\left(x_{i}\right) \neq \varnothing$.
(ii) If R is rudimentary, then $\neg R$ is also rudimentary.

Since $\chi_{\neg R}=1-\chi_{R}$.
(iii) $x \in y$ and $x=y$ are rudimentary.

By $x \notin y \Leftrightarrow\{x\}-y \neq \varnothing, x \neq y \Leftrightarrow(x-y) \cup(y-x) \neq \varnothing$ and (ii).
(iv) If $R\left(y, x_{i}\right)$ is rudimentary, then $(\exists z \in y) R\left(z, x_{i}\right)$ and $(\forall z \in y) R\left(z, x_{i}\right)$ are rudimentary.

If $R\left(y, x_{i}\right) \Leftrightarrow f\left(y, x_{i}\right) \neq \varnothing$, then

$$
(\exists z \in y) R\left(z, x_{i}\right) \Leftrightarrow \bigcup\left\{f\left(z, x_{i}\right) \mid z \in y\right\} \neq \varnothing .
$$

The second claim follows from this by (ii).
(v) If $R_{1}, R_{2} \subseteq V^{n}$ are rudimentary, then so are $R_{1} \vee R_{2}$ and $R_{1} \wedge R_{2}$.

Because $f(x, y)=x \bigcup y$ is rudimentary, $\left(R_{1} \vee R_{2}\right)\left(x_{i}\right) \Leftrightarrow \chi_{R_{1}}\left(x_{i}\right) \cup \chi_{R_{2}}\left(x_{i}\right)$ $\neq \varnothing$ is rudimentary. The second claim follows from that by (ii).
(vi) $x \in X_{i}$ is rudimentary.

Since $\{x\} \cap X_{i} \neq \varnothing \Leftrightarrow x \in X_{i}$.

For a converse of this lemma, we define:
A function f is called simple if $R\left(f\left(x_{i}\right), y_{k}\right)$ is Σ_{0} for every Σ_{0}-relation $R\left(z, y_{k}\right)$.

Lemma 3. A function f is simple iff
(i) $z \in f\left(x_{i}\right)$ is Σ_{0},
(ii) $A(z)$ is $\Sigma_{0} \Rightarrow\left(\exists z \in f\left(x_{i}\right)\right) A(z)$ is Σ_{0}.

Proof. If f is simple, then (i) and (ii) hold, because these are instances of the definition. The converse is proved by induction on Σ_{0}-formulas, e.g., if $R\left(z, y_{k}\right): \Leftrightarrow z=y_{k}$, then $R\left(f\left(x_{i}\right), y_{k}\right) \Leftrightarrow f\left(x_{i}\right)=y_{k} \Leftrightarrow\left(\forall z \in f\left(x_{i}\right)\right)\left(z \in y_{k}\right)$ and $\left(\forall z \in y_{k}\right)\left(z \in f\left(x_{i}\right)\right)$. Thus we need (i) and (ii). The other cases are similar.

Lemma 4. Every rudimentary function is Σ_{0} in the parameters X_{i}.
Proof. By induction, one proves that the rudimentary functions that are generated without the schema $f\left(x_{1}, \ldots, x_{n}\right)=X_{i} \cap x_{j}$ are simple. For this, one uses Lemma 3. But since the function $f(x, y)=x \bigcap y$ is one of those, the claim holds.

Thus every rudimentary relation is Σ_{0} in the parameters X_{i}, but not necessarily Σ_{0} with the X_{i} as predicates. An example is the relation $\{x, y\} \in X_{0}$.

A structure is said to be rudimentary closed if its underlying set is closed under all rudimentary functions.

Lemma 5. If W is rudimentary closed and $H \prec_{1} \mathfrak{W}$, then H and the collapse of H are also rudimentary closed.

Proof. That is clear, since the functions F_{0}, \ldots, F_{9+i} are Σ_{0} with the predicates X_{i}.

Let T_{N} be the set of Σ_{0} formulae of our language $\left\{\in, X_{1}, \ldots, X_{N}\right\}$ having exactly one free variable. By Lemma 2, there is a rudimentary function f for every Σ_{0} formula ψ such that $\psi\left(x_{*}\right) \Leftrightarrow f\left(x_{*}\right) \neq \varnothing$. By Lemma 1, we have

$$
x_{0}=f\left(x_{*}\right)=F_{k_{1}}\left(x_{1}, x_{2}\right)
$$

$$
\begin{aligned}
\text { where } x_{1} & =F_{k_{2}}\left(x_{3}, x_{4}\right) \\
x_{2} & =F_{k_{3}}\left(x_{5}, x_{6}\right) \\
\text { and } \quad x_{3} & =\cdots .
\end{aligned}
$$

Of course, x_{*} appears at some point.
Therefore, we may define an effective Gödel coding

$$
T_{N} \rightarrow G, \quad \psi_{u} \mapsto u
$$

as follows $(m, n$ possibly $=*)$:

$$
\langle k, l, m, n\rangle \in u: \Leftrightarrow x_{k}=F_{l}\left(x_{m}, x_{n}\right) .
$$

Let $\vDash_{\mathfrak{W}}^{\Sigma_{0}}\left(u, x_{*}\right): \Leftrightarrow$
ψ_{u} is Σ_{0} formula with exactly one free variable and $\mathfrak{W} \vDash \psi_{u}\left(x_{*}\right)$.

Lemma 6. If \mathfrak{W} is transitive and rudimentary closed, then $\vDash_{\mathfrak{W}}^{\Sigma_{0}}(x, y)$ is Σ_{1}-definable over \mathfrak{W}. The definition of $\vDash_{\mathfrak{W}}^{\Sigma_{0}}\left(u, x_{*}\right)$ depends only on the number of predicates of \mathfrak{W}. That is, it is uniform for all structures of the same type.

Proof. Whether $\vDash_{\mathfrak{W}}^{\Sigma_{0}}\left(u, x_{*}\right)$ holds, may be computed directly. First, one computes the x_{k} which only depend on x_{*}. For those $\langle k, l, *, *\rangle \in u$. Then one computes the x_{i} which only depend on x_{m} and x_{n} such that $m, n \in$ $\{k \mid\langle k, l, *, *\rangle \in u\}$ - etc. Since \mathfrak{W} is rudimentary closed, this process only breaks off, when one has computed $x_{0}=f\left(x_{*}\right)$. And $\vDash_{\mathfrak{W}}^{\Sigma_{0}}\left(u, x_{*}\right)$ holds iff $x_{0}=f\left(x_{0}\right)$ $\neq \varnothing$.

More formally speaking: $\vDash_{\mathfrak{W}}^{\Sigma_{0}}\left(x, x_{*}\right)$ holds iff there is some sequence $\left\langle x_{i} \mid i \in d\right\rangle, d=\{k \mid\langle k, l, m, n\rangle \in u\}$ such that

$$
\langle k, l, m, n\rangle \in u \Rightarrow x_{k}=F_{l}\left(x_{m}, x_{n}\right) \text { and } x_{0} \neq \varnothing
$$

Hence $\vDash_{\mathfrak{W}}^{\Sigma_{0}}$ is Σ_{1}.

If \mathfrak{W} is a structure, then let $\operatorname{rud}(\mathfrak{W})$ be the closure of $W \bigcup\{W\}$ under the functions which are rudimentary for $\mathfrak{W J}$.

Lemma 7. If \mathfrak{W} is transitive, then so is $\operatorname{rud}(\mathfrak{W})$.
Proof. By induction on the definition of the rudimentary functions.
Lemma 8. Let $\mathfrak{W J}$ be a transitive structure with underlying set W. Then

$$
\operatorname{rud}(\mathfrak{W}) \cap \mathfrak{P}(W)=\operatorname{Def}(\mathfrak{W})
$$

Proof. First, let $A \in \operatorname{Def}(\mathfrak{W})$. Then A is Σ_{0} over $\left\langle W \bigcup\{W\}, X_{i}\right\rangle$, i.e. there are parameters $p_{i} \in W \bigcup\{W\}$ and some Σ_{0} formula φ such that $x \in A \Leftrightarrow \varphi\left(x, p_{i}\right)$. But by Lemma 2, every Σ_{0} relation is rudimentary. Thus there is a rudimentary function f such that $x \in A \Leftrightarrow f\left(x, p_{i}\right) \neq \varnothing$. Let $g(z, x)=\{x\}$ and define $h(y, x)$ $=\bigcup\{g(z, x) \mid z \in y\}$. Then $h\left(f\left(x, p_{i}\right), x\right)=\bigcup\left\{g(z, x) \mid z \in f\left(x, p_{i}\right)\right\}$ is rudimentary, $h\left(f\left(x, p_{i}\right), x\right)=\varnothing$ if $x \notin A$ and $h\left(f\left(x, p_{0}\right), x\right)=\{x\}$ if $x \in A$. Finally, let $H\left(y, p_{i}\right)=\bigcup\left\{h\left(f\left(x, p_{i}\right), x\right) \mid x \in y\right\}$. Then H is rudimentary and $A=H\left(W, p_{i}\right)$. So we are done.

Conversely, let $A \in \operatorname{rud}(\mathfrak{W}) \cap \mathfrak{P}(W)$. Then there is a rudimentary function f and some $a \in W$ such that $A=f(a, W)$. By Lemma 4 and Lemma 3, there exists Σ_{0} formula such that $x \in f(a, W) \Leftrightarrow \psi\left(x, a, W, X_{i}\right)$. By Σ_{0} absoluteness, $A=$ $\left\{x \in W \mid W \bigcup\left\{W, X_{i}\right\} \vDash \psi\left(x, a, W, X_{i}\right)\right\}$, since $X_{i} \subseteq W$. Therefore, there is a formula φ such that $A=\{x \in W \mid \mathfrak{W} \vDash \varphi(x, a)\}$.

Let $\kappa \in \operatorname{Card}-\omega_{1}, S^{X} \subseteq \operatorname{Lim} \bigcap \kappa$ and $\left\langle X_{v} \upharpoonright v \in S^{X}\right\rangle$ be a sequence.
For $v \in \operatorname{Lim}-S^{X}$, let $I_{v}=\left\langle J_{v}^{X}, X \upharpoonright v, X_{v}\right\rangle$ and let $I_{v}=\left\langle J_{v}^{X}, X \upharpoonright v, X_{v}\right\rangle$ for $v \in S^{X}$ such that $X_{v} \subseteq J_{v}^{X}$, where

$$
\begin{aligned}
& J_{0}^{X}=\varnothing \\
& J_{v+\omega}^{X}=\operatorname{rud}\left(I_{v}\right), \\
& J_{\lambda}^{X}=\bigcup\left\{J_{v}^{X} \mid v \in \lambda\right\} \text { if } \lambda \in \operatorname{Lim}^{2}:=\operatorname{Lim}(\operatorname{Lim}) .
\end{aligned}
$$

Obviously, $L_{\kappa}[X]=\bigcup\left\{J_{\vee}^{X} \mid v \in \kappa\right\}$.

We say that $L_{\kappa}[X]$ is amenable if I_{v} is rudimentary closed for all $v \in S^{X}$.
Lemma 9. (i) Every J_{v}^{X} is transitive,
(ii) $\mu<v \Rightarrow J_{\mu}^{X} \in J_{v}^{X}$,
(iii) $\operatorname{rank}\left(J_{v}^{X}\right)=J_{v}^{X} \cap O n=v$.

Proof. That are three easy proofs by induction.
Sometimes we need levels between J_{v}^{X} and $J_{v+\omega}^{X}$. To make those transitive, we define

$$
\begin{aligned}
& G_{i}(x, y, z)=F_{i}(x, y) \text { for } i \leq 8, \\
& G_{9}(x, y, z)=x \bigcap X, \\
& G_{10}(x, y, z)=\langle x, y\rangle, \\
& G_{11}(x, y, z)=x[y] \\
& G_{12}(x, y, z)=\{\langle x . y\rangle\} \\
& G_{13}(x, y, z)=\langle x, y, z\rangle, \\
& G_{14}(x,, z)=\{\langle x . y\rangle, z\} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& S_{0}=\varnothing \\
& S_{\mu+1}=S_{\mu} \cup\left\{S_{\mu}\right\} \cup \bigcup\left\{G_{i}\left[\left(S_{\mu} \cup\left\{S_{\mu}\right\}\right)^{3}\right] \mid i \in 15\right\} \\
& S_{\lambda}=\bigcup\left\{S_{\mu} \mid \mu \in \lambda\right\} \text { if } \lambda \in \operatorname{Lim} .
\end{aligned}
$$

Lemma 10. The sequence $\left\langle I_{\mu} \mid \mu \in \operatorname{Lim} \cap v\right\rangle$ is (uniformly) Σ_{1}-definable over I_{v}.

Proof. By definition $J_{\mu}^{X}=S_{\mu}$ for $\mu \in \operatorname{Lim}$, that is, the sequence $\left\langle J_{\mu}^{X} \mid \mu \in \operatorname{Lim} \bigcap v\right\rangle$ is the solution of the recursion defining Σ_{0} restricted to Lim.

Since the recursion condition is Σ_{0} over I_{v}, the solution is Σ_{1}. It is Σ_{1} over I_{v} if the existential quantifier can be restricted to J_{v}^{X}. Hence we must prove $\left\langle S_{\mu} \mid \mu \in \tau\right\rangle$ $\in J_{v}^{X}$ for $\tau \in v$. This is done by induction on v. The base case $v=0$ and the limit step are clear. For the successor step, note that $S_{\mu+1}$ is a rudimentary function of S_{μ} and μ, and use the rudimentary closedness of J_{v}^{X}.

Lemma 11. There are well-orderings $<_{v}$ of the sets J_{v}^{X} such that
(i) $\mu<v \Rightarrow<_{\mu} \subseteq<_{v}$,
(ii) $<_{v+1}$ is an end-extension of $<_{v}$,
(iii) the sequence $\left\langle<_{\mu} \mid \mu \in \operatorname{Lim} \bigcap v\right\rangle$ is (uniformly) Σ_{1}-definable over I_{v},
(iv) $<_{v}$ is (uniformly) Σ_{1}-definable over I_{v},
(v) the function $\operatorname{pr}_{v}(x)=\left\{z \mid z<_{v} x\right\}$ is (uniformly) Σ_{1}-definable over I_{v}.

Proof. Define well-orderings $<_{\mu}$ of S_{μ} by recursion:
(I) $<_{0}=\varnothing$.
(II) (1) For $x, y \in S_{\mu}$, let $x<_{\mu+1} y \Leftrightarrow x<_{\mu} y$.
(2) $x \in S_{\mu}$ and $y \notin S_{\mu} \Rightarrow y<_{\mu+1} y$, $y \in S_{\mu}$ and $x \notin S_{\mu} \Rightarrow y<_{\mu+1} x$.
(3) If $x, y \notin S_{\mu}$, then there is an $i \in 15$ and $x_{1}, x_{2}, x_{3} \in S_{\mu}$ such that $x=G_{i}\left(x_{1}, x_{2}, x_{3}\right)$. And there is a $j \in 15$ and $y_{1}, y_{2}, y_{3} \in S_{\mu}$ such that $y=G_{j}\left(y_{1}, y_{2}, y_{3}\right)$. First, choose i and j minimal, then x_{1} and y_{1}, then x_{2} and y_{2}, and finally x_{3} and y_{3}.

Set:
(a) $x<_{\mu+1} y$ if $i<j$,

$$
y<_{\mu+1} x \text { if } i=j
$$

(b) $x_{1}<_{\mu} x_{1}$ if $i=j$ and $x_{1}<_{\mu} x_{1}$,
$y<_{\mu+1} y$ if $i=j$ and $y_{1}<_{\mu} x_{1}$.
(c) $x_{1}<_{\mu+1} y$ if $i=j$ and $x_{1}=y_{1}$ and $x_{2}<_{\mu} y_{2}$,
$y<_{\mu+1} x$ if $i=j$ and $x_{1}=y_{1}$ and $y_{2}<_{\mu} x_{2}$.
(d) $x<_{\mu+1} y$ if $i=j$ and $x_{1}=y_{1}$ and $x_{2}=y_{2}$ and $x_{3}<_{\mu} y_{3}$,
$y<_{\mu+1} x$ if $i=j$ and $x_{1}=y_{1}$ and $y_{2}=x_{2}$ and $y_{3}<_{\mu} x_{3}$.
(III) $<_{\lambda}=\bigcup\left\{<_{\mu} \mid \mu \in \lambda\right\}$.

The properties (i) to (v) are obvious. For the Σ_{1}-definability, one needs the argument from Lemma 10.

Lemma 12. The rudimentary closed $\left\langle J_{v}^{X}, X \upharpoonright v, A\right\rangle$ have a canonical Σ_{1}-Skolem function h.

Proof. Let $\left\langle\psi_{i} \mid i \in \omega\right\rangle$ be an effective enumeration of the Σ_{0} formulae with three free variables. Intuitively, we would define:

$$
h(i, x) \simeq(z)_{0}
$$

for

$$
\text { the }<_{v} \text {-least } z \in J_{v}^{X} \text { such that }\left\langle J_{v}^{X}, X \upharpoonright v, A\right\rangle \vDash \psi_{i}\left((z)_{0}, x,(z)_{1}\right) \text {. }
$$

Formally, we define:
By Lemma 11(v), let θ be a Σ_{0} formula such that

$$
w=\left\{v \mid v<_{v} z\right\} \Leftrightarrow\left\langle J_{v}^{X}, X \upharpoonright v, A\right\rangle \vDash(\exists t) \theta(w, z, t)
$$

Let u_{i} be the Gödel coding of

$$
\theta\left((s)_{1},(s)_{0},(s)_{2}\right) \wedge \psi\left(\left((s)_{0}\right)_{0}, s_{3},\left((s)_{0}\right)_{1}\right) \wedge\left(\forall v \in(s)_{1}\right) \neg \psi_{i}\left((v)_{0},(s)_{3},(v)_{1}\right)
$$

and

$$
y=h(i, x) \Leftrightarrow(\exists s)\left(\left(\left(s_{0}\right)_{0}=y \wedge(s)_{3}=x \neq{ }_{\left\langle J_{v}^{X}, X \mid v, A\right\rangle}^{\Sigma_{0}}\left(u_{i}, s\right)\right) .\right.
$$

This has the desired properties. Note Lemma 6!

I will denote this Σ_{1}-Skolem function by $h_{v, A}$. Let $h_{v}:=h_{v, \varnothing}$.
Let us say that $L_{\kappa}[X]$ has condensation if the following holds:

If $v \in S^{X}$ and $H \prec_{1} I_{v}$, then there is some $\mu \in S^{X}$ such that $H \cong I_{\mu}$.
From now on, suppose that $L_{\kappa}[X]$ is amenable and has condensation.
Set $I_{v}^{0}=\left\langle J_{v}^{X}, X \upharpoonright v\right\rangle$ for all $v \in \operatorname{Lim} \bigcap \kappa$.
Lemma 13 (Gödel's pairing function). There is a bijection $\Phi: \mathrm{On}^{2} \rightarrow \mathrm{On}$ such that $\Phi(\alpha, \beta) \geq \alpha, \beta$ for all α, β and $\Phi^{-1} \upharpoonright \alpha$ is uniformly Σ_{1}-definable over I_{α}^{0} for all $\alpha \in$ Lim.

Proof. Define a well-ordering $<^{*}$ on $O n^{2}$ by

$$
\langle\alpha, \beta\rangle<^{*}\langle\gamma, \delta\rangle
$$

iff

$$
\begin{aligned}
& \max (\alpha, \beta)<\max (\gamma, \delta) \text { or } \\
& \max (\alpha, \beta)=\max (\gamma, \delta) \text { and } \alpha<\gamma \text { or } \\
& \max (\alpha, \beta)=\max (\gamma, \delta) \text { and } \alpha=\gamma \text { and } \beta<\delta
\end{aligned}
$$

Let $\Phi:\left\langle O n^{2},<^{*}\right\rangle \cong\langle O n,<\rangle$. Then Φ may be defined by the recursion

$$
\begin{aligned}
& \Phi(0, \beta)=\sup \{\Phi(v, v) \mid v<\beta\} \\
& \Phi(\alpha, \beta)=\Phi(0, \beta)+\alpha \text { if } \alpha<\beta \\
& \Phi(\alpha, \beta)=\Phi(0, \alpha)+\alpha+\beta \text { if } \alpha \geq \beta
\end{aligned}
$$

So there is a uniform map from α onto $\alpha \times \alpha$ for all α that are closed under Gödel's pairing function. Such a map exists for all $\alpha \in \operatorname{Lim}$. But then we have to give up uniformity.

Lemma 14. For all $\alpha \in$ Lim, there exists a function from α onto $\alpha \times \alpha$ that is Σ_{1}-definable over I_{α}^{0}.

Proof. by induction on $\alpha \in \operatorname{Lim}$. If α is closed under Gödel's pairing function, then Lemma 13 does the job. Therefore, if $\alpha=\beta+\omega$ for some $\beta \in \operatorname{Lim}$, we may assume $\beta \neq 0$. But then there is some over $I_{\alpha}^{0} \Sigma_{1}$-definable bijection $j: \alpha \rightarrow \beta$. And by the induction hypothesis, there is an over $I_{\alpha}^{0} \Sigma_{1}$-definable function from β onto $\beta \times \beta$. Thus there exists a Σ_{1} formula $\varphi(x, y, p)$ and a parameter $p \in J_{\beta}^{X}$ such that there is some $x \in \beta$ satisfying $\varphi(x, y, p)$ for all $y \in \beta \times \beta$. So we get an over $I_{\beta}^{0} \Sigma_{1}$-definable injective function $g: \beta \times \beta \rightarrow \beta$ from the Σ_{1}-Skolem function. Hence $f(\langle v, \tau\rangle)=g(\langle j(v), j(\tau)\rangle)$ defines an injective function $f: \alpha^{2} \rightarrow \beta$ which is Σ_{1}-definable over I_{α}^{0}. An h which is as needed may be defined by

$$
\begin{aligned}
& h(v)=f^{-1}(v) \text { if } v \in r n g(f) \\
& h(v)=\langle 0,0\rangle \text { else }
\end{aligned}
$$

For $r n g(f)=r n g(g) \in J_{\alpha}^{X}$.
Now, assume $\alpha \in \operatorname{Lim}^{2}$ is not closed under Gödel's pairing function. Then $v, \tau \in \alpha$ for $\langle v, \tau\rangle=\Phi^{-1}(\alpha)$, and $c:=\left\{z \mid z<^{*}\langle v, \tau\rangle\right\}$ lies in J_{α}^{X}. Thus $\Phi^{-1} \upharpoonright c: c$ $\rightarrow \alpha$ is an over $I_{\alpha}^{0} \Sigma_{1}$-definable bijection. Pick a $\gamma \in \operatorname{Lim}$ such that $\nu, \tau<\gamma$. Then $\Phi^{-1} \upharpoonright \alpha: \alpha \rightarrow \gamma^{2}$ is an over $I_{\alpha}^{0} \Sigma_{1}$-definable injective function. Like in the first case, there exists an injective function $g: \gamma \times \gamma \rightarrow \gamma$ in J_{α}^{X} by the induction hypothesis. So $\left.f(\langle\xi, \zeta\rangle)=g\left(\left\langle g \Phi^{-1}(\xi), g \Phi^{-1}(\zeta)\right)\right\rangle\right)$ defines an over $I_{\alpha}^{0} \Sigma_{1}$-definable bijection $f: \alpha^{2} \rightarrow d$ such that $d:=g[g[c] \times g[c]]$. Again, we define h by

$$
\begin{aligned}
& h(\xi)=f^{-1}(\xi) \text { if } \xi \in d, \\
& h(\xi)=\langle 0,0\rangle \text { else. }
\end{aligned}
$$

Lemma 15. Let $\alpha \in \operatorname{Lim}-\omega+1$. Then there is some over $I_{\alpha}^{0} \Sigma_{1}$-definable function from α onto J_{α}^{X}. This function is uniformly definable for all α closed under Gödel's pairing function.

Proof. Let $f: \alpha \rightarrow \alpha \times \alpha$ be a surjective function which is Σ_{1}-definable over I_{α}^{0} with parameter p. Let p be minimal with respect to the canonical well-ordering such that such an f exists. Define f^{0}, f^{1} by $f\langle v\rangle=\left\langle f^{0}(v), f^{1}(v)\right\rangle$ and, by induction, define $f_{1}=i d \upharpoonright \alpha$ and $f_{n+1}(v)=\left\langle f^{0}(v), f_{n} \circ f^{1}(v)\right\rangle$. Let $h:=h_{\alpha}$ be the canonical Σ_{1}-Skolem function and $H=h[\omega \times(\alpha \times\{p\})]$. Then H is closed under ordered pairs. For, if $y_{1}=h\left(j_{1},\left\langle v_{1}, p\right\rangle\right), y_{2}=h\left(j_{2},\left\langle v_{2}, p\right\rangle\right)$ and $\left\langle v_{1}, v_{2}\right\rangle$ $=f(\tau)$, then $\left\langle y_{1}, y_{2}\right\rangle$ is Σ_{1}-definable over I_{α}^{0} with the parameters τ, p. Hence it is in H. Since H is closed under ordered pairs, we have $H \prec_{1} I_{\alpha}^{0}$. Let $\sigma: H \rightarrow I_{\beta}^{0}$ be the collapse of H. Then $\alpha=\beta$, because $\alpha \subseteq H$ and $\sigma \upharpoonright \alpha=i d \upharpoonright \alpha$. Thus $\sigma[f]=f$, and $\sigma[f]$ is Σ_{1}-definable over I_{α}^{0} with the parameter $\sigma(p)$. Since σ is a collapse, $\sigma(p) \leq p$. So $\sigma(p)=p$ by the minimality of p. In general, $\pi(h(i, x)) \simeq h(i, \pi(x))$ for Σ_{1}-elementary π. Therefore, $\sigma(h(i,\langle v, p\rangle)) \simeq h(i,\langle v, p\rangle)$ holds in our case for all $i \in \omega$ and $v \in \alpha$. But then $\sigma \upharpoonright H=i d \upharpoonright H$ and $H=J_{\alpha}^{X}$. Thus we may define the needed surjective map by $g \circ f_{3}$, where

$$
\begin{aligned}
& g(i, v, \tau)=y \text { if }\left(\exists z \in S_{\tau}\right) \varphi(z, y, i,\langle v, p\rangle) \\
& g(i, v, \tau)=\varnothing \text { else. }
\end{aligned}
$$

Here, S_{τ} shall be defined as in Lemma 10 and

$$
y=h(i, x) \Leftrightarrow\left(\exists t \in J_{\alpha}^{X}\right) \varphi(t, i, x, y) .
$$

Let $\left\langle I_{v}^{0}, A\right\rangle:=\left\langle J_{v}^{X}, X \upharpoonright v, A\right\rangle$.
The idea of the fine structure theory is to code Σ_{n} predicates over large structures in Σ_{1} predicates over smaller structures. In the simplest case, one codes the Σ_{1} information of the given structure I_{β}^{0} in a rudimentary closed structure $\left\langle I_{\rho}^{0}, A\right\rangle$, i.e., we want to have something like:

Over I_{β}^{0}, there exists a Σ_{1} function f such that

$$
f\left[J_{\rho}^{X}\right]=J_{\beta}^{X} .
$$

For the Σ_{1} formulae φ_{1},

$$
\langle i, x\rangle \in A \Leftrightarrow I_{\beta}^{0} \models \varphi_{i}(f(x))
$$

holds. And

$$
\left\langle I_{\rho}^{0}, A\right\rangle \text { is rudimentary closed. }
$$

Now, suppose we have such an $\left\langle I_{\rho}^{0}, A\right\rangle$. Then every $B \subseteq J_{\rho}^{X}$ that is Σ_{1}-definable over I_{β}^{0} is of the form

$$
B=\{x \mid A(i,\langle x, p\rangle)\} \text { for some } i \in \omega, p \in J_{\rho}^{X}
$$

So $\left\langle I_{\rho}^{0}, B\right\rangle$ is rudimentary closed for all $B \in \Sigma_{1}\left(I_{\beta}^{0}\right) \cap \mathfrak{P}\left(J_{\rho}^{X}\right)$.
The ρ is uniquely determined.
Lemma 16. Let $\beta>\omega$ and $\left\langle I_{\rho}^{0}, C\right\rangle$ be rudimentary closed. Then there is at most one $\rho \in$ Lim such that

$$
\left\langle I_{\rho}^{0}, C\right\rangle \text { is rudimentary closed for all } C \in \Sigma_{1}\left(\left\langle I_{\beta}^{0}, B\right\rangle\right) \cap \mathfrak{P}\left(J_{\rho}^{X}\right)
$$

and
there is an over $\left\langle I_{\rho}^{0}, B\right\rangle \Sigma_{1}$-definable function f such that $f\left[J_{\rho}^{X}\right]=J_{\beta}^{X}$.
Proof. Assume $\rho<\bar{\rho}$ both had these properties. Let f be an over $\left\langle I_{\beta}^{0}, B\right\rangle \Sigma_{1}$ definable function such that $f\left[J_{\rho}^{X}\right]=J_{\beta}^{X}$ and $C=\left\{x \in J_{\rho}^{X} \mid x \notin f(x)\right\}$. Then $C \subseteq J_{\rho}^{X}$ is Σ_{1}-definable over $\left\langle I_{\beta}^{0}, B\right\rangle$ So $\left\langle I \frac{0}{\rho}, C\right\rangle$ is rudimentary closed. But then $C=C \bigcap J_{\rho}^{X} \in J \bar{\rho}$. Hence there is an $x \in J_{\rho}^{X}$ such that $C=f(x)$. From this, the contradiction $x \in f(x) \Leftrightarrow x \in C \Leftrightarrow x \notin f(x)$ follows.

The uniquely determined ρ from Lemma 16 is called the projectum of $\left\langle I_{\beta}^{0}, B\right\rangle$. If there is some over $\left\langle I_{\beta}^{0}, B\right\rangle \Sigma_{1}$-definable function f such that $f\left[J_{\rho}^{X}\right]=J_{\beta}^{X}$, then $h_{\beta, B}\left[\omega \times\left(J_{\rho}^{X} \times\{p\}\right)\right]=J_{\beta}^{X}$ for a $p \in J_{\beta}^{X}$. Using the canonical function $h_{\beta, B}$, we can define a canonical A :

Let p be minimal with respect to the canonical well-ordering such that the above property holds. Define

$$
A=\left\{\langle i, x\rangle \mid i \in \omega \text { and } x \in J_{\rho}^{X} \text { and }\left\langle I_{\beta}^{0}, B\right\rangle \vDash \varphi_{i}(x, p)\right\} .
$$

We say p is the standard parameter of $\left\langle I_{\beta}^{0}, B\right\rangle$ and A the standard code of it.

Lemma 17. Let $\beta>0$ and $\left\langle I_{\beta}^{0}, B\right\rangle$ be rudimentary closed. Let ρ be the projectum and A the standard code of it. Then for all $m \geq 1$, the following holds:

$$
\Sigma_{1+m}\left(\left\langle I_{\beta}^{0}, B\right\rangle\right) \cap \mathfrak{P}\left(J_{\rho}^{X}\right)=\Sigma_{m}\left(\left\langle I_{\rho}^{0}, A\right\rangle\right)
$$

Proof. First, let $R \in \Sigma_{1+m}\left(\left\langle I_{\beta}^{0}, B\right\rangle\right) \cap \mathfrak{P}\left(J_{\rho}^{X}\right)$ and let m be even. Let P be a relation being Σ_{1}-definable over $\left\langle I_{\beta}^{0}, B\right\rangle$ with parameter q_{1} such that, for $x \in J_{\rho}^{X}$, $R(x)$ holds $\exists y_{0} \forall y_{1} \exists y_{3} \cdots \forall y_{m-1} P\left(y_{i}, x\right)$. Let f be some over $\left\langle I_{\beta}^{0}, B\right\rangle$ with parameter $q_{2} \Sigma_{1}$-definable function such that $f\left[J_{\rho}^{X}\right]=J_{\beta}^{X}$. Define $Q\left(z_{i}, x\right)$ by $z_{i}, x \in J_{\rho}^{X}$ and $\left(\exists y_{i}\right)\left(y_{i}=f\left(z_{i}\right)\right.$ and $\left.P\left(y_{i}, x\right)\right)$. Let p be the standard parameter of $\left\langle I_{\beta}^{0}, B\right\rangle$. Then, by definition, there is some $u \in J_{\rho}^{X}$ such that $\left\langle q_{1}, q_{2}\right\rangle$ is Σ_{1} definable in $\left\langle I_{\beta}^{0}, B\right\rangle$ with the parameters u, p, i.e., there is some $i \in \omega$ such that $Q\left(z_{i}, x\right)$ holds $z_{i}, x \in J_{\rho}^{X}$ and $\left\langle I_{\beta}^{0}, B\right\rangle \vDash \varphi_{i}\left(\left\langle z_{i}, x, u\right\rangle\right.$, p), i.e., iff $z_{i}, x \in J_{\rho}^{X}$ and $A\left(i,\left\langle z_{i}, x, u\right\rangle\right)$. Analogously there is a $j \in \omega$ and a $v \in J_{\rho}^{X}$ such that $z \in$ $\operatorname{dom}(f) \cap J_{\rho}^{X}$ iff $z \in J_{\rho}^{X}$ and $A(j,\langle z, v\rangle)$. Abbreviate this by $D(z)$. But then, for $x \in J_{\rho}^{X}, R(x)$ holds iff
$\exists y_{0} \forall y_{1} \exists y_{3} \cdots \forall y_{m-1}\left(D\left(z_{0}\right) \wedge \cdots \wedge D\left(z_{m-2}\right)\right.$ and $\left.\left(D\left(z_{1}\right) \wedge D\left(z_{3}\right) \wedge \cdots \wedge\right) \Rightarrow Q\left(z_{i}, x\right)\right)$.
So the claim holds. If m is odd, then we proceed correspondingly. Thus $\Sigma_{1+m}\left(\left\langle I_{\beta}^{0}, B\right\rangle\right) \cap \mathfrak{P}\left(J_{\rho}^{X}\right) \subseteq \Sigma_{m}\left(\left\langle I_{\rho}^{0}, A\right\rangle\right)$ is proved.

Conversely, let φ be a Σ_{0} formula and $q \in J_{\rho}^{X}$ such that, for all $x \in J_{\rho}^{X}$, $R(x)$ holds iff $\left\langle I_{\rho}^{0}, A\right\rangle \vDash \varphi(x, q)$. Since $\left\langle I_{\rho}^{0}, A\right\rangle$ is rudimentary closed, $R(x)$ holds
iff $\left(\exists u \in J_{\rho}^{X}\right)\left(\exists a \in J_{\rho}^{X}\right)(u$ transitive and $x \in u$ and $q \in u$ and $a=A \cap u$ and $\langle u, a\rangle \vDash \varphi(x, q))$. Write $a=A \bigcap u$ as formula: $(\forall v \in a)(v \in u$ and $v \in A)$ and $(\forall v \in u)(v \in A \Rightarrow v \in a)$. If $m=1$, we are done provided we can show that this is Σ_{2} over $\left\langle I_{\beta}^{0}, B\right\rangle$. If $m>1$, then the claim follows immediately by induction. The second part is Π_{1}. So we only have to prove that the first part is Σ_{2} over $\left\langle I_{\beta}^{0}, B\right\rangle$. By the definition of $A, v \in A$ is Σ_{1}-definable over $\left\langle I_{\beta}^{0}, B\right\rangle$, i.e., there is some Σ_{0} formula and some parameter p such that $v \in A \Leftrightarrow\left\langle I_{\beta}^{0}, B\right\rangle \vDash(\exists y) \psi(v, y, p)$. Now, we have two cases.

In the first case, there is no over $\left\langle I_{\beta}^{0}, B\right\rangle \Sigma_{1}$-definable function from some $\gamma<\rho$ cofinal in β. Then $(\forall v \in a)(v \in A)$ is Σ_{2} over $\left\langle I_{\beta}^{0}, B\right\rangle$ because some kind of replacement axiom holds, and $(\forall v \in a)(\exists y) \psi(v, y, p)$ is over $\left\langle I_{\beta}^{0}, B\right\rangle$ equivalent to $(\exists z)(\forall v \in a)(\exists y \in z) \psi(v, y, p)$. For $\rho=\omega$, this is obvious. If $\rho \neq \omega$, then $\rho \in \operatorname{Lim}^{2}$ and we can pick $\gamma<\rho$ such that $a \in J_{\gamma}^{X}$. Let $j: \gamma \rightarrow J_{\gamma}^{X}$ an over I_{γ} Σ_{1}-definable surjection, and g an over $\left\langle I_{\beta}^{0}, B\right\rangle$-definable function that maps $v \in J_{\beta}^{X}$ to $g(v) \in J_{\beta}^{X}$ such that $\psi(v, g(v), p)$ if such an element exists. We can find such a function with the help of the Σ_{1}-Skolem function. Now, define a function $f: \gamma \rightarrow \beta$ by

$$
\begin{aligned}
& f(v)=\text { the least } \tau<\beta \text { such that } g \circ j(v) \in S_{\tau} \text { if } j(v) \in a \\
& g(v)=0 \text { else. }
\end{aligned}
$$

Since f is Σ_{1}, there is, in the given case, a $\delta<\beta$ such that $f[\gamma] \subseteq \delta$. So we have as collecting set $z=S_{\delta}$, and the equivalence is clear.

Now, let us come to the second case. Let $\gamma<\rho$ be minimal such that there is some over $\left\langle I_{\beta}^{0}, B\right\rangle \quad \Sigma_{1}$-definable function g from cofinal in β. Then $(\forall v \in a)(\exists y) \psi(v, y, p)$ is equivalent to $(\forall v \in a)(\exists v \in \gamma)\left(\exists y \in S_{g(v)}\right) \psi(v, y, p)$. If we define a predicate $C \subseteq J_{\rho}^{X}$ by $\langle v, v\rangle \in C \Leftrightarrow y \in S_{g(v)}$ and $\psi(v, y, p)$, then
$\left\langle I_{\beta}^{0}, B\right\rangle \vDash(\forall v \in a)(\exists y) \psi(v, y, p)$ is equivalent to $\left\langle I_{\beta}^{0}, C\right\rangle \vDash(\forall v \in a)(\exists v \in \gamma)(\exists y)$ $\cdot(\langle v, v\rangle \in C)$. But this holds iff $\left\langle I_{\beta}^{0}, B\right\rangle \vDash(\exists w)$ (w transitive and $a, \gamma \in w$ and $\langle w, C \bigcap w\rangle \vDash(\forall v \in a)(\exists v \in y)(\exists y)(\langle v, v\rangle \in C \bigcap w))$. Since C is Σ_{1} over $\left\langle I_{\beta}^{0}, B\right\rangle$, $\left\langle I_{\rho}^{0}, C\right\rangle$ is rudimentary closed by the definition of the projectum, i.e., the statement is equivalent to $\left\langle I_{\rho}^{0}, C\right\rangle \vDash(\exists w)(\exists c)$ (w transitive and $a, \gamma \in w$ and $c=C \cap w$ and $\langle w, c\rangle \vDash(\forall v \in a)(\exists v \in y)(\exists y)(\langle v, v\rangle \in c))$. So, to prove that this is Σ_{2}, it suffices to show that $c=C \bigcap w$ is Σ_{2}. In its full form, this is $(\forall z)(z \in a \Leftrightarrow z \in w$ and $z \in C)$. But $z \in C$ is even Δ_{1} over $\left\langle I_{\beta}^{0}, B\right\rangle$ by the definition. So we are finished.

Lemma 18. (a) Let $\pi:\langle J \bar{X}, X \upharpoonright \bar{\beta}, \bar{B}\rangle \rightarrow\left\langle J_{\beta}^{X}, X \upharpoonright \beta, B\right\rangle$ be Σ_{0}-elementary and $\pi[\bar{\beta}]$ be cofinal in β. Then π is even Σ_{1}-elementary.
(b) Let $\langle J \bar{X}, X \upharpoonright \bar{v}, \bar{A}\rangle$ be rudimentary closed and $\pi:\langle J \bar{\chi}, X \upharpoonright \bar{v}\rangle \rightarrow$ $\left\langle J_{v}^{X}, Y \upharpoonright v\right\rangle$ be Σ_{0}-elementary and cofinal. Then there is a uniquely determined $A \subseteq J_{v}^{Y}$ such that $\pi:\langle J \bar{v}, X \upharpoonright \bar{v}, \bar{A}\rangle \rightarrow\left\langle J_{v}^{X}, X \upharpoonright v, A\right\rangle$ is Σ_{0}-elementary and $\left\langle J_{v}^{X}, X \upharpoonright v, A\right\rangle$ is rudimentary closed.

Proof. (a) Let φ be a Σ_{0} formula such that $\left\langle J_{\beta}^{X}, X \upharpoonright \beta, B\right\rangle \vDash(\exists z) \varphi\left(z, \pi\left(x_{i}\right)\right)$. Since $\pi[\bar{\beta}]$ is cofinal in β, there is $a v \in \bar{\beta}$ such that $\left\langle J_{\beta}^{X}, X \upharpoonright \beta, B\right\rangle \vDash$ $\left(\exists z \in S_{\pi(v)}\right) \varphi\left(z, \pi\left(x_{i}\right)\right)$. Here, the S_{v} is defined as in Lemma 10. If $\pi\left(S_{v}\right)=S_{\pi(v)}$, then $\left\langle J_{\beta}^{X}, X \upharpoonright \beta, B\right\rangle \vDash\left(\exists z \in \pi\left(S_{v}\right)\right) \varphi\left(z, \pi\left(x_{i}\right)\right)$. So, by the Σ_{0}-elementarity of $\pi,\langle J \bar{\beta}, X \upharpoonright \bar{\beta}, \bar{B}\rangle \vDash\left(\exists z \in S_{v}\right) \varphi\left(z, x_{i}\right)$, i.e., $\langle J \bar{X}, X \upharpoonright \bar{\beta}, \bar{B}\rangle \vDash(\exists z) \varphi\left(z, x_{i}\right)$. The converse is trivial.

It remains to prove $\pi\left(S_{v}\right)=S_{\pi(v)}$. This is done by induction on v. If $v=0$ or $v \notin \operatorname{Lim}$, then the claim is obvious by the definition of S_{v} and the induction hypothesis. So let $\lambda \in \operatorname{Lim}$ and $M:=\pi\left(S_{\lambda}\right)$. Then M is transitive by the Σ_{0} elementarity of π. And since $\lambda \in \operatorname{Lim}$ (i.e. $\left.S_{\lambda}=J_{\lambda}^{X}\right),\left\langle S_{v} \mid v<\lambda\right\rangle$ is definable over
$\left\langle J_{\lambda}^{X}, X \upharpoonright \lambda\right\rangle$ by (the proof of) Lemma 10. Let φ be the formula $(\forall x)(\exists v)\left(x \in S_{v}\right)$. Since π is Σ_{0}-elementary, $\pi \upharpoonright S_{\lambda}:\left\langle J_{\lambda}^{X}, X \upharpoonright \lambda\right\rangle \rightarrow\langle M,(X \upharpoonright \lambda) \cap M\rangle$ is elementary. Thus, if $\left\langle J_{\lambda}^{X}, X \upharpoonright \lambda\right\rangle \vDash \varphi$, then also $\langle M,(X \upharpoonright \lambda) \cap M\rangle \vDash \varphi$. Since M is transitive, we get $M=S_{\tau}$ for a $\tau \in \operatorname{Lim}$. And, by $\pi(\lambda)=\pi\left(S_{\lambda} \cap\right.$ On $)=S_{\tau} \cap$ On $=\tau$, it follows that $\pi\left(S_{\lambda}\right)=S_{\pi(\lambda)}$.
(b) Since $\langle J \bar{v}, X \upharpoonright \bar{v}, \bar{A}\rangle$ is rudimentary closed, $\bar{A} \cap S_{\mu} \in J \bar{v}$ for all $\mu<\bar{v}$, where S_{μ} is defined as in Lemma 10. As in the proof of (a), $\pi\left(S_{\mu}\right)=S_{\pi(\mu)}$. So we need $\pi\left(\bar{A} \cap S_{\mu}\right)=A \cap S_{\pi(\mu)}$ to get that $\pi:\left\langle J \frac{X}{v}, X \upharpoonright \bar{v}, \bar{A}\right\rangle \rightarrow\left\langle J_{v}^{X}, X \upharpoonright v, A\right\rangle$ is Σ_{0}-elementary. Since π is cofinal, we necessarily obtain $A=\bigcup\left\{\pi\left(\bar{A} \cap S_{\mu}\right) \mid \mu<\bar{v}\right\}$. But then $\left\langle J_{v}^{Y}, X \upharpoonright v, A\right\rangle$ is rudimentary closed. For, if $x \in J_{v}^{X}$, we can choose some $\mu<\bar{v}$ such that $x \in S_{\pi(\mu)}$. And $x \cap A=x \bigcap\left(A \cap S_{\pi(\mu)}\right)=x \cap \pi\left(\bar{A} \cap S_{\mu}\right)$ $\in J_{v}^{X}$. Now, let $\langle J \bar{v}, X \upharpoonright \bar{v}, \bar{A}\rangle \vDash \varphi\left(x_{i}\right)$, where φ is a Σ_{0} formula and $u \in J \bar{v}$ is transitive such that $x_{i} \in u$. Then $\langle u, X \upharpoonright \bar{v} \cap u, A \cap u\rangle \vDash \varphi\left(x_{i}\right)$ holds. Since $\pi:\left\langle J \frac{Y}{v}, X \upharpoonright \bar{v}\right\rangle \rightarrow\left\langle J_{v}^{Y}, X \upharpoonright v\right\rangle$ is Σ_{0}-elementary, $\langle\pi(u), Y \upharpoonright v \cap \pi(u), A \cap \pi(u)\rangle$ $\vDash \varphi\left(\pi\left(x_{i}\right)\right)$. Because $\pi(u)$ is transitive, we get $\left\langle J_{v}^{Y}, X \upharpoonright v\right\rangle \vDash \varphi\left(\pi\left(x_{i}\right)\right)$. This argument works as well for the converse.

Write $\operatorname{Cond}_{B}\left(I_{\beta}^{0}\right)$ if there exists for all $H \prec_{1}\left\langle I_{\beta}^{0}, B\right\rangle$ some $\bar{\beta}$ and some \bar{B} such that $H \cong\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle$.

Lemma 19 (Extension of embeddings). Let $\beta>\omega, m \geq 0$ and $\left\langle I_{\beta}^{0}, B\right\rangle$ be a rudimentary closed structure. Let $\operatorname{Cond}_{B}\left(I_{\beta}^{0}\right)$ hold. Let ρ be the projectum of $\left\langle I_{\beta}^{0}, B\right\rangle$, A the standard code and p the standard parameter of $\left\langle I_{\beta}^{0}, B\right\rangle$. Then $\operatorname{Cond}_{A}\left(I_{\rho}^{0}\right)$ holds. And if $\left\langle I \frac{0}{\rho}, \bar{A}\right\rangle$ is rudimentary closed and $\pi:\left\langle I \frac{1}{\rho}, \bar{A}\right\rangle \rightarrow\left\langle I_{\rho}^{0}, A\right\rangle$ is Σ_{m}-elementary, then there is an uniquely determined Σ_{m+1}-elementary extension $\tilde{\pi}:\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle \rightarrow\left\langle I_{\beta}^{0}, B\right\rangle$ of π where $\bar{\rho}$ is the projectum of $\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle, \bar{A}$ is the standard code and $\tilde{\pi}^{-1}(p)$ is the standard parameter of $\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle$.

Proof. Let $H=h_{\beta, B}[\omega \times(r n g(\pi) \times\{p\})] \prec_{1}\left\langle I_{\beta}^{0}, B\right\rangle$ and $\tilde{\pi}:\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle \rightarrow\left\langle I_{\beta}^{0}, B\right\rangle$ be the uncollapse of H.
(1) $\tilde{\pi}$ is an extension of π

Let $\tilde{\rho}=\sup (\pi[\bar{\rho}])$ and $\tilde{A}=A \bigcap J_{\tilde{\rho}}^{X}$. Then $\pi:\left\langle J \frac{Y}{\rho}, X \upharpoonright \bar{\rho} \bar{A}\right\rangle \rightarrow\left\langle J_{\tilde{\rho}}^{X}, X \upharpoonright \tilde{\rho}, \tilde{A}\right\rangle$ is Σ_{0}-elementary, and by Lemma 18 , it is even Σ_{1}-elementary. We have $\operatorname{rng}(\pi)=$ $H \cap J \frac{X}{\rho}$. Obviously, $r n g(\pi) \subseteq H \cap J_{\tilde{\rho}}^{X}$. So let $y \in H \cap J_{\tilde{\rho}}^{X}$. Then there is an $i \in \omega$ and an $x \in \operatorname{rng}(\pi)$ such that y is the unique $y \in J_{\beta}^{X}$ that satisfies $\left\langle I_{\beta}^{0}, B\right\rangle \vDash \varphi_{i}(\langle y, x\rangle, p)$. So by definition of A, y is the unique $y \in J \frac{X}{\beta}$ such that $\tilde{A}(i,\langle y, x\rangle)$. But $x \in \operatorname{rng}(\pi)$ and $\pi:\left\langle J \frac{Y}{\rho}, X \upharpoonright \bar{\rho}, \bar{A}\right\rangle \rightarrow\langle J \widetilde{\tilde{\rho}} X, X \upharpoonright \tilde{\rho}, \tilde{A}\rangle$ is Σ_{1}-elementary. Therefore $y \in r n g(\pi)$. So we have proved that H is an \in-endextension of $r n g(\pi)$. Since π is the collapse of $r n g(\pi)$ and $\tilde{\pi}$ the collapse of H, we obtain $\pi \subseteq \tilde{\pi}$.
(2) $\tilde{\pi}:\left\langle I \frac{1}{\beta}, \bar{B}\right\rangle \rightarrow\left\langle I_{\beta}^{0}, B\right\rangle$ is Σ_{m+1}-elementary

We must prove $H \prec_{m+1}\left\langle I_{\beta}^{0}\right.$, B \rangle. If $m=0$, this is clear. So let $m>0$ and let y be Σ_{m+1}-definable in $\left\langle I_{\beta}^{0}, B\right\rangle$ with parameters from $r n g(\pi) \cup\{p\}$. Then we have to show $y \in H$. Let φ be a Σ_{m+1} formula and $x_{i} \in \operatorname{rng}(\pi)$ such that y is uniquely determined by $\left\langle I_{\beta}^{0}, B\right\rangle \vDash \varphi\left(y, x_{i}, p\right)$. Let $\tilde{h}(\langle i, x\rangle) \simeq h(i,\langle x, p\rangle)$. Then $\tilde{h}\left[J_{\rho}^{X}\right]=J_{\beta}^{X}$ by the definition of p. So there is a $z \in J_{\rho}^{X}$ such that $y=\tilde{h}(z)$. If such a z lies in $J_{\rho}^{X} \cap H$, then also $y \in H$, since $z, p \in H \prec_{1}\left\langle I_{\beta}^{0}, B\right\rangle$. Let $D=\operatorname{dom}(\tilde{h}) \cap J_{\rho}^{X}$. Then it suffices to show

$$
(*)\left(\exists z_{0} \in D\right)\left(\forall z_{1} \in D\right) \cdots\left\langle I_{\beta}^{0}, B\right\rangle \vDash \psi\left(\tilde{h}\left(z_{i}\right), \tilde{h}(z), x_{i} p\right)
$$

for some $z \in H \cap J_{\rho}^{X}$, where ψ is Σ_{1} for even m and Π_{1} for odd m such that $\varphi\left(y, x_{i}, p\right) \Leftrightarrow\left\langle I_{\beta}^{0}, B\right\rangle \vDash\left(\exists z_{0}\right)\left(\forall z_{1}\right) \cdots \psi\left(z_{i}, y, x_{i}, p\right)$. First, let m be even. Since A is the standard code, there is an $i_{0} \in \omega$ such that $z \in D \Leftrightarrow A\left(i_{0}, x\right)$ holds for all
$z \in J_{\rho}^{X}$ - and a $j_{0} \in \omega$ such that, for all $z_{i}, z \in D\left\langle I_{\beta}^{0}, B\right\rangle \vDash \psi\left(\tilde{h}\left(z_{i}\right), \tilde{h}(z), x_{i} p\right)$ Thus (*) is, for $z \in J_{\rho}^{X}$, equivalent with an obvious Σ_{m} formula. If m is odd, then write in $(*) \cdots \neg\left\langle I_{\beta}^{0}, B\right\rangle \vDash \neg \psi(\cdots)$. Then $\neg \psi \quad$ is Σ_{1} and we can proceed as above. Eventually $\pi:\left\langle I \frac{0}{\rho}, \bar{A}\right\rangle \rightarrow\left\langle I_{\rho}^{0}, A\right\rangle$ is Σ_{m}-elementary by the hypothesis and $\pi \subseteq \tilde{\pi}$ by (1) - i.e., $H \cap J_{\rho}^{X} \prec_{m}\left\langle I_{\rho}^{0}\right.$, $\left.A\right\rangle$. Since there is a $z \in J_{\rho}^{X}$ which satisfies (*) and $x_{i}, p \in H \cap J_{\rho}^{X}$, there exists such a $z \in H \cap J_{\rho}^{X}$. Let $H \prec_{1}\left\langle I_{\rho}^{0}, A\right\rangle$. Let π be the uncollapse of H. Then π has a Σ_{1}-elementary extension $\tilde{\pi}=\left\langle I_{\bar{\beta}}^{0}, \bar{B}\right\rangle \rightarrow\left\langle I_{\beta}^{0}, B\right\rangle$. So $H \cong\left\langle I \frac{0}{\rho}, \bar{A}\right\rangle$ for some $\bar{\rho}$ and \bar{A}, i.e., $\operatorname{Cond}_{A}\left(I_{\rho}^{0}\right)$.
(3) $\tilde{A}=\left\{\langle i, x\rangle \mid i \in \omega\right.$ and $x \in J \frac{X}{\bar{\rho}}$ and $\left.\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle \vDash \varphi_{i}\left(x, \tilde{\pi}^{-1}(p)\right)\right\}$

Since $\pi:\left\langle I \frac{0}{\rho}, \bar{A}\right\rangle \rightarrow\left\langle I_{\rho}^{0}, A\right\rangle$ is Σ_{0}-elementary, $\bar{A}(i, x) \Leftrightarrow A(i, \pi(x))$ for $x \in J \bar{\rho}$. Since A is the standard code of $\left\langle I_{\beta}^{0}, \beta\right\rangle, A(i, \pi(x)) \Leftrightarrow\left\langle I_{\beta}^{0}, B\right\rangle \vDash \varphi_{i}(\pi(x), p)$. Finally, $\left\langle I_{\beta}^{0}, B\right\rangle \vDash \varphi_{i}(\pi(x), p) \Leftrightarrow\left\langle I I_{\beta}^{0}, \bar{B}\right\rangle \vDash \varphi_{j}\left(x, \tilde{\pi}^{-1}(p)\right)$, because $\tilde{\pi}:\left\langle I \frac{1}{\beta}, \bar{B}\right\rangle \rightarrow\left\langle I_{\beta}^{0}, B\right\rangle$ is Σ_{1}-elementary.
(4) $\bar{\rho}$ is the projectum of $\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle$

By the definition of $H, J_{\bar{\beta}}^{X}=h_{\bar{\beta}, \bar{B}}\left[\omega \times\left(J \overline{\bar{\rho}} \times\left\{\tilde{\pi}^{-1}(p)\right\}\right)\right]$. So $f(\langle i, x\rangle) \simeq$ $h_{\bar{\beta}, \bar{B}}\left(i,\left\langle x, \tilde{\pi}^{-1}(p)\right\rangle\right)$ is a over $\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle \Sigma_{1}$-definable function such that $f\left[J \frac{X}{\rho}\right]$ $=J_{\bar{\beta}}^{X}$. It remains to prove that $\left\langle I \frac{0}{\rho}, C\right\rangle$ is rudimentary closed for all $C \in$ $\Sigma_{1}\left(\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle\right) \cap \mathfrak{P}(J \overline{\bar{\rho}})$. By the definition of H, there exists an $i \in \omega$ and a $y \in J \frac{X}{\bar{\rho}}$ such that $x \in C \Leftrightarrow\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle \vDash \varphi_{i}\left(\langle x, y\rangle, \tilde{\pi}^{-1}(p)\right)$ for all $x \in J \bar{X}$. Thus, by (3), $x \in C \Leftrightarrow \bar{A}(i,\langle x, y\rangle)$. For $u \in J \overline{\bar{\rho}}$, let $v=\{\langle i,\langle x, y\rangle\rangle \mid x \in u\}$. Then $v \in J \bar{X}$ and $\bar{A} \bigcap v \in J \bar{\rho}$, because $\left\langle I \frac{0}{\rho}, \bar{A}\right\rangle$ is rudimentary closed by the hypothesis. But $x \in C \bigcap u$ holds iff $\langle i,\langle x, y\rangle\rangle \in \bar{A} \bigcap v$. Finally, $J \overline{\bar{\rho}}$ is rudimentary closed and therefore $C \bigcap u \in J \bar{X}$.
(5) $\tilde{\pi}^{-1}(p)$ is the standard parameter of $\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle$

By the definition of $H, J \bar{\beta}=h_{\bar{\beta}}, \bar{B}\left[\omega \times\left(J \overline{\bar{\rho}} \times\left\{\tilde{\pi}^{-1}(p)\right\}\right)\right]$ and, by (4), $\bar{\rho}$ is the projectum of $\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle$. So we just have to prove that $\tilde{\pi}^{-1}(p)$ is the least with this property. Suppose that $\bar{p}^{\prime}<\tilde{\pi}^{-1}(p)$ had this property as well. Then there were an $i \in \omega$ and an $x \in J_{\widetilde{\rho}}^{X}$ such that $\pi^{-1}(p)=h_{\bar{\beta}, \bar{B}}\left(i,\left\langle x, \bar{p}^{\prime}\right\rangle\right)$. Since $\tilde{\pi}:\left\langle I I_{\bar{\beta}}^{0}, \bar{B}\right\rangle \rightarrow$ $\left\langle I_{\beta}^{0}, B\right\rangle$ is Σ_{1}-elementary, we had $p=h_{\beta, B}\left(i,\left\langle x, p^{\prime}\right\rangle\right)$ for $p^{\prime}=\pi\left(\bar{p}^{\prime}\right)<p$. And so also $h_{\beta, B}\left[\omega \times\left(J \overline{\bar{\rho}} \times\left\{p^{\prime}\right\}\right)\right]=J_{\beta}^{X}$. That contradicts the definition of p.
(6) Uniqueness

Assume $\left\langle I \frac{1}{\beta_{0}}, \bar{B}_{0}\right\rangle$ and $\left\langle I \frac{1}{\beta_{1}}, \bar{B}_{1}\right\rangle$ both have $\bar{\rho}$ as projectum and \bar{A} as standard code. Let \bar{p}_{i} be the standard parameter of $\left\langle I \bar{\beta}_{i}, \bar{B}_{i}\right\rangle$. Then, for all $j \in \omega$ and $\quad x \in J \frac{X}{\bar{\rho}},\left\langle I \frac{0}{\beta_{0}}, \bar{B}_{0}\right\rangle \vDash \varphi_{j}\left(x, \bar{p}_{0}\right)$ iff $\bar{A}(j, x)$ iff $\left\langle I \frac{0}{\beta_{1}}, \bar{B}_{1}\right\rangle \vDash \varphi_{j}\left(x, \bar{p}_{1}\right)$. So $\sigma\left(h_{\bar{\beta}_{0}, \bar{B}_{0}}\left(j,\left(x, \bar{p}_{0}\right)\right)\right) \simeq h_{\tilde{\beta}_{1}, \bar{B}_{1}}\left(j,\left\langle x, \bar{p}_{1}\right\rangle\right)$ defines an isomorphism $\sigma:\left\langle I \bar{\beta}_{0}^{0}, \bar{B}_{0}\right\rangle \cong$ $\left\langle I_{\bar{\beta}_{0}}^{0}, \bar{B}_{0}\right\rangle$, because, for both $h_{\bar{\beta}_{i}, \bar{B}_{i}}\left[\omega \times\left(J \overline{\bar{\rho}} \times\left\{\bar{p}_{i}\right\}\right)\right]=J \overline{\bar{\beta}_{i}}$ holds. But since both structures are transitive, σ must be the identity. Finally, let $\bar{\pi}_{0}:\left\langle I \frac{1}{\beta}, \bar{B}\right\rangle \rightarrow\left\langle I_{\beta}^{0}, B\right\rangle$ and $\tilde{\pi}_{1}:\langle I \bar{\beta}, \bar{B}\rangle \rightarrow\left\langle I_{\beta}^{0}, B\right\rangle$ be Σ_{1}-elementary extensions of π. Let \bar{p} be the standard parameter of $\left\langle I \frac{0}{\beta}, \bar{B}\right\rangle$. Then, for every $y \in J \frac{X}{\beta}$, there is an $x \in J \frac{X}{\bar{\rho}}$ and a $j \in \omega$ such that $y=h_{\bar{\beta}, \bar{B}}(j,\langle x, \bar{p}\rangle)$ and $\tilde{\pi}_{0}(y)=h_{\beta, B}(j, \pi(x), \pi(p))=\tilde{\pi}_{1}(y)$. Thus $\tilde{\pi}_{0}=\tilde{\pi}_{1}$.

To code the Σ_{n} information of I_{β}, where $\beta \in S^{X}$ in a structure $\left\langle I_{\rho}^{0}, A\right\rangle$, one iterates this process.

For $n \geq 0, \beta \in S^{X}$, let

$$
\begin{aligned}
& \rho^{0}=\beta, p^{0}=\varnothing, A^{0}=X_{\beta} \\
& \rho^{n+1}=\text { the projectum of }\left\langle I_{\rho^{n}}^{0}, A^{n}\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& p^{n+1}=\text { the standard parameter of }\left\langle I_{\rho^{n}}^{0}, A^{n}\right\rangle, \\
& A^{n+1}=\text { the standard code of }\left\langle I_{\rho^{n}}^{0}, A^{n}\right\rangle .
\end{aligned}
$$

Call
ρ^{n} the nth projectum of β,
p^{n} the nth (standard) parameter of β,
A^{n} the nth (standard) code of β.
By Lemma 17, $A^{n} \subseteq J_{\rho^{n}}^{X}$ is Σ_{n}-definable over I_{β} and, for all $m \geq 1$,

$$
\Sigma_{n+m}\left(I_{\beta}\right) \cap \mathfrak{P}\left(J_{\rho^{n}}^{X}\right)=\Sigma_{m}\left(\left\langle I_{\rho^{n}}^{0}, A^{n}\right\rangle\right) .
$$

From Lemma 19, we get by induction:
For $\beta>\omega, n \geq 1, m \geq 0$, let ρ^{n} be the nth projectum and A^{n} be the nth code of β. Let $\left\langle I \frac{0}{\rho}, \bar{A}\right\rangle$ be a rudimentary closed structure and $\pi:=\left\langle I \frac{0}{\rho}, \bar{A}\right\rangle \rightarrow\left\langle I_{\rho^{n}}^{0}, A^{n}\right\rangle$ be Σ_{m}-elementary. Then:
(1) There is a unique $\bar{\beta} \geq \bar{\rho}$ such that $\bar{\rho}$ is the nth projectum and \bar{A} is the nth code of $\bar{\beta}$.

For $k \leq n$, let
ρ^{k} be the k th projectum of β,
p^{k} be the k th parameter of β,
A^{k} be the k th code of β
and
$\bar{\rho}^{k}$ be the k th projectum of $\bar{\beta}$,
\bar{p}^{k} be the k th parameter of $\bar{\beta}$,
\bar{A}^{k} be the k th code of $\bar{\beta}$.
(2) There exists a unique extension $\tilde{\pi}$ of π such that, for all $0 \leq k \leq n$,

$$
\begin{aligned}
& \tilde{\pi} \upharpoonright\left\langle I_{\bar{\rho}^{k}}^{0}, A^{k}\right\rangle \rightarrow\left\langle I_{\rho^{k}}^{0}, A^{k}\right\rangle \text { is } \Sigma_{m+n-k} \text {-elementary } \\
& \text { and } \tilde{\pi}\left(\bar{p}^{k}\right)=p^{k} .
\end{aligned}
$$

Lemma 20. Let $\omega<\beta \in S^{X}$. Then all projecta of β exist.
Proof. By induction on n. That ρ^{0} exists is clear. So suppose that the first projecta $\rho^{0}, \ldots, \rho^{n-1}, \rho:=\rho^{n}$, the parameters p^{0}, \ldots, p^{n} and the codes A^{0}, \ldots, A^{n-1}, $A:=A^{n}$ of β exist. Let $\gamma \in \operatorname{Lim}$ be minimal such that there is some over $\left\langle I_{\rho}^{0}, A\right\rangle$ Σ_{1}-definable function f such that $f\left[J_{\gamma}^{X}\right]=J_{\rho}^{X}$. Let $C \in \Sigma_{1}\left(\left\langle I_{\rho}^{0}, A\right\rangle\right) \cap \mathfrak{P}\left(J_{\gamma}^{X}\right)$. We have to prove that $\left\langle I_{\gamma}^{0}, C\right\rangle$ is rudimentary closed. If $\gamma=\omega$, then $J_{\gamma}^{X}=H_{\omega}$, and this is obvious. If $\gamma>\omega$, then $\gamma \in \operatorname{Lim}^{2}$ by the definition of γ. Then it suffices to show $C \cap J_{\delta}^{X} \in J_{\gamma}^{X}$ for $\delta \in \operatorname{Lim} \cap \gamma$. Let $B:=C \cap J_{\delta}^{X}$ be definable over $\left\langle I_{\rho}^{0}, A\right\rangle$ with parameter q. Since obviously $\gamma \leq \rho, C \cap J_{\delta}^{X}$ is Σ_{n}-definable over I_{β} with parameters p_{1}, \ldots, p^{n}, q by Lemma 17 . So let φ be a Σ_{n} formula such that $x \in C \Leftrightarrow I_{\beta} \vDash \varphi\left(x, p^{1}, \ldots, p^{n}, q\right)$. Let

$$
\begin{aligned}
& H_{n+1}:=h_{\rho^{n}, A^{n}}\left[\omega \times\left(J_{\delta}^{X} \times\{q\}\right)\right] \\
& H_{n}:=h_{\rho^{n-1}, A^{n-1}}\left[\omega \times\left(H_{n} \times\left\{p^{n}\right\}\right)\right], \\
& H_{n-1}:=h_{\rho^{n-2}, A^{n-2}}\left[\omega \times\left(H_{n-1} \times\left\{p^{n-1}\right\}\right)\right],
\end{aligned}
$$

etc.
Since $L[X]$ has condensation, there is an I_{μ} such that $H_{1} \cong I_{\mu}$. Let π be the uncollapse of H_{1}. Then π is the extension of the collapse of H_{n+1} defined in the proof of Lemma 19. Therefore, it is Σ_{n+1}-elementary. Since $B \subseteq J_{\delta}^{X}$ and $\pi \upharpoonright J_{\delta}^{X}=$ id $\upharpoonright J_{\delta}^{X}$, we get $x \in B \Leftrightarrow I_{\mu} \vDash \varphi\left(x, \pi^{-1}\left(p^{1}\right), \ldots, \pi^{-1}\left(p^{n}\right), \pi^{-1}(q)\right)$. So B is indeed
already Σ_{n}-definable over I_{μ}. Thus $B \in J_{\mu+1}^{X}$ by Lemma 8. But now we are done because $\mu<\rho$. For, if

$$
\begin{aligned}
& h_{n+1}(\langle i, x\rangle)=h_{\rho^{n}, A^{n}}(i,\langle x, p\rangle), \\
& h_{n}(\langle i, x\rangle)=h_{\rho^{n-1}, A^{n-1}}\left(i,\left\langle x, p^{n}\right\rangle\right), \\
& \text { etc., }
\end{aligned}
$$

then the function $h=h_{1} \circ \cdots \circ h_{n+1}$ is Σ_{n+1}-definable over I_{β}. Thus the function $\bar{h}=\pi\left[h \bigcap\left(H_{1} \times H_{1}\right)\right]$ is Σ_{n+1}-definable over I_{μ} and $\bar{h}\left[J_{\delta}^{X}\right]=J_{\mu}^{X}$. So $\bar{h} \cap\left(J_{\rho}^{X}\right)^{2}$ is Σ_{1}-definable over $\left\langle I_{\rho}^{0}, A\right\rangle$ by Lemma 17 and Lemma 19. And by the definition of γ, there is an over $\left\langle I_{\rho}^{0}, A\right\rangle \Sigma_{1}$-definable function f such that $f\left[J_{\gamma}^{X}\right]=J_{\rho}^{X}$. So if we had $\mu \geq \rho$, then $f \circ \bar{h}$ was an over $\left\langle I_{\rho}^{0}, A\right\rangle \Sigma_{1}$-definable function such that $(f \circ \bar{h})\left[J_{\delta}^{X}\right]=J_{\rho}^{X}$. That contradicts the minimality of γ.

Let $\omega<v \in S^{X}, \rho^{n}$ be the nth projectum of v, p^{n} be the nth parameter and A^{n} be the nth Code. Let

$$
\begin{aligned}
& h_{n+1}(\langle i, x\rangle)=h_{\rho^{n}, A^{n}}(i, x), \\
& h_{n}(\langle i, x\rangle)=h_{\rho^{n-1}, A^{n-1}}\left(i,\left\langle x, p^{n}\right\rangle\right),
\end{aligned}
$$

etc.
Then define

$$
h_{v}^{n+1}=h_{1} \circ \cdots \circ h_{n+1}
$$

We have:
(1) h_{v}^{n} is Σ_{n}-definable over I_{v}
(2) $h_{v}^{n}[\omega \times Q] \prec_{n} I_{v}$, if $Q \subseteq J_{\rho}^{X}{ }_{n-1}$ is closed under ordered pairs.

Lemma 21. Let $\omega<\beta \in S^{X}$ and $n \geq 1$. Then
(1) the least ordinal $\gamma \in \operatorname{Lim}$ such that there is a over $I_{\beta} \Sigma_{n}$-definable function f such that $f\left[J_{\gamma}^{X}\right]=J_{\beta}^{X}$,
(2) the last ordinal $\gamma \in \operatorname{Lim}$ such that $\left\langle I_{\gamma}^{0}, C\right\rangle$ is rudimentary closed for all $C \in \Sigma_{n}\left(I_{\beta}\right) \cap \mathfrak{P}\left(J_{\gamma}^{X}\right)$,
(3) the least ordinal $\gamma \in$ Lim such that $\mathfrak{P}(\gamma) \cap \Sigma_{n}\left(I_{\beta}\right) \nsubseteq J_{\beta}^{X}$, is the nth projectum of β.

Proof. (1) By the definition of the nth projectum, there is an over $\left\langle I_{\rho^{n-1}}^{0}, A^{n-1}\right\rangle$ Σ_{1}-definable f^{n} such that $f^{n}\left[J_{\rho^{n}}^{X}\right]=J_{\rho^{n-1}}^{X}$, an over $\left\langle I_{\rho^{n-2}}^{0}, A^{n-2}\right\rangle \Sigma_{1}$-definable f^{n-1} such that $f^{n-1}\left[J_{\rho^{n-1}}^{X}\right]=J_{\rho^{n-2}}^{X}$, etc. But then f^{k} is Σ_{k}-definable over I_{β} by Lemma 17. So $f=f^{1} \circ f^{2} \circ \cdots \circ f^{n}$ is Σ_{n}-definable over I_{β} and $f\left[J_{\rho^{n}}^{X}\right]=J_{\beta}^{X}$.

On the other hand, the projectum $\bar{\rho}$ of a rudimentary closed structure $\left\langle I_{\beta}^{0}, B\right\rangle$ is the least $\bar{\rho}$ such that there is an over $\left\langle I_{\beta}^{0}, B\right\rangle \Sigma_{1}$-definable function f such that $f[J \bar{\rho}]=J_{\beta}^{X}$. For, suppose there is no such $\rho<\bar{\rho}$ such that such an f, $f\left[J_{\rho}^{X}\right]=J_{\beta}^{X}$, exists. Then the proof of Lemma 16 provides a contradiction. So if there was a $\gamma<\rho^{n}$ such that there is an over $I_{\beta} \Sigma_{n}$-definable function f such that $f\left[J_{\rho}^{X}\right]=J_{\beta}^{X}$, then $g:=f \cap\left(J_{\rho^{n-1}}^{X}\right)^{2}$ would be an over $\left\langle I_{\rho^{n-1}}^{0}, A^{n-1}\right\rangle \Sigma_{1}$-definable function such that $g\left[J_{\gamma}^{X}\right]=J_{\rho^{n-1}}^{X}$. But this is impossible.
(2) By the definition of the nth projectum, $\left\langle I_{\rho^{n}}^{0}, C\right\rangle$ is rudimentary closed for all $C \in \Sigma_{1}\left(\left\langle I_{\rho^{n-1}}^{0}, A^{n-1}\right\rangle\right) \cap \mathfrak{P}\left(J_{\rho^{n}}^{X}\right)$. But by Lemma 17, $\Sigma_{1}\left(\left\langle I_{\rho^{n-1}}^{0}, A^{n-1}\right\rangle\right)=$ $\Sigma_{n}\left(I_{\beta}\right) \cap \mathfrak{P}\left(J_{\rho^{n-1}}^{X}\right)$. So, since $\rho^{n} \leq \rho^{n-1},\left\langle I_{\rho^{n}}^{0}, C\right\rangle$ is rudimentary closed for all $C \in \Sigma_{n}\left(I_{\beta}\right) \cap \mathfrak{P}\left(J_{\rho^{n}}^{X}\right)$.

Assume γ was a larger ordinal $\in \operatorname{Lim}$ having this property. Let f be, by (1), an over $I_{\beta} \Sigma_{n}$-definable function such that $f\left[J_{\rho^{n}}^{X}\right]=J_{\beta}^{X}$. Set $C=\left\{u \in J_{\rho^{n}}^{X} \mid u \notin f(u)\right\}$. Then C is Σ_{n}-definable over I_{β} and $C \subseteq J_{\rho^{n}}^{X}$. So $\left\langle J_{\gamma}^{X}, C\right\rangle$ was rudimentary closed. And therefore $C=C \bigcap J_{\rho^{n}}^{X} \in J_{\gamma}^{X} \subseteq J_{\beta}^{X}$ and $C=f(u)$ for some $u \in J_{\rho^{n}}^{X}$. But this implies the contradiction that $u \in f(u) \Leftrightarrow u \in C \Leftrightarrow u \notin f(u)$.
(3) Let $\rho:=\rho^{n}$ and f by (1) an over $I_{\beta} \Sigma_{n}$-definable function such that $f\left[J_{\rho^{n}}^{X}\right]=J_{\beta}^{X}$. Let j be an over $I_{\rho}^{0} \Sigma_{1}$-definable function from ρ onto J_{ρ}^{X}. Let $C=\{v \in \rho \mid v \notin f \circ j(n)\}$. Then C is an over $I_{\beta} \Sigma_{n}$-definable subset of ρ. If $C \in J_{\beta}^{X}$, then there would be a $v \in \rho$ such that $C=f \circ j(v)$, and we had the contradiction $v \in C \Leftrightarrow v \notin f \circ j(v) \Leftrightarrow v \notin C$. Thus $\mathfrak{P}(\rho) \cap \Sigma_{n}\left(I_{\beta}\right) \nsubseteq J_{\beta}^{X}$. But if $\gamma \in \operatorname{Lim} \cap \rho$ and $D \in \mathfrak{P}(\gamma) \cap \Sigma_{n}\left(I_{\beta}\right)$, then $D=D \bigcap J_{\gamma}^{X} \in J_{\rho}^{X} \subseteq J_{\beta}^{X}$. So $\mathfrak{P}(\gamma) \cap$ $\Sigma_{n}\left(I_{\beta}\right) \subseteq J_{\beta}^{X}$.

3. Morasses

Let $\omega_{1} \leq \beta, S=\operatorname{Lim} \bigcap \omega_{1+\beta}$ and $\kappa:=\omega_{1+\beta}$.
We write Card for the class of cardinals and RCard for the class of regular cardinals.

Let \triangleleft be a binary relation on S such that:
(a) If $v \triangleleft \tau$, then $v<\tau$.

For all $v \in S-R C a r d,\{\tau \mid v \triangleleft \tau\}$ is closed.
For $v \in S-$ RCard, there is a largest μ such that $v \unlhd \mu$.
Let μ_{v} be this largest μ with $v \unlhd \mu$.
Let

$$
v \sqsubseteq \tau: \Leftrightarrow v \in \operatorname{Lim}(\{\delta \mid \delta \triangleleft \tau\}) \cup\{\delta \mid \delta \unlhd \tau\} .
$$

(b) \sqsubseteq is a (many-rooted) tree.

Hence, if $v \notin$ RCard is a successor in \sqsubset, then μ_{v} is the largest μ such that $v \sqsubseteq \mu$. To see this, let μ_{v}^{*} be the largest μ such that $v \sqsubseteq \mu$. It is clear that $\mu_{v} \leq \mu_{v}^{*}$, since $v \unlhd \mu$ implies $v \sqsubseteq \mu$. So assume that $\mu_{v}<\mu_{v}^{*}$. Then $v \notin \mu_{v}^{*}$ by the definition of μ_{v}. Hence $v \in \operatorname{Lim}\left(\left\{\delta \mid \delta \triangleleft \mu_{v}^{*}\right\}\right)$ and $v \in \operatorname{Lim}\left(\left\{\delta \mid \delta \sqsubseteq \mu_{v}^{*}\right\}\right)$. Therefore, $v \in \operatorname{Lim}(\sqsubseteq)$ since v is a tree. That contradicts our assumption that \sqsubseteq is a successor in \sqsubset.

For $\alpha \in S$, let $|\alpha|$ be the rank of α in this tree. Let

$$
\begin{aligned}
& S^{+}:=\{v \in S \mid v \text { is a successor in } \sqsubset\}, \\
& S^{0}:=\{\alpha \in S| | \alpha \mid=0\}, \\
& \hat{S}^{+}:=\left\{\mu_{\tau} \mid \tau \in S^{+}-\text {RCard }\right\}, \\
& \hat{S}:=\left\{\mu_{\tau} \mid \tau \in S-\text { RCard }\right\} .
\end{aligned}
$$

Let $S_{\alpha}:=\{v \in S \mid v$ is a direct successor of α in $\sqsubset\}$. For $v \in S^{+}$, let α_{v} be the direct predecessor of v in \sqsubset. For $v \in S^{0}$, let $\alpha_{v}:=0$. For $v \notin S^{+} \cup S^{0}$, let $\alpha_{v}:=v$.
(c) For $v, \tau \in\left(S^{+} \cup S^{0}\right)$-RCard such that $\alpha_{v}=\alpha_{\tau}$, suppose:

$$
v<\tau \Rightarrow \mu_{v}<\tau
$$

For all $\alpha \in S$, suppose:
(d) S_{α} is closed.
(e) $\operatorname{card}\left(S_{\alpha}\right) \leq \alpha^{+}$,
$\operatorname{card}\left(S_{\alpha}\right) \leq \operatorname{card}(\alpha)$ if $\operatorname{card}(\alpha)<\alpha$.
(f) $\omega_{1}=\max \left(S^{0}\right)=\sup \left(S^{0} \cap \omega_{1}\right)$,

$$
\omega_{1+i+1}=\max \left(S_{\omega_{1+i}}\right)=\sup \left(S_{\omega_{1+i}} \cap \omega_{1+i+1}\right) \text { for all } i<\beta
$$

Let $D=\left\langle D_{v} \mid v \in \hat{S}\right\rangle$ be a sequence such that $D_{v} \subseteq J_{v}^{D}$.
Let an $\langle S, \triangleleft, D\rangle$-maplet f be a triple $\langle\bar{v}| f,|, v\rangle$ such that $\bar{v}, v \in S-$ RCard and $|f|: J_{\mu_{\bar{v}}}^{D} \rightarrow J_{\mu_{v}}^{D}$.

Let $f\langle\bar{v}| f,|, v\rangle$ be an $\langle S, \triangleleft, D\rangle$-maplet. Then we define $d(f)$ and $r(f)$ by $d(f)=\bar{v}$ and $r(f)=v$. Set $f(x):=|f|(x)$ for $x \in J_{\mu_{\bar{v}}}^{D}$ and $f\left(\mu_{\bar{v}}\right):=\mu_{v}$. But $\operatorname{dom}(f), r n g(f), f \upharpoonright X$, etc. keep their usual set-theoretical meaning, i.e., $\operatorname{dom}(f)=$ $\operatorname{dom}(|f|), r n g(f)=r n g(|f|), f \upharpoonright X$, etc.

For $\bar{\tau} \leq \mu_{\bar{v}}$, let $f^{(\bar{\tau})}=\left\langle\bar{\tau}, \mid f \| J_{\mu_{\bar{\tau}}}^{D}\right\rangle$, where $\tau=f(\bar{\tau})$. Of course, $f^{(\bar{\tau})}$ needs not to be a maplet. The same is true for the following definitions. Let $f^{-1}=$ $\left.\left.\langle v| f\right|^{-1,} \bar{v}\right\rangle$. For $g=\langle v| g,\left|, v^{\prime}\right\rangle$ and $f=\langle\bar{v}| f,|, v\rangle$, let $g \circ f=\langle\bar{v}| g,|\circ| f\left|, v^{\prime}\right\rangle$. If $g=\left\langle v^{\prime},\right| g|, v\rangle$ and $f=\langle\bar{v}| f,|, v\rangle$ such that $r n g(f) \subseteq r n g(g)$, then set $g^{-1} f=$ $\left.\left.\langle v| f\right|^{-1},|f|, v^{\prime}\right\rangle$. Finally, set $i d_{v}=\left\langle v\right.$, id $\left.\upharpoonright J_{\mu_{v}}^{D} v\right\rangle$.

Let \mathfrak{F} be a set of (S, \triangleleft, D)-maplets $f=\langle\bar{v}| f,|, v\rangle$ such that the following holds:
(0) $f(\bar{v})=v, f\left(\alpha_{\bar{v}}\right)=\alpha_{v}$ and $|f|$ is order-preserving.
(1) For $f \neq i d_{\bar{v}}$, there is some $\beta \sqsubseteq \alpha_{\bar{v}}$ such that $f \upharpoonright \beta=i d \upharpoonright \beta$ and $f(\beta)>\beta$.
(2) If $\bar{\tau} \in S^{+}$and $\bar{v} \sqsubset \bar{\tau} \sqsubseteq \mu_{\bar{v}}$, then $f^{(\bar{\tau})} \in \mathfrak{F}$.
(3) If $f, g \in \mathfrak{F}$ and $d(g)=r(f)$, then $g \circ f \in \mathfrak{F}$.
(4) If $f, g \in \mathfrak{F}, r(g)=r(f)$ and $r n g(f) \subseteq r n g(g)$, then $g^{-1} \circ f \in \mathfrak{F}$.

We write $f: \bar{v} \Rightarrow v$ if $f=\langle\bar{v}| f,|, v\rangle \in \mathfrak{F}$. If $f \in \mathfrak{F}$ and $r(f)=v$, then we write $f \Rightarrow v$. The uniquely determined β in (1) shall be denoted by $\beta(f)$. Say $f \in \mathfrak{F}$ is minimal for a property $P(f)$ if $P(g)$ holds and $P(g)$ implies $g^{-1} f \in \mathfrak{F}$.

Let

$$
f_{(u, x, v)}=\text { the unique minimal } f \in \mathfrak{F} \text { for } f \Rightarrow v \text { and } u \cup\{x\} \subseteq r n g(f),
$$

if such an f exists. The axioms of the morass will guarantee that $f_{(u, x, v)}$ always exists if $v \in S-R \operatorname{Card}^{L_{\kappa}}{ }^{[D]}$ Therefore, we will always assume and explicitly mention that $v \in S-R \operatorname{Card}^{L_{\mathrm{K}}[D]}$ when $f_{(u, x, v)}$ is mentioned.

Say $v \in S-\operatorname{Rard}^{L_{k}[D]}$ is independent if $d\left(f_{(\beta, 0, v)}\right)<\alpha_{v}$ holds for all $\beta<\alpha_{v}$.

For $\tau \sqsubseteq v \in S-R$ Card $^{L_{\kappa}[D]}$, say v is ξ-dependent on τ if $f_{\left(\alpha_{\tau}, \xi, v\right)}=i d_{v}$.
For $f \in \mathfrak{F}$, let $\lambda(f):=\sup (f[d(f)])$.
For $v \in S-R \operatorname{Card}^{L_{k}[D]}$ let

$$
\begin{aligned}
& C_{v}=\{\lambda(f)<v \mid f \Rightarrow v\}, \\
& \Lambda(x, v)=\left\{\lambda\left(f_{(\beta, x, v)}\right)<v \mid \beta<v\right\} .
\end{aligned}
$$

It will be shown that C_{v} and $\Lambda(x, v)$ are closed in v.
Recursively define a function $q_{v}: k_{v}+1 \rightarrow O n$, where $k_{v} \in \omega$:

$$
\begin{aligned}
& q_{v}(0)=0, \\
& q_{v}(k+1)=\max \left(\Lambda\left(q_{v} \upharpoonright(k+1), v\right)\right)
\end{aligned}
$$

if $\max \left(\Lambda\left(q_{v} \upharpoonright(k+1), v\right)\right)$ exists. The axioms will guarantee that this recursion breaks off (see Lemma 4 of [6]), i.e. there is some k_{v} such that either

$$
\Lambda\left(q_{v} \upharpoonright\left(k_{v}+1\right), v\right)=\varnothing
$$

or

$$
\Lambda\left(q_{v} \upharpoonright\left(k_{v}+1\right), v\right) \text { is unbounded in } v .
$$

Define by recursion on $1 \leq n \in \omega$, simultaneously for all $v \in S-R \operatorname{Card}^{L_{k}[D]}$, $\beta \in v$ and $x \in J_{\mu_{v}}^{D}$ the following notions:

$$
f_{(\beta, x, v)}^{1}=f_{(\beta, x, v)},
$$

$\tau(n, v)=$ the least $\tau \in S^{0} \cup S^{+} \bigcup \hat{S}$ such that for some $x \in J_{\mu_{v}}^{D}$,

$$
f_{\left(\alpha_{\tau}, x, v\right)}^{1}=i d_{v}
$$

$$
\begin{aligned}
& x(n, v)=\text { the least } x \in J_{\mu_{v}}^{D} \text { such that } f_{\left(\alpha_{\tau(n, v)}, x, v\right)}^{n}=i d_{v} \\
& K_{v}^{n}=\left\{d\left(f_{(\beta, x(n, v), v)}^{n}\right)<\alpha_{\tau(n, v)} \mid \beta<v\right\} \\
& f \Rightarrow_{n} v \text { iff } f \Rightarrow v \text { and for all } 1 \leq m<n
\end{aligned}
$$

$$
r n g(f) \cap J_{\alpha_{\tau(m, v)}}^{D} \prec_{1}\left\langle J_{\alpha_{\tau(m, v)}}^{D}, D \upharpoonright \alpha_{\tau(m, v)}, K_{v}^{m}\right\rangle
$$

$$
x(m, v) \in r n g(f)
$$

$$
f_{(u, v)}^{n}=\text { the minimal } f \Rightarrow_{n} v \text { such that } u \subseteq r n g(f) \text {, }
$$

$$
f_{(\beta, x, v)}^{n}=f_{(\beta \cup\{x\}, v)}^{n}
$$

$$
f: \bar{v} \Rightarrow_{n} v: \Leftrightarrow f \Rightarrow_{n} v \text { and } f: \bar{v} \Rightarrow v
$$

Here definitions are to be understood in Kleene's sense, i.e., that the left side is defined iff the right side is, and in that case, both are equal.

Let
$n_{v}=$ the least n such that $f_{\left(\gamma, x, \mu_{v}\right)}^{n}$ is confinal in v for some $x \in J_{\mu_{v}}^{D}$, $\gamma \sqsubset v$,
$x_{v}=$ the least x such that $f_{\left(\alpha_{v}, x, \mu_{v}\right)}^{n_{v}}=i d_{\mu_{v}}$.
Let

$$
\begin{aligned}
& \alpha_{v}^{*}=\alpha_{v} \text { if } v \in S^{+} \\
& \alpha_{v}^{*}=\sup \left\{\alpha<v \mid \beta\left(f_{\left(\alpha, x_{v}, \mu_{v}\right)}^{n_{v}}\right)=\alpha\right\} \text { if } v \notin S^{+} .
\end{aligned}
$$

Let $P_{v}:=\left\{x_{\tau} \mid v \sqsubset \tau \sqsubseteq \mu_{v}, \tau \in S^{+}\right\} \cup\left\{x_{v}\right\}$.

We say that $\mathfrak{M}=\langle S, \triangleleft, \mathfrak{F}, D\rangle$ is an $\left(\omega_{1}, \beta\right)$-morass if the following axioms hold:
(MP - minimum principle)
If $v \in S-R \operatorname{Card}^{L_{\kappa}[D]}$ and $x \in J_{\mu_{v}}^{D}$, then $f_{(0, x, v)}$ exists.

(LP1 - first logical preservation axiom)

If $f: \bar{v} \Rightarrow v$, then $|f|:\left\langle J_{\mu_{\bar{v}}}^{D}, D \upharpoonright \mu_{\bar{v}}\right\rangle \rightarrow\left\langle J_{\mu_{v}}^{D}, D \upharpoonright \mu_{v}\right\rangle$ is Σ_{1}-elementary.

(LP2 - second logical preservation axiom)

Let $f: \bar{v} \Rightarrow v$ and $f(\bar{x})=x$. Then

$$
\left(f \upharpoonright J \frac{D}{v}\right):\left\langle J \frac{D}{v}, D \upharpoonright \bar{v}, \Lambda(\bar{x}, \bar{v})\right\rangle \rightarrow\left\langle J_{v}^{D}, D \upharpoonright v, \Lambda(x, v)\right\rangle
$$

is Σ_{0}-elementary.

(CP1 - first continuity principle)

For $i \leq j<\lambda$, let $f_{i}: v_{i} \Rightarrow v$ and $g_{i j}: v_{i} \Rightarrow v_{j}$ such that $g_{i j}=f_{j}^{-1} f_{i}$. Let $\left\langle g_{i} \mid i<\lambda\right\rangle$ be the transitive, direct limit of the directed system $\left\langle g_{i j} \mid i \leq j<\lambda\right\rangle$ and $h_{g_{i}}=f_{i}$ for all $i<\lambda$. Then $g_{i}, h \in \mathfrak{F}$.

(CP2 - second continuity principle)

Let $f: \bar{v} \Rightarrow v$ and $\lambda=\sup (f[\bar{v}])$. If, for some $\bar{\lambda}, h:\left\langle J_{\bar{\lambda}}^{\bar{D}}, \bar{D}\right\rangle \rightarrow\left\langle J_{\lambda}^{D}, \bar{D} \upharpoonright \lambda\right\rangle$ is Σ_{1}-elementary and $r n g(f \upharpoonright J \bar{v}) \subseteq r n g(h)$, then there is some $g: \bar{\lambda} \Rightarrow \lambda$ such that $g \upharpoonright J \overline{\bar{D}}=h$.

(CP3 - third continuity principle)

If $C_{v}=\{\lambda(f)<v \mid f \Rightarrow v\}$ is unbounded in $v \in S-R \operatorname{Card}^{L_{\kappa}[D]}$, then the following holds for all $x \in J_{\mu_{v}}^{D}$:

$$
r n g\left(f_{(0, x, v)}\right)=\bigcup\left\{r n g\left(f_{(0, x, \lambda)}\right) \mid \lambda \in C_{v}\right\}
$$

(DP1 - first dependency axiom)
If $\mu_{v}<\mu_{\alpha_{v}}$, then $v \in S-\operatorname{Card}^{L_{\kappa}[D]}$ is independent.

(DP2 - second dependency axiom)

If $v \in S-R \operatorname{Card}^{L_{\kappa}[D]}$ is η-dependent on $\tau \sqsubseteq v, \tau \in S^{+}, f: \bar{v} \Rightarrow v, f(\bar{\tau})=\tau$ and $\eta \in \operatorname{rng}(f)$, then $f^{(\bar{\tau})}: \bar{\tau} \Rightarrow \tau$.

(DP3 - third dependency axiom)

For $v \in \hat{S}-R \operatorname{Card}^{L_{\kappa}}[D]$ and $1 \leq n \in \omega$, the following holds:
(a) If $f_{\left(\alpha_{\tau}, x, v\right)}^{n}=i d_{v}, \tau \in S^{+} \cup S^{0}$ and $\tau \sqsubseteq v$, then $\mu_{v}=\mu_{\tau}$.
(b) If $\beta<\alpha_{\tau(n, v)}$, then also $d\left(f_{(\beta, x(n, v), v)}^{n}\right)<\alpha_{\tau(n, v)}$.
(DF - definability axiom)
(a) If $f_{\left(0, z_{0}, v\right)}=i d_{v}$ for some $v \in \hat{S}-R \operatorname{Card}^{L_{\kappa}[D]}$ and $z_{0} \in J_{\mu_{v}}^{D}$, then

$$
\left\{\left\langle z, x, f_{(0, z, v)}(x)\right\rangle \mid z \in J_{\mu_{v}}^{D}, x \in \operatorname{dom}\left(f_{(0, z, v)}\right)\right\}
$$

is uniformly definable over $\left\langle J_{\mu_{v}}^{D}, D \upharpoonright \mu_{v}, D_{\mu_{v}}\right\rangle$.
(b) For all $v \in S-\operatorname{Rard}^{L_{\mathrm{K}}[D]}, x \in J_{\mu_{v}}^{D}$, the following holds:

$$
f_{(0, x, v)}=f_{\left(0,\left\langle x, v, \alpha_{v}^{*}, P_{v}\right\rangle, \mu_{v}\right)}^{n_{v}}
$$

This finishes the definition of an $\left(\omega_{1}, \beta\right)$-morass.
A consequence of the axioms is (\times) by [6]:

Theorem.

$$
\begin{aligned}
& \left\{\left\langle z, \tau, x, f_{(0, z, \tau)}(x)\right\rangle \mid \tau<v, \mu_{\tau}=v, z \in J_{\mu_{\tau}}^{D}, x \in \operatorname{dom}\left(f_{(0, z, \tau)}\right)\right\} \\
& \cup\left\{\left\langle z, x, f_{(0, z, v)}(x)\right\rangle \mid \mu_{v}=v, z \in J_{\mu_{v}}^{D}, x \in \operatorname{dom}\left(f_{(0, z, v)}\right)\right\} \\
& \cup\left(\sqsubset \cap v^{2}\right)
\end{aligned}
$$

is for all $v \in S$ uniformly definable over $\left\langle J_{v}^{D}, D \upharpoonright v, D_{v}\right\rangle$.

A structure $\mathfrak{M}=\langle S, \triangleleft, \mathfrak{F}, D\rangle$ is called an $\omega_{1+\beta}$-standard morass if it satisfies all axioms of an $\left(\omega_{1}, \beta\right)$-morass except (DF) which is replaced by:

$$
v \triangleleft \tau \Rightarrow v \text { is regular in } J_{\tau}^{D}
$$

and there are functions $\sigma_{(x, v)}$ for $v \in \hat{S}$ and $x \in J_{v}^{D}$ such that:

$(\mathrm{MP})^{+}$

$$
\sigma_{(x, v)}[\omega]=\operatorname{rng}\left(f_{(0, x, v)}\right)
$$

$(\mathrm{CP} 1)^{+}$

If $f: \bar{v} \Rightarrow v$ and $f(\bar{x})=x$, then $\sigma_{(x, v)}=f \circ \sigma_{(\bar{x}, \bar{v})}$.

$(\mathrm{CP} 3)^{+}$

If C_{v} is unbounded in v, then $\sigma_{(x, v)}=\bigcup\left\{\sigma_{(x, \lambda)} \mid \lambda \in C_{v}, x \in J_{\lambda}^{D}\right\}$.
$(D F)^{+}$
(a) If $f_{(0, x, v)}=i d_{v}$ for some $x \in J_{v}^{D}$, then

$$
\left\{\left\langle i, z, \sigma_{(z, v)}(i)\right\rangle \mid z \in J_{v}^{D}, i \in \operatorname{dom}\left(\sigma_{(z, v)}\right)\right\}
$$

is uniformly definable over $\left\langle J_{\mu_{v}}^{D}, D \upharpoonright \mu_{v}, D_{\mu_{v}}\right\rangle$.
(b) If C_{v} is unbounded in v, then $D_{v}=C_{v}$. If it is bounded, then $D_{v}=$ $\left\{\left\langle i, \sigma_{\left(q_{v}, v\right)}(i)\right\rangle \mid i \in \operatorname{dom}\left(\sigma_{\left(q_{v}, v\right)}\right)\right\}$.

Now, I am going to construct a κ-standard morass.
Let $\beta(v)$ be the least β such that $J_{\beta+1}^{X} \vDash v$ singular.
Let $L_{\kappa}[X]$ satisfy amenability, condensation and coherence such that $S^{X}=$ $\left\{\beta(v) \mid v\right.$ singular in $\left.L_{\kappa}[X]\right\}$ and $\operatorname{Card}^{L_{\kappa}[X]}=\operatorname{Card} \bigcap \kappa$.

Let

$$
v \triangleleft \tau: \Leftrightarrow v \text { regular in } I_{\tau}
$$

Let

$$
E=\operatorname{Lim}-\operatorname{RCard}^{L_{\kappa}[X]}
$$

For $v \in E$, let
$\beta(v)=$ the least β such that there is a cofinal $f: a \rightarrow v \in \operatorname{Def}\left(I_{\beta}\right)$ and $a \subseteq v^{\prime}<\nu$,
$n(v)=$ the least $n \geq 1$ such that such an f is Σ_{n}-definable over $I_{\beta(v)}$,
$\rho(v)=$ the $(n(v)-1)$ th projectum of $I_{\beta(v)}$,
$A_{v}=$ the $(n(v)-1)$ th standard code of $I_{\beta(v)}$,
$\gamma(v)=$ the $n(v)$ th projectum of $I_{\beta(v)}$.
If $v \in S^{+}-$Card, then the $n(v)$ th projectum of $\beta(v)$ is less or equal $\alpha_{v}:=$ the largest cardinal in I_{v} : Since α_{v} is the largest cardinal in I_{v}, there is, by definition of $\beta(v)$ and $n(v)$, some over $I_{\beta(v)} \Sigma_{n(v)}$-definable function f such that $f\left[\alpha_{v}\right]$ is cofinal in v. But, since v is regular in $\beta(v), f$ cannot be an element of $J_{\beta(v)}^{X}$. So $\mathfrak{P}(v \times v) \cap \Sigma_{n(v)}\left(I_{\beta(v)}\right) \nsubseteq J_{\beta(v)}^{X}$. By Lemma 14, also $\mathfrak{P}(v) \cap \Sigma_{n(v)}\left(I_{\beta(v)}\right)$ $\nsubseteq J_{\beta(v)}^{X}$. Using Lemma 21(3), we get $\gamma \leq v$, i.e., there is an over $I_{\beta(v)} \Sigma_{n(v)^{-}}$definable function g such that $g[v]=J_{\beta(v)}^{X}$. On the other hand, there is, for every $\tau<v$ in J_{v}^{X}, a surjection from α_{v} onto τ, because α_{v} is the largest cardinal in I_{v}. Let f_{τ} be the $<_{v}$-least such. Define $j_{1}(\sigma, \tau)=f_{f(\tau)}(\sigma)$ for $\sigma, \tau<v$. Then j_{1} is $\Sigma_{n(v)}$-definable over $I_{\beta(v)}$ and $j_{1}\left[\alpha_{v} \times \alpha_{v}\right]=v$. By Lemma 15 , we obtain an over $I_{\beta(v)} \Sigma_{n(v)}$-definable function j_{2} from a subset of α_{v} onto v. Thus $g \circ j_{2}$ is an over $I_{\beta(v)} \Sigma_{n(v)}$-definable map such that $g \circ j_{2}\left[\alpha_{v}\right]=J_{\beta(v)}^{X}$.

Moreover, $\quad \alpha_{v}<v \leq \rho(v)$: By definition of $\rho(v)$, there is an over $I_{\beta(v)} \Sigma_{n(v)-1^{-}}$-definable function f such that $f[\rho(v)]=\beta(v)$ if $n(v)>1$. But v is $\Sigma_{n(v)-1^{-}}$-regular over $I_{\beta(v)}$. Thus $v \leq \rho(v)$. If $n(v)=1$, then $\rho(v)=\beta(v) \geq v$.

By the first inequality, there is a q such that every $x \in J_{\rho(v)}^{X}$ is Σ_{1}-definable in $\left\langle I_{\rho(v)}^{0}, A_{v}\right\rangle$ with parameters from $\alpha_{v} \cup\{q\}$. Let p_{v} be the $<_{\rho(v)}$-least such.

Obviously, $p_{\tau} \leq p_{v}$ if $v \sqsubseteq \tau \sqsubseteq \mu_{v}$.

Thus $P_{v}:=\left\{p_{\tau} \mid \nu \sqsubseteq \tau \sqsubseteq \mu_{v}, \tau \in S^{+}\right\}$is finite.

Now, let $v \in E-S^{+}$. By definition of $\beta(v)$, there exists no cofinal $f: a \rightarrow v$ in J_{β}^{X} such that a $a \subseteq v^{\prime}<v$. So $\mathfrak{P}(v \times v) \cap \Sigma_{n(v)}\left(I_{\beta(v)}\right) \nsubseteq J_{\beta(v)}^{X}$. Then, by Lemma 14, $\mathfrak{P}(v) \cap \Sigma_{n(v)}\left(I_{\beta(v)}\right) \nsubseteq J_{\beta(v)}^{X}$. Hence, by Lemma 21(3),

$$
\gamma(v) \leq v
$$

Assume $\rho(v)<v$. Then there was an over $I_{\beta(v)} \Sigma_{n(v)-1}$-definable f such that $f[\rho(v)]=v$. But this contradicts the definition of $n(v)$. So

$$
v \leq \rho(v)
$$

Using Lemma 21(1), it follows from the first inequality that there is some over $I_{\beta(v)} \Sigma_{n(v)}$-definable function f such that $f\left[J_{v}^{X}\right]=J_{\beta}^{X}(v)$. So there is a $p \in J_{\rho(v)}^{X}$ such that every $x \in J_{\rho(v)}^{X}$ is Σ_{1}-definable in $\left\langle I_{\rho(v)}^{0}, A_{v}\right\rangle$ with parameters from $v \bigcup\{p\}$. Let p_{v} be the least such.

Let

$$
\alpha_{v}^{*}=\sup \left\{\alpha<v \mid h_{\rho(v), A_{v}}\left[\omega \times\left(J_{\alpha}^{X} \times\left\{p_{v}\right\}\right)\right] \cap v=\alpha\right\}
$$

Then $\alpha_{v}^{*}<v$ because, by definition of $\beta(v)$, there exists a $v^{\prime}<v$ and a $p \in J_{\rho(v)}^{X}$ such that $h_{\rho(v), A_{v}}\left[\omega \times\left(J_{v^{\prime}}^{X} \times\left\{p_{v}\right\}\right)\right]$. is cofinal in v. But p is in $h_{\rho(v), A_{v}}\left[\omega \times\left(J_{v}^{X} \times\left\{p_{v}\right\}\right)\right]$. So there is an $\alpha<v$ such that $h_{\rho(v), A_{v}}\left[\omega \times\left(J_{\alpha}^{X} \times\left\{p_{v}\right\}\right)\right]$ $\bigcap v$ is cofinal in v. Thus $\alpha_{v}^{*}<\alpha<v$.

If $v \in S^{+}$, then we set $\alpha_{v}^{*}:=\alpha_{v}$.

For $v \in E$, let $f: \bar{v} \Rightarrow v$ iff, for some f^{*},
(1) $f=\left\langle\bar{v}, f^{*} \upharpoonright J_{\mu_{\bar{v}}}^{D}, v\right\rangle$,
(2) $f^{*}: I_{\mu_{\bar{v}}} \rightarrow I_{\mu_{v}}$ is $\Sigma_{n(v)}$-elementary,
(3) $\alpha_{v}^{*}, p_{v}, \alpha_{\mu_{v}}^{*}, P_{v} \in r n g\left(f^{*}\right)$,
(4) $v \in \operatorname{rng}\left(f^{*}\right)$ if $v<\mu_{v}$,
(5) $f(\bar{v})=v$ and $\bar{v} \in S^{+} \Leftrightarrow v \in S^{+}$.

By this, \mathfrak{F} is defined.
Set $D=X$.
Let P_{v}^{*} be minimal such that $h_{\mu_{v}}^{n(v)-1}\left(i, P_{v}^{*}\right)=P_{v}$ for an $i \in \omega$.
Let $\alpha_{\mu_{v}}^{* *}$ be minimal such that $h_{\mu_{v}}^{n(v)-1}\left(i, \alpha_{\mu_{v}}^{* *}\right)=\alpha_{\mu_{v}}^{*}$ for some $i \in \omega$.
Set

$$
\begin{aligned}
& v^{*}=\varnothing \text { if } v=\rho(v), \\
& v^{*}=v \text { if } v<\rho(v) .
\end{aligned}
$$

For $\tau \in O n$, let S_{τ} be defined as in Lemma 10. For $\tau \in O n, E_{i} \subseteq S_{\tau}$ and a Σ_{0} formula φ, let
$h_{\tau, E_{i}}^{\varphi}\left(x_{1}, \ldots, x_{m}\right)$ the least $x_{0} \in S_{\tau}$ w.r.t. the canonical well-ordering such that $\left\langle S_{\tau}, E_{i}\right\rangle \vDash \varphi\left(x_{i}\right)$ if such an element exists,
and

$$
h_{\tau, E_{i}}^{\varphi}\left(x_{1}, \ldots, x_{m}\right)=\varnothing \text { else. }
$$

For $\tau \in O n$ such that $v^{*}, \alpha_{v}^{*}, p_{v}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*} \in S_{\tau}$, let $H_{v}(\alpha, \tau)$ be the closure of
$S_{\alpha} \cup\left\{v^{*}, \alpha_{v}^{*}, p_{v}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*}\right\}$ under all $h_{\tau, X \cap S_{\tau}, A_{v} \cap S_{\tau}}^{\varphi}$. Then

$$
H_{v}(\alpha, \tau) \prec_{1}\left\langle S_{\tau}, X \cap S_{\tau}, A_{v} \cap S_{\tau},\left\{v^{*}, \alpha_{v}^{*}, p_{v}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*}\right\}\right\rangle
$$

by the definition of $h_{\tau, X \cap S_{\tau}}^{\varphi}, A_{\nu} \cap S_{\tau}$. Let $M_{v}(\alpha, \tau)$ be the collapse of $H_{v}(\alpha, \tau)$. Let τ_{0} be the minimal τ such that $v^{*}, \alpha_{v}^{*}, p_{v}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*} \in S_{\tau}$. Define by induction for $\tau_{0} \leq \tau<\rho(v)$:

$$
\begin{aligned}
& \alpha\left(\tau_{0}\right)=\alpha_{v} \\
& \alpha(\tau+1)=\sup \left(M_{v}(\alpha(\tau), \tau+1) \cap v\right) \\
& \alpha(\lambda)=\sup \{\alpha(\tau) \mid \tau<\lambda\} \text { if } \lambda \in \operatorname{Lim}
\end{aligned}
$$

Set

$$
\begin{aligned}
& B_{v}=\left\{\left\langle\alpha(\tau), M_{v}(\alpha(\tau), \tau)\right\rangle \mid \tau_{0}<\tau \in \rho(v)\right\} \text { if } v<\rho(v), \\
& B_{v}=\{0\} \times A_{v} \cup\left\{\left\langle 1, v^{*}, \alpha_{v}^{*}, p_{v}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*}\right\rangle\right\} \text { else. }
\end{aligned}
$$

Lemma 22. $B_{v} \subseteq J_{v}^{X}$ and $\left\langle I_{v}^{0}, B_{v}\right\rangle$ is rudimentary closed.
Proof. If $v=\rho(v)$, then both claims are clear. Otherwise, we first prove $M^{v}(\alpha, \tau) \in J_{v}^{X}$ for all $\alpha<v$ and all $\tau \in \rho(v)$ such that $\tau_{0} \leq \tau<\rho(v)$. Let such a τ be given and $\tau^{\prime} \in \rho(v)$ - Lim be such that $X \cap S_{\tau}, A_{v} \cap S_{\tau} \in S_{\tau^{\prime}}$ (rudimentary closedness of $\left.\left\langle I_{\rho(v)}^{0}, A_{v}\right\rangle\right)$. Let $\eta:=\sup \left(\tau^{\prime} \cap \operatorname{Lim}\right)$. Let H be the closure of

$$
\alpha \cup\left\{v^{*}, \alpha_{v}^{*}, p_{v}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*}, X \cap S_{\tau}, S_{\tau}, A_{v} \cap S_{\tau}, \eta\right\}
$$

under all $h_{\tau^{\prime}}^{\varphi}$ Let $\sigma: H \cong S$ be the collapse of H and $\sigma(\eta)=\bar{\eta}$. If $\eta \in S^{X}$, then $S=S_{\bar{\tau}^{\prime}}$ for some $\bar{\tau}^{\prime}$ by the condensation property of $L[X]$. If $\eta \notin S^{X}$, then $S=S_{\bar{\tau}^{\prime}}^{X \upharpoonright \bar{\eta}}$ for some $\bar{\tau}^{\prime}$, where $S_{\bar{\tau}^{\prime}}^{X \upharpoonright \bar{\eta}}$ is defined like $S_{\bar{\tau}^{\prime}}$ with $X \upharpoonright \bar{\eta}$ instead of X. The reason is that, even if $\eta \notin S^{X}$, it is the supremum of points in S^{X}, because $S^{X}=\left\{\beta(v) \mid v\right.$ singular in $\left.L_{\kappa}[X]\right\}$. In both cases, $S \in J_{\rho_{v}}^{X}$ and there is a function
in $I_{\bar{\eta}+\omega}$ that maps

$$
\alpha \bigcup\left\{\sigma\left(v^{*}\right), \sigma\left(\alpha_{v}^{*}\right), \sigma\left(p_{v}\right), \sigma\left(\alpha_{\mu_{v}}^{* *}\right), \sigma\left(P_{v}^{*}\right), \sigma\left(X \cap S_{\tau}\right), \sigma\left(S_{\tau}\right), \sigma\left(A_{v} \cap S_{\tau}\right), \sigma(\eta)\right\}
$$

onto S. So v would be singular in $J_{\rho_{v}}^{X}$ if $v \leq \bar{\tau}^{\prime}$. But this contradicts the definition of $\beta(v)$. Therefore,

$$
\begin{aligned}
& \sigma\left(v^{*}\right), \sigma\left(\alpha_{v}^{*}\right), \sigma\left(p_{v}\right), \sigma\left(\alpha_{\mu_{v}}^{* *}\right), \sigma\left(P_{v}^{*}\right) \\
& \sigma\left(X \cap S_{\tau}\right), \sigma\left(S_{\tau}\right), \sigma\left(A_{v} \cap S_{\tau}\right), \sigma(\eta) \in J_{v}^{X}
\end{aligned}
$$

Let $\bar{H}_{v}(\alpha, \tau)$ be the closure of

$$
\begin{aligned}
& S_{\alpha} \cup\left\{\sigma\left(v^{*}\right), \sigma\left(\alpha_{v}^{*}\right), \sigma\left(p_{v}\right), \sigma\left(\alpha_{\mu_{v}}^{* *}\right), \sigma\left(P_{v}^{*}\right)\right. \\
& \left.\sigma\left(X \cap S_{\tau}\right), \sigma\left(S_{\tau}\right), \sigma\left(A_{v} \cap S_{\tau}\right), \sigma(\eta)\right\}
\end{aligned}
$$

under all $h_{\sigma\left(S_{\tau}\right), \sigma\left(X \cap S_{\tau}\right), \sigma\left(A_{v} \cap S_{\tau}\right)}^{\varphi}$, where these are defined like $h_{\tau, E_{i}}^{\varphi}$ but with $\sigma\left(S_{\tau}\right)$ instead of S_{τ}. Then

$$
\begin{aligned}
& \bar{H}_{v}(\alpha, \tau) \prec_{1}\left\langle\sigma\left(S_{\tau}\right), \sigma\left(X \cap S_{\tau}\right), \sigma\left(A_{v} \cap S_{\tau}\right),\left\{\sigma\left(v^{*}\right)\right.\right. \\
& \left.\sigma\left(\alpha_{v}^{*}\right), \sigma\left(p_{v}\right), \sigma\left(\alpha_{\mu_{v}}^{* *}\right), \sigma\left(P_{v}^{*}\right), \sigma\left(X \cap S_{\tau}\right), \sigma\left(S_{\tau}\right), \sigma\left(A_{v} \cap S_{\tau}\right), \sigma(\eta)\right\}
\end{aligned}
$$

and $M_{v}(\alpha, \tau)$ is the collapse of $\bar{H}_{v}(\alpha, \tau)$. Since $v<\rho(v)$ and v is a cardinal in $I_{\beta(v)}, J_{v}^{X} \vDash Z F^{-}$. So we can form the collapse inside J_{v}^{X}. Thus $M_{v}(\alpha, \tau) \in J_{v}^{X}$.

Now, we turn to rudimentary closedness. Since B_{v} is unbounded in v, it suffices to prove that the initial segments of B_{v} are elements of J_{v}^{X}. Such an initial segment is of the form $\left\langle M_{v}(\alpha(\tau), \tau) \mid \tau<\gamma\right\rangle$, where $\gamma<\rho(v)$, and we have $H_{v}\left(\alpha(\tau), \delta_{\tau}\right)=H_{v}(\alpha(\tau), \tau)$, where δ_{τ} is for $\tau<\gamma$ the least $\eta \geq \tau$ such that $\eta \in H_{v}(\alpha(\tau), \gamma) \cup\{\gamma\}$. Since $\quad \delta_{\tau} \in H_{v}(\alpha(\tau), \gamma) \prec_{1}\left\langle S_{\gamma}, X \cap S_{\gamma}, A_{v} \cap S_{\gamma},\{\cdots\}\right\rangle$, $\left(H_{v}\left(\alpha(\tau), \delta_{\tau}\right)\right)^{H_{v}(\alpha(\gamma), \gamma)}=H_{v}(\alpha(\tau), \tau)$. Let $\pi: M_{v}(\alpha(\gamma), \gamma) \rightarrow S_{\gamma}$ be the uncollapse of $H_{v}(\alpha(\gamma), \gamma)$. Then, by the Σ_{1}-elementarity of $\pi, M_{v}(\alpha(\tau), \tau)=M_{v}\left(\alpha(\tau), \delta_{\tau}\right)$
is the collapse of $\left(H\left(\alpha(\tau), \pi^{-1}\left(\delta_{\tau}\right)\right)\right)^{M_{v}(\alpha(\gamma), \gamma)}$. So $\left\langle M_{v}(\alpha(\tau), \tau) \mid \tau<\gamma\right\rangle$ is definable from $M_{v}(\alpha(\gamma), \gamma) \in J_{v}^{X}$.

Lemma 23. For $x, y_{i} \in J_{v}^{X}$, the following are equivalent:
(i) x is Σ_{1}-definable in $\left\langle I_{\rho(v)}^{0}, A_{v}\right\rangle$ with the parameters $y_{i}, v^{*}, \alpha_{v}^{*}, p_{v}$, $\alpha_{\mu_{v}}^{* *}, P_{v}^{*}$.
(ii) x is Σ_{1}-definable in $\left\langle I_{v}^{0}, B_{v}\right\rangle$ with the parameters y_{i}.

Proof. For $v=\rho(v)$, this is clear. Otherwise, let first x be uniquely determined in $\left\langle I_{\rho(v)}^{0}, A_{v}\right\rangle$ by $(\exists z) \psi\left(z, x,\left\langle y_{i}, v^{*}, \alpha_{v}^{*}, p_{v}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*}\right\rangle\right)$, where is a Σ_{0} formula. That is equivalent to $(\exists \tau)\left(\exists z \in S_{\tau}\right) \psi\left(z, x,\left\langle y_{i}, v^{*}, \alpha_{v}^{*}, p_{v}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*}\right\rangle\right)$ and that again to $(\exists \tau) H_{v}(\alpha(\tau), \tau) \vDash(\exists z) \psi\left(z, x,\left\langle y_{i}, v^{*}, \alpha_{v}^{*}, p_{v}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*}\right\rangle\right)$. If τ is large enough, the y_{i} are not moved by the collapsing map, since then $y_{i} \in J_{\alpha(\tau)}^{X} \subseteq$ $H_{v}(\alpha(\tau), \tau)$. Let $\bar{v}, \alpha, p, \alpha^{\prime}, P$ be the images of $v^{*}, \alpha_{v}^{*}, p_{v}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*}$ under the collapse. Then

$$
(\exists \tau)\left(y_{i} \in J_{\alpha(\tau)}^{X} \text { and } M_{v}(\alpha(\tau), \tau) \vDash(\exists z) \psi\left(z, x,\left\langle y_{i}, \bar{v}, \alpha, p, \alpha^{\prime}, P\right\rangle\right)\right)
$$

defines x. So it is definable in $\left\langle I_{v}^{0}, B_{v}\right\rangle$.
Since B_{v} and the satisfaction relation of $\left\langle I_{\gamma}^{0}, B\right\rangle$ are Σ_{1}-definable over $\left\langle I_{\rho(v)}^{0}, A_{v}\right\rangle$, the converse is clear.

Lemma 24. Let $H \prec_{1}\left\langle I_{v}^{0}, B_{v}\right\rangle$ for a $v \in E$ and $\pi:\left\langle I_{\mu}^{0}, B\right\rangle \rightarrow\left\langle I_{v}^{0}, B_{v}\right\rangle$ be the uncollapse of H. Then $\mu \in E$ and $B=B_{\mu}$.

Proof. First, we extend π like in Lemma 19. Let

$$
\begin{aligned}
& M=\left\{x \in J_{\rho(v)}^{X} \mid x \text { is } \Sigma_{1} \text {-definable in }\left\langle I_{\rho(v)}^{0}, A_{v}\right\rangle\right. \text { with parameters from } \\
&\left.\quad \operatorname{rng}(\pi) \cup\left\{p_{v}, v^{*}, \alpha_{v}^{*}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*}\right\}\right\} .
\end{aligned}
$$

Then $\operatorname{rng}(\pi)=M \bigcap J_{v}^{X}$. For, if $x \in M \bigcap J_{v}^{X}$, then there are by definition of $M y_{i} \in \operatorname{rgn}(\pi)$ such that x is Σ_{1}-definable in $\left\langle I_{\rho(v)}^{0}, A_{v}\right\rangle$ with the parameters y_{i} and $p_{v}, v^{*}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*}$. Thus it is Σ_{1}-definable in $\left\langle I_{v}^{0}, B_{v}\right\rangle$ with the y_{i} by Lemma 23. Therefore, $x \in \operatorname{rng}(\pi)$ because $y_{i} \in r n g(\pi) \prec_{1}\left\langle I_{v}^{0}, B_{v}\right\rangle$. Let $\hat{\pi}:\left\langle I_{\rho}^{0}, A\right\rangle \rightarrow$ $\left\langle I_{\rho(v)}^{0}, A_{v}\right\rangle$ be the uncollapse of M. Then $\hat{\pi}$ is an extension of π, since $M \cap J_{v}^{X}$ is an \in-initial segment of M and $r n g(\pi)=M \bigcap J_{v}^{X}$. In addition, there is by Lemma 19, a $\Sigma_{n(v)}$-elementary extension $\tilde{\pi}: I_{\beta} \rightarrow I_{\beta(v)}$ such that ρ is the $(n(v)-1)$ th projectum of I_{β} and A is the $(n(v)-1)$ th standard code of it. Let $\tilde{\pi}(p)=p_{v}$ and $\tilde{\pi}(\alpha)=\alpha_{v}^{*}$. And we have $\tilde{\pi}(\mu)=v$ if $v<\beta(v)$. In this case, $v \in r n g(\pi)$ by the definition of v^{*}. Since $\tilde{\pi}$ is Σ_{1}-elementary, cardinals of J_{μ}^{X} are mapped on cardinals of J_{v}^{X}.

Assume $v \in S^{+}$. Suppose there was a cardinal $\tau>\alpha$ of J_{μ}^{X}. Then $\pi(\tau)>\alpha_{\tau}$ was a cardinal in J_{v}^{X}. But this is a contradiction.

Next, we note that μ is $\Sigma_{n(v)}$-singular over I_{β}. If $v \in S^{+}$, then, by the definition of $p_{v}, J_{\rho}^{X}=h_{\rho, A}[\omega \times(\alpha \times\{p\})]$ is clear. So there is an over $\left\langle I_{v}^{0}, A\right\rangle$ Σ_{1}-definable function from α cofinal into μ. But since ρ is the $(n(v)-1)$ th projectum and A is the $(n(v)-1)$ th code of it, this function is Σ_{n}-definable over I_{β}. Now, suppose $v \notin S^{+}$. Let $\lambda:=\sup (\pi[\mu])$. Since $\lambda>\alpha_{v}^{*}$, there is a $\gamma<\lambda$ such that

$$
\sup \left(h_{\rho(v), A_{v}}\left[\omega \times\left(J_{\gamma}^{X} \times\left\{q_{v}\right\}\right)\right] \cap v\right) \geq \lambda
$$

And since $r n g(\pi)$ is cofinal in λ, there is such a $\gamma \in r n g(\pi)$. Let $\gamma=\pi(\bar{\gamma})$. By the Σ_{1}-elementarity of $\tilde{\pi}$, $\bar{\gamma}<\mu$ and setting $\tilde{\pi}(q)=q_{v}$ we have for every $\eta<\mu$,

$$
\left\langle I_{\rho}, A\right\rangle \vDash\left(\exists x \in J_{\bar{\gamma}}^{X}\right)(\exists i) h_{\rho, A}(i,\langle x, p\rangle)>\eta .
$$

Hence $h_{\rho, A}\left[\omega \times\left(J_{\bar{\gamma}}^{X} \times\{q\}\right)\right]$ is cofinal in μ. This shows $\mu \in E$.

On the other hand, μ is $\Sigma_{n(v)-1}$-regular over I_{β} if $n(v)>1$. Assume there was an over $I_{\beta} \Sigma_{n(v)-1}$-definable function f and some $x \in \mu$ such that $f[x]$ was cofinal in μ, i.e., $(\forall y \in \mu)(\exists z \in x)(f(x)>y)$ would hold in I_{β}. Over I_{β}, $(\exists z \in x)(f(z)>y)$ is $\Sigma_{n(v)-1}$. So it is Σ_{0} over $\left\langle I_{\rho}^{0}, A\right\rangle$. But then also $(\forall y \in \mu)(\exists z \in x)(f(z)>y)$ is Σ_{0} over $\left\langle I_{\rho}^{0}, A\right\rangle$ if $\mu<\rho$. Hence it is $\Sigma_{n(v)}$ over I_{β}. But then the same would hold for $\tilde{\pi}(x)$ in $I_{\beta(v)}$. This contradicts the definition of $n(v)$! Now, let $\mu=\rho$. Since λ is the largest cardinal in I_{μ}, we had in f also an over $I_{\beta} \Sigma_{n(v)-1}$-definable function from α onto ρ and therefore one from α onto β. But this contradicts Lemma 21 and the fact that ρ is the $(n(v)-1)$ th projectum of β. If $n(v)=1$, then we get with the same argument that μ is regular in I_{β}.

The previous two paragraphs show $\beta=\beta(\mu)$ and $n(\mu)=n(v)$. We are done if we can also show that $\alpha=\alpha_{\mu}^{*}, \pi\left(\alpha_{\mu_{\mu}}^{* *}\right)=\alpha_{\mu_{v}}^{* *}, p=p_{\mu}, \pi\left(P_{\mu}^{*}\right)=P_{v}^{*}$, because $\tilde{\pi}$ is Σ_{1}-elementary, $\tilde{\pi}\left(h_{\tau, X \cap S_{\tau}}^{\varphi}, A_{\mu}, A_{\mu} \cap S_{\tau}\left(x_{i}\right)\right)=h_{\tilde{\pi}(\tau), X \cap S_{\tilde{\pi}(\tau)}^{\varphi}, A_{v} \cap S_{\tilde{\pi}(\tau)}\left(x_{i}\right) \text { for all } \Sigma_{1}, ~}^{\text {a }}$ formulas φ and $x_{i} \in S_{\tau}$.

For $v \in S^{+}, \alpha=\alpha_{\mu}$ was shown above. So let $v \notin S^{+}$. By the Σ_{1}-elementarity of $\tilde{\pi}$, we have for all $\alpha \in \mu$,

$$
h_{\rho, A}\left[\omega \times\left(J_{\alpha}^{X} \times\{p\}\right)\right] \cap \mu=\alpha \Leftrightarrow h_{\rho(v), A_{v}}\left[\omega \times\left(J_{\pi(\alpha)}^{X} \times\left\{p_{v}\right\}\right)\right] \cap v=\pi(\alpha) .
$$

The same argument proves $\pi\left(\alpha_{\mu_{\mu}}^{* *}\right)=\alpha_{\mu_{v}}^{* *}$. Finally, $p=p_{\mu}$ and $\pi\left(P_{\mu}^{*}\right)=P_{v}^{*}$ can be shown as in (5) in the proof of Lemma 19.

Lemma 25. Let $H \prec_{1}\left\langle I_{v}^{0}, B_{v}\right\rangle$ and $\lambda=\sup (H \cap v)$ for $a \quad v \in E$. Then $\lambda \in E$ and $B_{v} \cap J_{\lambda}^{X}=B_{\lambda}$.

Proof. Let $\pi_{0}:\left\langle I_{\mu}^{0}, B_{\mu}\right\rangle \rightarrow\left\langle I_{\lambda}^{0}, B_{v} \cap J_{\lambda}^{X}\right\rangle$ be the uncollapse of H and let $\pi_{1}:\left\langle I_{\lambda}^{0}, B_{v} \cap J_{\lambda}^{X}\right\rangle \rightarrow\left\langle I_{v}^{0}, B_{v}\right\rangle$ be the identity. Since $L[X]$ has coherence, π_{0} and π_{1} are Σ_{0}-elementary. By Lemma $18, \pi_{0}$ is even Σ_{1}-elementary, because it is
cofinal. To show $B_{\lambda}=B_{v} \cap J_{\lambda}^{X}$, we extend π_{0} and π_{1} to $\hat{\pi}_{0}:\left\langle I_{\rho(\mu)}^{0}, A_{\mu}\right\rangle \rightarrow$ $\left\langle I_{\rho}^{0}, A\right\rangle$ and $\hat{\pi}_{1}:\left\langle I_{\rho}^{0}, A\right\rangle \rightarrow\left\langle I_{\rho(\mu)}^{0}, A_{v}\right\rangle$ in such a way that $\hat{\pi}_{0}$ is Σ_{1}-elementary and $\hat{\pi}_{1}$ is Σ_{0}-elementary. Then we know from Lemma 19 that ρ is the $(n(v)-1)$ th projectum of some β and A is the $(n(v)-1)$ th code of it. So there is a $\Sigma_{n(v)^{-}}$ elementary extension of $\tilde{\pi}_{0}: I_{\bar{\beta}} \rightarrow I_{\beta}$. We can again use the argument from Lemma 24 to show that λ is $\Sigma_{n(v)-1}$-regular over I_{β}. But on the other hand, λ is as supremum of $H \cap O n \Sigma_{n(v)}$-singular over I_{β}. From this, we conclude as in the proof of Lemma 24 that $B_{\lambda}=B_{v} \cap J_{\lambda}^{X}$.

First, suppose $v \in S^{+}$. Since $\alpha_{v} \in H \prec_{1}\left\langle I_{v}^{0}, B_{v}\right\rangle, \alpha_{v}<\lambda \leq v$. Since $I_{v} \vDash\left(\alpha_{v}\right.$ is the largest cardinal), we therefore have $\lambda \notin$ Card. In addition, α_{v} is the largest cardinal in I_{λ}. Assume τ was the next larger cardinal. Then τ was Σ_{1}-definable in I_{λ} with parameter α_{ν} and some $\tau^{\prime} \in H$ and hence it was in H. By the Σ_{1}-elementarity of $\pi_{0}, \pi_{0}^{-1}(\tau)>\pi_{0}^{-1}\left(\alpha_{\nu}\right)=\alpha_{\mu}$ was also a cardinal in I_{μ}. But this contradicts the definition of α_{μ}.

But now to $B_{\lambda}=B_{v} \cap J_{\lambda}^{X}$. First, assume $v \notin S^{+}$. Let $\pi=\pi_{1} \circ \pi_{0}:\left\langle I_{\mu}^{0}, B_{\mu}\right\rangle$ $\rightarrow\left\langle I_{v}^{0}, B_{v}\right\rangle$ and $\hat{\pi}:\left\langle I_{\rho(\mu)}^{0}, A_{\mu}\right\rangle \rightarrow\left\langle I_{\rho(v)}^{0}, A_{\nu}\right\rangle$ be the extension constructed in the proof of Lemma 24. Let $\gamma=\sup (r n g(\hat{\pi}))$. Then $\hat{\pi}^{\prime}=\hat{\pi} \cap\left(J_{\rho(\mu)}^{X} \times J_{\gamma}^{X}\right):\left\langle I_{\rho(\mu)}^{0}, A_{\mu}\right\rangle$ $\rightarrow\left\langle I_{\gamma}^{0}, A_{v} \cap J_{\gamma}^{X}\right\rangle$ is Σ_{0}-elementary, by coherence of $L_{\kappa}[X]$, and cofinal. Thus $\hat{\pi}^{\prime}$ is Σ_{1}-elementary. Let $H^{\prime}=h_{\gamma, A_{\nu} \cap J_{\gamma}^{X}}\left[\omega \times\left(J_{\lambda}^{X} \times\left\{p_{\nu}\right\}\right)\right]$ and $\hat{\pi}_{1}:\left\langle I_{\rho}^{0}, A\right\rangle \rightarrow$ $\left\langle I_{\rho(v)}^{0}, A_{v}\right\rangle$ be the uncollapse of H^{\prime}. Then $H=r n g\left(\hat{\pi}^{\prime}\right) \subseteq H^{\prime}$. To see this, let $z \in$ $r n g\left(\hat{\pi}^{\prime}\right)$ and $z=\hat{\pi}^{\prime}(y)$. Then, by definition of p_{μ}, there is an $x \in J_{\mu}^{X}$ and an $i \in \omega$ such that $y=h_{\rho(\mu), A_{\mu}}\left(i,\left\langle x, p_{\mu}\right\rangle\right)$. By the Σ_{1}-elementarity of $\hat{\pi}^{\prime}$, we therefore have $z=h_{\gamma, A_{\nu} \cap J_{\gamma}^{X}}\left(i,\left\langle\hat{\pi}^{\prime}(x), \hat{\pi}^{\prime}\left(p_{\mu}\right)\right\rangle\right)$. But $\hat{\pi}^{\prime}\left(p_{\mu}\right)=\hat{\pi}\left(p_{\mu}\right)=p_{\nu}$ and $\hat{\pi}^{\prime}(x) \in J_{\lambda}^{X}$.

In addition, $\sup \left(H^{\prime} \cap v\right)=\lambda$. That $\sup \left(H^{\prime} \cap v\right) \geq \lambda$ is clear. Conversely, let
$x \in H^{\prime} \cap v$, i.e., $x=h_{\gamma, A_{\nu} \cap J_{\gamma}^{X}}\left(i,\left\langle y, p_{v}\right\rangle\right)$ for some $i \in \omega$ and a $y \in J_{\lambda}^{X}$. Then x is uniquely determined by $\left\langle I_{\gamma}^{0}, A_{v} \cap J_{\gamma}^{X}\right\rangle \vDash(\exists z) \psi_{i}\left(z, x,\left\langle y, p_{v}\right\rangle\right)$. But such a z exists already in a $H_{v}^{0}(\alpha, \tau)$, where $H_{v}^{0}(\alpha, \tau)$ is the closure of S_{α} under all $h_{\tau, X \cap S_{\tau}, A_{v} \cap S_{\tau}}^{\varphi}$. Since $\gamma=\sup (r n g(\hat{\pi}))$ and $\lambda=\sup (r n g(\pi))$ we can pick such $\tau \in \operatorname{rng}(\hat{\pi})$ and $\alpha \in \operatorname{rng}(\pi)$. Let $\bar{\tau}=\hat{\pi}^{-1}(\tau)$ and $\bar{\alpha}=\hat{\pi}^{-1}(\alpha)$. Let $\vartheta=$ $\sup \left(v \cap H_{v}^{0}(\alpha, \tau)\right)$ and $\bar{\vartheta}=\sup \left(\mu \cap H_{\mu}^{0}(\bar{\alpha}, \bar{\tau})\right)$. Since v is regular in $I_{\rho(v)}, \vartheta<v$. Analogously, $\bar{\vartheta}<\mu$. But of course $\hat{\pi}(\bar{\vartheta})=\vartheta$. So $x<\vartheta=\hat{\pi}(\bar{\vartheta})<\sup (\hat{\pi}[\mu])=\lambda$.

If $v \in S^{+}$, then we may define H^{\prime} as $h_{\gamma, A_{v} \cap J_{\gamma}^{X}}\left[\omega \times\left(J_{\alpha_{v}}^{X} \times\left\{p_{v}\right\}\right)\right]$ and still conclude that $H=r n g\left(\hat{\pi}^{\prime}\right) \subseteq H^{\prime}$ and $\sup \left(H^{\prime} \cap v\right)=\lambda$ by the definition of p_{v}.

By Lemma 19, $\hat{\pi}:\left\langle I_{\rho}^{0}, A\right\rangle \rightarrow\left\langle I_{\rho(v)}^{0}, A_{v}\right\rangle$ may be extended to a $\Sigma_{n(v)-1^{-}}$ elementary embedding $\tilde{\pi}_{1}: I_{\beta} \rightarrow I_{\beta(v)}$ such that ρ is the $(n(v)-1)$ th projectum of I_{β} and A is the $(n(v)-1)$ th standard code of it. Let $\hat{\pi}_{0}=\hat{\pi}_{1}^{-1} \circ \hat{\pi}$. Then $\hat{\pi}_{0}:\left\langle I_{\rho(\mu)}^{0}, A_{\mu}\right\rangle \rightarrow\left\langle I_{\rho}^{0}, A\right\rangle$ is Σ_{0}-elementary, by the coherence of $L_{\kappa}[X]$, and cofinal. Thus it is Σ_{1}-elementary by Lemma 18. Applying again Lemma 19, we get a $\Sigma_{n(v)}$-elementary $\tilde{\pi}_{0}: I_{\beta(\mu)} \rightarrow I_{\beta}$.

As in Lemma 24, it suffices to prove $\beta=\beta(\lambda), \quad n(v)=n(\lambda), \quad \rho=\rho(\lambda)$, $A=A_{\lambda}, \quad \hat{\pi}_{1}^{-1}\left(p_{v}\right)=p_{\lambda}, \quad \hat{\pi}_{1}^{-1}\left(P_{v}^{*}\right)=P_{\lambda}^{*}, \quad \alpha_{v}^{*}=\alpha_{\lambda}^{*}$ and $\hat{\pi}_{1}^{-1}\left(\alpha_{\mu_{v}}^{* *}\right)=\alpha_{\mu_{\lambda}}^{* *}$. So, if $n(v)>1$, we have to show that λ is $\Sigma_{n(v)-1}$-regular over I_{β}. If $n(v)=1$, then $I_{\beta} \vDash(\lambda$ regular $)$ suffices. In addition, λ must be $\Sigma_{n(v)}$-singular over I_{β}. For regularity, consider $\tilde{\pi}_{0}$ and, as in Lemma 24 , the least $x \in \lambda$ proving the opposite if such an x exists. This is again Σ_{n}-definable and therefore in $r n g\left(\tilde{\pi}_{0}\right)$. But then $\tilde{\pi}_{0}^{-1}(x)$ had the same property in $I_{\beta(\mu)}$. Contradiction!

Now, assume $v \in S^{+}$. Since $I_{v} \vDash\left(\alpha_{v}\right.$ is the largest cardinal), $H^{\prime} \cap v$ is transitive. Thus $H^{\prime} \cap v=\lambda$. Since $\hat{\pi}_{1}:\left\langle I_{\rho}^{0}, A\right\rangle \rightarrow\left\langle I_{\gamma}^{0}, A \cap J_{\gamma}^{X}\right\rangle$ is Σ_{1}-elementary
and $\lambda \subseteq H^{\prime}=r n g\left(\hat{\pi}_{1}\right)$, we have $\lambda=\lambda \bigcap h_{\rho, A}\left[\omega \times\left(J_{\alpha_{v}}^{X} \times\left\{\hat{\pi}_{1}^{-1}\left(p_{v}\right)\right\}\right)\right]$, i.e., there is a Σ_{1}-map over $\left\langle I_{\rho}, A\right\rangle$ from α_{v} onto λ. But this is then $\Sigma_{n(v)}$-definable over I_{β} and λ is $\Sigma_{n(v)}$-singular over I_{β}.

If $v \notin S^{+}$, then the fact that λ is $\Sigma_{n(v)}$-singular over $I_{\beta}, \quad \alpha_{v}^{*}=\alpha_{\lambda}^{*}$ and $\hat{\pi}_{1}^{-1}\left(\alpha_{\mu_{v}}^{* *}\right)=\alpha_{\mu_{\lambda}}^{* *}$ may be seen as in Lemma 24 because $\pi_{0}\left(\alpha_{\mu}^{*}\right)=\alpha_{v}^{*} \in r n g\left(\pi_{0}\right)$.

That $\hat{\pi}_{1}^{-1}\left(p_{v}\right)=p_{\lambda}$ and $\hat{\pi}_{1}^{-1}\left(P_{v}^{*}\right)=P_{\lambda}^{*}$ can again be proved as in (5) in the proof of Lemma 19.

Lemma 26. Let $v \in E$ and

$$
\Lambda(\xi, v)=\left\{\sup \left(h_{v, B_{v}}\left[\omega \times\left(J_{\beta}^{X} \times\{\xi\}\right)\right] \cap v\right)<v \mid \beta \in \operatorname{Lim} \cap v\right\}
$$

Let $\bar{\eta}<\bar{v}$ and $\pi:\langle I \bar{v}, B\rangle \rightarrow\left\langle I_{v}^{0}, B_{v}\right\rangle$ be Σ_{1}-elementary. Then $\Lambda(\bar{\xi}, \bar{v}) \cap \bar{\eta} \in J \bar{v}$ and $\pi(\Lambda(\bar{\xi}, \bar{v}) \cap \bar{\eta})=\Lambda(\xi, v) \cap \pi(\bar{\eta})$ where $\pi(\bar{\xi})=\xi$ and $\pi(\bar{\eta})=\eta$.

Proof. (1) Let $\lambda \in \Lambda(\xi, v)$. Then $\Lambda(\xi, \lambda)=\Lambda(\xi, v) \cap \lambda$.
Let β_{0} be minimal such that

$$
\sup \left(h_{v, B_{v}}\left[\omega \times\left(J_{\beta_{0}}^{X} \times\{\xi\}\right)\right] \cap v\right)=\lambda
$$

Then, by Lemma 25 , for all $\beta \leq \beta_{0}$,

$$
h_{\lambda, B_{\lambda}}\left[\omega \times\left(J_{\beta}^{X} \times\{\xi\}\right)\right]=h_{v, B_{v}}\left[\omega \times\left(J_{\beta}^{X} \times\{\xi\}\right)\right]
$$

and for all $\beta_{0} \leq \beta$,

$$
\begin{aligned}
h_{\lambda, B_{\lambda}}\left[\omega \times\left(J_{\beta_{0}}^{X} \times\{\xi\}\right)\right] & \subseteq h_{\lambda, B_{\lambda}}\left[\omega \times\left(J_{\beta}^{X} \times\{\xi\}\right)\right] \\
& \subseteq h_{v, B_{v}}\left[\omega \times\left(J_{\beta}^{X} \times\{\xi\}\right)\right]
\end{aligned}
$$

So $\Lambda(\xi, \lambda)=\Lambda(\xi, v) \cap \lambda$.
(2) $\Lambda(\bar{\xi}, \bar{v}) \cap \bar{\eta} \in J \bar{v}$

Let $\bar{\lambda}:=\sup ((\bar{\xi}, \bar{v}) \cap \bar{\eta}+1)$. Then, by (1), $\Lambda(\bar{\xi}, \bar{v}) \cap \bar{\eta}+1=\Lambda(\bar{\xi}, \bar{v}) \bigcup\{\bar{\lambda}\}$. But $\Lambda(\bar{\xi}, \bar{v})$ is definable over $I_{\beta(\bar{\lambda})}$. Since $\beta(\bar{\lambda})<\bar{v}$, we get $\Lambda(\bar{\xi}, \bar{v}) \cap \bar{\eta}+1$ $\in J \frac{X}{v}$.
(3) Let $\sup \left(h_{\bar{v}, B_{\bar{v}}}[\omega \times(J \bar{X} \times\{\bar{\xi}\})]\right)<\bar{v}$ and $\pi(\bar{\beta})=\beta$. Then

$$
\pi\left(\sup \left(h_{\bar{v}, B_{\bar{v}}}[\omega \times(J \bar{\beta} \times\{\bar{\beta}\})] \cap \bar{v}\right)\right)=\sup \left(h_{v, B_{v}}\left[\omega \times\left(J_{\beta}^{X} \times\{\xi\}\right)\right] \cap v\right) .
$$

Let $\bar{\lambda}:=\sup \left(h_{\bar{v}, B_{\bar{v}}}[\omega \times(J \bar{X} \times\{\bar{\xi}\})] \cap \bar{v}\right)$. Then

$$
\left\langle I I_{\bar{v}}^{0}, B_{\bar{v}}\right\rangle \vDash \neg(\exists \bar{\lambda}<\theta)(\exists i \in \omega)\left(\exists \xi_{i}<\bar{\beta}\right)\left(\theta=h_{\bar{v}, B_{\bar{v}}}\left(i,\left\langle\xi_{i}, \bar{\xi}\right\rangle\right)\right) .
$$

So

$$
\left\langle I_{v}^{0}, B_{v}\right\rangle \vDash \neg(\exists \lambda<\theta)(\exists i \in \omega)\left(\exists \xi_{i}<\beta\right)\left(\theta=h_{v, B_{v}}\left(i,\left\langle\xi_{i}, \xi\right\rangle\right)\right),
$$

where $\pi(\bar{\lambda})=\lambda$, i.e., $\sup \left(h_{v, B_{v}}\left[\omega \times\left(J_{\beta}^{X} \times\{\xi\}\right)\right] \cap v\right) \leq \lambda$. But $\left(\pi \upharpoonright J_{\bar{\lambda}}^{X}\right):\left\langle I_{\bar{\lambda}}^{0}, B_{\bar{\lambda}}\right\rangle$
$\rightarrow\left\langle I_{\lambda}^{0}, B_{\lambda}\right\rangle$ is elementary. So, if

$$
\left\langle I_{\bar{\lambda}}^{0}, B_{\bar{\lambda}}\right\rangle \vDash(\forall \eta)\left(\exists \xi_{i} \in \bar{\beta}\right)(\exists n \in \omega)\left(n \leq h_{\bar{\lambda}, B_{\bar{\lambda}}}\left(n,\left\langle\xi_{i}, \bar{\xi}\right\rangle\right)\right),
$$

then

$$
\left\langle I_{\lambda}^{0}, B_{\lambda}\right\rangle \vDash(\forall \eta)\left(\exists \xi_{i} \in \beta\right)(\exists n \in \omega)\left(n \leq h_{\lambda, B_{\lambda}}\left(n,\left\langle\xi_{i}, \xi\right\rangle\right)\right) .
$$

But by Lemma 25 , $h_{\lambda, B_{\lambda}}\left[\omega \times\left(J_{\beta}^{X} \times\{\xi\}\right)\right] \subseteq h_{v, B_{v}}\left[\omega \times\left(J_{\beta}^{X} \times\{\xi\}\right)\right]$, i.e., it is indeed $\lambda=\sup \left(h_{v, B_{v}}\left[\omega \times\left(J_{\beta}^{X} \times\{\xi\}\right)\right] \cap v\right)$.
(4) $\pi(\Lambda(\bar{\xi}, \bar{v}) \cap \bar{\eta})=\Lambda(\xi, v) \cap \pi(\bar{\eta})$

For $\bar{\lambda} \in \Lambda(\bar{\xi}, \bar{v})$,

$$
\pi(\Lambda(\bar{\xi}, \bar{v}) \cap \bar{\lambda})
$$

by (1)

$$
=\pi(\Lambda(\bar{\xi}, \bar{\lambda}))
$$

by Σ_{1}-elementarity of π

$$
=\Lambda(\xi, \pi(\bar{\lambda}))
$$

by (1) and (3),

$$
=\Lambda(\xi, v) \cap \pi(\bar{\lambda})
$$

So, if $\Lambda(\bar{\xi}, \bar{\lambda})$ is cofinal in \bar{v}, then we are finished. But if there exists $\bar{\lambda}:=\max (\Lambda(\bar{\xi}, \bar{v}))$, then, by (1) and (2), $\Lambda(\bar{\xi}, \bar{\lambda}) \in J \bar{X}$, and it suffices to show $\pi(\Lambda(\bar{\xi}, \bar{v}))=\Lambda(\xi, v)$. To this end, let $\bar{\beta}$ be maximal such that $\bar{\lambda}=$ $\sup \left(h_{\bar{v}, B_{\bar{v}}}\left[\omega \times\left(J \frac{X}{\bar{\beta}} \times\{\bar{\xi}\}\right)\right] \cap \bar{v}\right)$, i.e., $h_{\bar{v}, B_{\bar{v}}}\left[\omega \times\left(J \bar{\beta}^{X}+1 \times\{\bar{\xi}\}\right)\right]$ is cofinal in \bar{v}. So, since $\pi\left[h_{\bar{v}, B_{\bar{v}}}\left[\omega \times\left(J_{\bar{\beta}+1}^{X} \times\{\bar{\xi}\}\right)\right]\right] \subseteq h_{v, B_{v}}\left[\omega \times\left(J_{\bar{\beta}+1}^{X} \times\{\xi\}\right)\right]$, where

$$
\pi(\bar{\xi})=\beta, \sup (r n g(\pi) \cap v) \leq \sup \left(h_{v, B_{v}}\left[\omega \times\left(J_{\beta+1}^{X} \times\{\xi\}\right)\right] \cap v\right) .
$$

Hence indeed $\pi(\Lambda(\bar{\xi}, \bar{v}))=\Lambda(\xi, v)$.
Lemma 27. Let $v \in E$, $H \prec_{1}\left\langle I_{\lambda}^{0}, B_{\lambda}\right\rangle$ and $\lambda=\sup (H \cap v)$. Let $h: I_{\lambda}^{0} \rightarrow I_{\lambda}^{0}$ be Σ_{1}-elementary and $H \subseteq r n g(h)$. Then $\lambda \in E$ and $h:\left\langle I \frac{1}{\lambda}, B_{\lambda}\right\rangle \rightarrow\left\langle I_{\lambda}^{0}, B_{\lambda}\right\rangle$ is Σ_{1}-elementary.

Proof. By Lemma 25, $B_{\lambda}=B_{v} \cap J_{\lambda}^{X}$. So it suffices, by Lemma 24, to show $r n g(h) \prec_{1}\left\langle I_{\lambda}^{0}, B_{\lambda}\right\rangle$. Let $x_{i} \in r n g(h)$ and $\left\langle I_{\lambda}^{0}, B_{\lambda}\right\rangle \vDash(\exists z) \psi\left(z, x_{i}\right)$ for a Σ_{0} formula ψ. Then we have to prove that there exists a $z \in r n g(h)$ such that $\left\langle I_{\lambda}^{0}, B_{\lambda}\right\rangle \vDash$ $\psi\left(z, x_{i}\right)$. Since $\lambda=\sup (H \cap v)$, there is a $\eta \in H \cap \operatorname{Lim}$ such that $\left\langle I_{\eta}^{0}, B_{\lambda} \cap J_{\eta}^{X}\right\rangle$ $\vDash(\exists z) \psi\left(z, x_{i}\right)$. And since $H \prec_{1}\left\langle I_{v}^{0}, B_{v}\right\rangle$, we have $\left\langle I_{\lambda}^{0}, B_{\lambda} \cap J_{\eta}^{X}\right\rangle \in H \subseteq r n g(h)$. So also

$$
r n g(h) \vDash\left(\left\langle I_{\eta}^{0}, B_{\lambda} \cap J_{\eta}^{X}\right\rangle \vDash(\exists z) \psi\left(z, x_{i}\right)\right)
$$

because $r n g(h) \prec_{1} I_{\lambda}^{0}$. Hence there is a $z \in r n g(h)$ such that $\left\langle I_{\eta}^{0}, B_{\lambda} \cap J_{\eta}^{X}\right\rangle \vDash$ $\psi\left(z, x_{i}\right)$, i.e., $\left\langle I_{\eta}^{0}, B_{\lambda}\right\rangle \vDash \psi\left(z, x_{i}\right)$.

Lemma 28. Let $f: \bar{v} \Rightarrow v, \bar{v} \sqsubset \bar{\tau} \sqsubseteq \mu_{\bar{v}}$ and $f(\bar{\tau})=\tau$. If $\bar{\tau} \in S^{+} \cup \hat{S}$ is independent, then $\left(f \upharpoonright J_{\alpha \bar{\tau}}^{D}\right):\left\langle J_{\alpha_{\bar{\tau}}}^{D}, D_{\alpha_{\bar{\tau}}}, K_{\bar{\tau}}\right\rangle \rightarrow\left\langle J_{\alpha_{\tau}}^{D}, D_{\alpha_{\tau}}, K_{\tau}\right\rangle$ is Σ_{1}-elementary.

Proof. If $\bar{\tau}=\mu_{\bar{\tau}}<\mu_{\bar{v}}$, then the claim holds since $|f|: I_{\mu_{\bar{v}}} \rightarrow I_{\mu_{v}}$ is Σ_{1} elementary. If $\mu_{\tau}=\mu_{v}$ and $n(\tau)=n(v)$, then $P_{\tau} \subseteq P_{v}$. I.e. τ is dependent on v. Thus $\bar{\tau}$ is not independent. So let $\mu:=\mu_{\tau}=\mu_{v}, n:=n(\tau)<n(v)$ and $\tau \in S^{+} \cup \hat{S}$ be independent. Then, by the definition of the parameters, α_{τ} is the nth projectum of μ.

Let

$$
\gamma_{\beta}:=\operatorname{crit}\left(f_{(\beta, 0, \tau)}\right)<\alpha_{\tau}
$$

for a β and

$$
H_{\beta}:=\text { the } \Sigma_{n} \text {-hull of } \beta \cup P_{\tau} \cup\left\{\alpha_{\mu}^{*}, \tau\right\} \text { in } I_{\mu}
$$

i.e., $H_{\beta}=h_{\mu}^{n}\left[\omega \times\left(J_{\beta}^{X} \times\left\{\alpha_{\mu}^{\prime}, \tau^{\prime}, P_{\tau}^{\prime}\right\}\right)\right]$, where
$\alpha_{\mu}^{\prime}:=$ minimal such that $h_{\mu}^{n}\left(i, \alpha_{\mu}^{\prime}\right)=\alpha_{\mu}^{*}$ for an $i \in \omega$,
$P_{\tau}^{\prime}:=$ minimal such that $h_{\mu}^{n}\left(i, P_{\tau}^{\prime}\right)=P_{\tau}$ for an $i \in \omega$,
$\tau^{\prime}:=$ minimal such that $h_{\mu}^{n}\left(i, \tau^{\prime}\right)=\tau$ for an $i \in \omega$ (resp. $\tau^{\prime}:=0$ for $\tau=\mu$).
For the standard parameters are in P_{τ}.

So H_{β} is Σ_{n}-definable over I_{μ} with the parameters $\left\{\beta, \tau, \alpha_{\mu}^{*}\right\} \cup P_{\tau}$. Let
$\rho:=\alpha_{\tau}=$ the nth projectum of μ,
$A:=$ the nth standard code of μ,
$p:=\left\langle\alpha_{\mu}^{\prime}, \tau^{\prime}, P_{\tau}^{\prime}\right\rangle$.
So $H_{\beta} \cap J_{\rho}^{X}$ is Σ_{0}-definable over $\left\langle I_{\rho}^{0}, A\right\rangle$ with parameters β and p (fine structure theory!).

And γ_{β} is defined by

$$
\gamma_{\beta} \notin H_{\beta} \quad \text { and } \quad\left(\forall \delta \in \gamma_{\beta}\right)\left(\delta \in H_{\beta}\right),
$$

i.e., γ_{β} is also Σ_{0}-definable over $\left\langle I_{\rho}^{0}, A\right\rangle$ with parameters β and p.

Let $f_{0}:=f_{(\beta, 0, \tau)}$ for a $\beta, \bar{\tau}_{0}:=d\left(f_{0}\right)<\alpha_{\tau}$ and $\gamma:=\operatorname{crit}\left(f_{0}\right)<\alpha_{\tau}$. Let $f_{1}:=$ $f_{(\beta, \gamma, \tau)}, \quad \bar{\tau}_{1}:=d\left(f_{1}\right)<\alpha_{\tau}$ and $\delta:=\operatorname{crit}\left(f_{1}\right)<\alpha_{\tau}$. Then $\mu_{\bar{\tau}_{1}}$ is the direct successor of $\mu_{\bar{\tau}_{0}}$ in K_{τ}. So $f_{\left(\beta, \gamma, \bar{\tau}_{1}\right)}=i d_{\bar{\tau}_{1}}$. Hence $\mu_{\eta}=\mu_{\bar{\tau}_{1}}$ holds for the minimal $\eta \in$ $S^{+} \cup S^{0}$ such that $\gamma<\eta \sqsubseteq \delta$. Thus

$$
\begin{aligned}
& \mu^{\prime} \in K_{\tau}^{+}:=K_{\tau}-\left(\operatorname{Lim}\left(K_{\tau}\right) \cup\left\{\min \left(K_{\tau}\right)\right\}\right) \\
& \Leftrightarrow
\end{aligned}
$$

$(\exists \beta, \gamma, \delta, \eta)\left(\gamma=\gamma_{\beta}\right.$ and $\delta=\gamma_{\left(\gamma_{\beta}+1\right)}$
and $\eta \in S^{+} \cup S^{0}$ minimal such that $\gamma<\eta \sqsubseteq \delta$ and $\left.\mu^{\prime}=\mu_{\eta}\right)$.
Therefore, K_{τ}^{+}is Σ_{1}-definable over $\left\langle I_{\rho}^{0}, A\right\rangle$ with parameter p.

Now, consider $\left\langle I_{\alpha_{\tau}}^{0}, K_{\tau}\right\rangle \vDash \varphi(x)$, where φ is a Σ_{1} formula. Then, since K_{τ} is unbounded in α_{τ},

$$
\begin{gathered}
\left\langle I_{\alpha_{\tau}}^{0}, K_{\tau}\right\rangle \vDash \varphi(x) \\
\Leftrightarrow \\
(\exists \gamma)\left(\gamma \in K_{\tau}^{+} \text {and }\left\langle I_{\alpha}^{0}, K_{\gamma}\right\rangle \vDash \varphi(x)\right) .
\end{gathered}
$$

So $\left\langle I_{\alpha_{\tau}}^{0}, K_{\tau}\right\rangle \vDash \varphi(x)$ is Σ_{1} over $\left\langle I_{\rho}^{0}, A\right\rangle$ with parameter p, resp. Σ_{n+1} over I_{μ} with parameters $\alpha_{\mu}^{*}, \tau, P_{\tau}$. But since $n=n(\tau)<n(v), f$ is at least Σ_{n+1}-elementary. In addition, $f\left(\alpha_{\bar{\tau}}^{*}\right)=\alpha_{\tau}^{*}, f(\bar{\tau})=\tau, f\left(P_{\bar{\tau}}\right)=P_{\tau}$. So, for $x \in \operatorname{rng}(f),\left\langle I_{\alpha_{\bar{\tau}}}^{0}, K_{\bar{\tau}}\right\rangle \vDash$ $\varphi\left(f^{-1}(x)\right)$ holds $\left\langle I_{\alpha_{\tau}}^{0}, K_{\tau}\right\rangle \vDash \varphi(x)$.

Theorem 29. $\mathfrak{M}:=\langle S, \triangleleft, \mathfrak{F}, D\rangle$ is $a \kappa$-standard morass.

Proof. Set

$$
\sigma_{(\xi, v)}(i)=h_{v}^{n(v)}\left(i,\left\langle\xi, \alpha_{v}^{*}, p_{v}\right\rangle\right) .
$$

Then D is uniquely determined by the axioms of standard morasses and
(1) D^{v} is uniformly definable over $\left\langle J_{v}^{X}, X \upharpoonright v, X_{v}\right\rangle$,
(2) X_{v} is uniformly definable over $\left\langle J_{v}^{D}, D_{v}, D^{v}\right\rangle$.
(1) is clear. For (2), assume first that $v \in \hat{S}$ and $f_{\left(0, q_{v}, v\right)}=i d_{v}$. Since the set $\left\{i \mid \sigma_{\left(q_{v}, v\right)}(i) \in X_{v}\right\}$ is $\Sigma_{n(v)}$-definable over $\left\langle J_{v}^{X}, X \upharpoonright v, X_{v}\right\rangle$ with the parameters $p_{v}, \alpha_{v}^{*}, q_{v}$, there is a $j \in \omega$ such that

$$
\sigma_{\left(q_{v}, v\right)}(\langle i, j\rangle) \text { exists } \Leftrightarrow \sigma_{\left(q_{v}, v\right)}(i) \in X_{v} .
$$

Using this j, we have

$$
X_{v}=\left\{\sigma_{\left(q_{v}, v\right)}(i) \mid\langle i, j\rangle \in \operatorname{dom}\left(\sigma_{\left(q_{v}, v\right)}\right)\right\} .
$$

So, in case that $f_{\left(0, q_{v}, v\right)}=i d_{v}$, there is the desired definition of X_{v}.
Let $v \in \hat{S}, \quad f_{\left(0, q_{v}, v\right)}: \bar{v} \Rightarrow v$ cofinal and $f(\bar{q})=q_{v}$. Then $f_{(0, \bar{q}, \bar{v})}=i d_{\bar{v}}$. And by Lemma 6(b) of [6], $\bar{q}=q_{\bar{v}}$. So, if $\bar{v}=v$, then $f_{\left(0, q_{v}, v\right)}=i d_{v}$. Thus let $\bar{v}<v$. Then $f_{\left(0, q_{v}, v\right)}(x)=y$ is defined by: There is a $\bar{v} \leq \nu$ such that, for all $r, s \in \omega$,

$$
\sigma_{\left(q_{\bar{v}}, \bar{v}\right)}(r) \leq \sigma_{\left(q_{\bar{v}}, \bar{v}\right)}(s) \Leftrightarrow \sigma_{\left(q_{v}, v\right)}(r) \leq \sigma_{\left(q_{v}, v\right)}(s)
$$

holds and for all $z \in J \bar{V}$ there is an $s \in \omega$ such that

$$
z=\sigma_{\left(q_{\bar{v}}, \bar{v}\right)}(s)
$$

and there is an $s \in \omega$ such that

$$
\sigma_{\left(q_{\bar{v}}, \bar{v}\right)}(s)=x \Leftrightarrow \sigma_{\left(q_{v}, v\right)}(s)=y
$$

And since $\left\langle J_{v}^{X}, X_{v}\right\rangle$ is rudimentary closed,

$$
X_{v}=\bigcup\left\{f\left(X_{\bar{v}} \cap \eta\right) \mid \eta<\bar{v}\right\} .
$$

Finally, if $v \in \hat{S}$ and $f_{\left(0, q_{v}, v\right)}$ is not cofinal in v, then C_{v} is unbounded in v and

$$
X_{v}=\bigcup\left\{X_{\lambda} \mid \lambda \in C_{v}\right\}
$$

by the coherence of $L_{\kappa}[X]$.

So (2) holds. From this, (DF) ${ }^{+}$follows.
By (1) and (2), $J_{v}^{X}=J_{v}^{D}$ for all $v \in \operatorname{Lim}$, and for all $H \subseteq J_{v}^{X}=J_{v}^{D}$,

$$
H \prec_{1}\left\langle J_{v}^{X}, X \mid v\right\rangle \Leftrightarrow H \prec_{1}\left\langle J_{v}^{D}, D_{v}\right\rangle .
$$

Now, we check the axioms.
(MP) and (MP) ${ }^{+}$
$\left|f_{(0, \xi, v)}\right|$ is the uncollapse of $h_{\mu_{v}}^{n(v)}\left[\omega \times\left\{\xi^{*}, v^{*}, \alpha_{v}^{*}, \alpha_{\mu_{v}}^{* *}, P_{v}^{*}\right\}^{<\omega}\right]$, where ξ^{*} is minimal such that $h_{\mu_{v}}^{n(v)-1}\left(i, \xi^{*}\right)=\xi$. Therefore, (MP) and (MP) ${ }^{+}$hold.
(LP1)
holds by (2) above.
(LP2)
This is Lemma 26.
(CP1) and (CP1) ${ }^{+}$
This follows from Lemma 24 and the definition of $\sigma_{(\xi, v)}$.
(CP2)
This is Lemma 27.
(CP3) and (CP3) ${ }^{+}$
Let $x \in J_{v}^{X}, \quad i \in \omega$ and $y=h_{v, B_{v}}(i, x)$. Since C_{v} is unbounded in v, there is a $\lambda \in C_{v}$ such that $x, y \in J_{\lambda}^{X}$. By Lemma $25, B_{\lambda}=B_{v} \cap J_{\lambda}^{X}$. So $y=h_{\lambda, B_{\lambda}}(i, x)$.
(DP1)
Holds by the definition of μ_{v}.
(DF)
Let $\mu:=\mu_{\nu}, k:=n(\mu)$ and
$\pi(n, \beta, \xi):=$ the uncollapse of $h_{\mu}^{k+n}\left[\omega \times\left(J_{\beta}^{X} \times\left\{\alpha_{\mu}^{* *}, p_{\mu}^{*}, \xi^{*}\right\}^{<\omega}\right)\right]$,
where

$$
\begin{aligned}
& \xi^{*}:=\text { minimal such that } h_{\mu_{v}}^{k+n-1}\left(i, \xi^{*}\right)=\xi \text { for an } i \in \omega \text {, } \\
& p_{\mu}^{*}:=\text { minimal such that } h_{\mu}^{k+n-1}\left(i, p_{\mu}^{*}\right)=p_{\mu} \text { for some } i \in \omega \text {, } \\
& \alpha_{\mu}^{* *}:=\text { minimal such that } h_{\mu}^{k+n-1}\left(i, \alpha_{\mu}^{* *}\right)=\alpha_{\mu}^{*} \text { for some } i \in \omega \text {. }
\end{aligned}
$$

Prove

$$
\left|f_{(\beta, \xi, \mu)}^{1+n}\right|=\pi(n, \beta, \xi)
$$

for all $n \in \omega$ by induction.
For $n=0$, this holds by definition of $f_{(\beta, \xi, \mu)}^{1}=f_{(\beta, \xi, \mu)}$. So assume that $\left|f_{(\beta, \xi, \mu)}^{m}\right|=\pi(m-1, \beta, \xi)$ is already proved for all $1 \leq m \leq n$. Then, by definition of $\tau(m, \mu)$,
$\alpha_{\tau(m, \mu)}=$ the $(k+m-1)$ th projectum of μ.
Let $\pi(n, \beta, \xi): I_{\bar{\mu}} \rightarrow I_{\mu}$. Then
$(*) \xi(m, \mu)=\pi(n, \beta, \xi) \xi(m, \bar{\mu})$ for all $1 \leq m \leq n:$
Let $\pi:=\pi(n, \beta, \xi), \alpha:=\pi^{-1}\left[\alpha_{\tau(m, \mu)} \cap r n g(\pi)\right], \rho:=\pi(\alpha)$,
$r:=$ minimal such that $h_{\mu}^{k+m-2}(i, r)=p_{\mu}$ for an $i \in \omega$,
$\alpha^{\prime}:=$ minimal such that $h_{\mu}^{k+m-2}\left(i, \alpha^{\prime}\right)=\alpha_{\mu}^{*}$ for an $i \in \omega$,
$p:=$ the $(k+m-1)$ th parameter of μ
and

$$
\pi(\bar{r})=r, \quad \pi(\bar{p})=p, \quad \pi\left(\bar{\alpha}^{\prime}\right)=\alpha^{\prime}
$$

Let $\bar{\xi}:=\xi(m, \bar{\mu})$. Then $\bar{p}=h_{\bar{\mu}}^{\frac{k}{+m-1}}\left(i,\left\langle\bar{x}, \bar{\xi}, \bar{r}, \bar{\alpha}^{\prime}\right\rangle\right)$ for a $\bar{x} \in J_{\alpha}^{X}$, because $\alpha=$ $\alpha_{\tau(m, \bar{\mu})}$. So $p=h_{\mu}^{k+m-1}\left(i,\left\langle x, \xi, r, \alpha^{\prime}\right\rangle\right)$, where $\pi(\bar{x})=x$ and $\pi(\bar{\xi})=\xi$. Thus $h_{\mu}^{k+m-1}\left[\omega \times\left(J_{\alpha}^{X}(m, \mu) \times\left\{\alpha^{\prime}, r, \xi\right\}^{<\omega}\right)\right]=J_{\mu}^{X} \quad$ by definition of p. So $\xi(m, \mu) \leq \xi$. Assume $\xi(m, \mu)<\xi$. Then

$$
I_{\mu} \vDash(\exists \eta<\xi)(\exists i \in \omega)\left(\exists x \in J_{\rho}^{X}\right)\left(\xi=h_{\mu}^{k+m-1}\left(i,\left\langle x, \eta, r, \alpha^{\prime}\right\rangle\right)\right.
$$

So

$$
I_{\bar{\mu}} \vDash(\exists \eta<\bar{\xi})(\exists i \in \omega)\left(\exists x \in J_{\alpha}^{X}\right)\left(\bar{\xi}=h_{\bar{\mu}}^{k+m-1}\left(i,\left\langle x, \eta, \bar{r}, \bar{\alpha}^{\prime}\right\rangle\right) .\right.
$$

But this contradicts the definition of $\bar{\xi}=\xi(m, \bar{\mu})$.
So, for all $1 \leq m \leq n$,

$$
\xi(m, \mu) \in \operatorname{rng}(\pi(n, \beta, \xi))
$$

In addition, for all $\beta<\alpha_{\tau(m, \mu)}$,

$$
d\left(f_{(\beta, \xi(m, \mu), \mu)}^{m}\right)<\alpha_{\tau(m, \mu)}
$$

Consider $\pi:=\pi(m-1, \beta, \xi)=\left|f_{(\beta, \xi, \mu)}^{m}\right|$, where $\xi=\xi(m, \mu)$. Then $\pi: I_{\bar{\mu}}$ $\rightarrow I_{\mu}$ is the uncollapse of $h_{\mu}^{k+m-1}\left[\omega \times\left(\beta \times\left\{\xi, \alpha^{\prime}, r\right\}^{<\omega}\right)\right]$, where
$r:=$ minimal such that $h_{\mu}^{k+m-2}(i, r)=p_{\mu}$ for some $i \in \omega$,
$\alpha^{\prime}:=$ minimal such that $h_{\mu}^{k+m-2}\left(i, \alpha^{\prime}\right)=\alpha_{\mu}^{*}$ for some $i \in \omega$.
And $h_{\bar{\mu}}^{k+m-1}\left[\omega \times\left(\beta \times\left\{\bar{\xi}, \bar{\alpha}^{\prime}, \bar{r}\right\}^{<\omega}\right)\right]=J_{\bar{\mu}}^{X}$, where $\pi(\bar{\xi})=\xi, \quad \pi\left(\bar{\alpha}^{\prime}\right)=\alpha^{\prime}$ and $\pi(\bar{r})=r$. Assume $\alpha_{\tau(m, \mu)} \leq \bar{\mu}<\mu$. Then there were a function over $I_{\bar{\mu}}$ from $\beta<\alpha_{\tau(m, \mu)}$ onto $\alpha_{\tau(m, \mu)}$. This contradicts the fact that $\alpha_{\tau(m, \mu)}$ is a cardinal in I_{μ}. If $\bar{\mu}=\mu$, then $f_{(\beta, \bar{\xi}, \mu)}^{m}=i d_{\mu}$. This contradicts the minimality of $\tau(m, \mu)$.

Since $\xi(m, \mu) \in \operatorname{rng}(\pi(n, \beta, \xi))$, we can prove

$$
r n g(\pi(n, \beta, \xi)) \cap J_{\alpha_{\tau(m, \mu)}}^{D} \prec_{1}\left\langle J_{\alpha_{\tau(m, \mu)}}^{D}, D_{\alpha_{\tau(m, \mu)}}, K_{\mu}^{m}\right\rangle
$$

for all $1 \leq m \leq n$ as in Lemma 28.
We still must prove minimality. Let $f \Rightarrow \mu$ and $\beta \bigcup\{\xi\} \subseteq r n g(f)$ such that

$$
\begin{aligned}
& r n g(f) \cap J_{\alpha_{\tau(m, \mu)}^{D}}^{D} \prec_{1}\left\langle J_{\alpha_{\tau(m, \mu)}^{D}}^{D}, D_{\alpha_{\tau(m, \mu)}}, K_{\mu}^{m}\right\rangle \\
& \xi(m, \mu) \in \operatorname{rng}(f)
\end{aligned}
$$

holds for all $1 \leq m \leq n$. Show that f is Σ_{k+n}-elementary and that the first standard parameters including the $(k+n-1)$ th are in $r n g(f)$. That suffices because $\pi(n, \beta, \xi)$ is minimal.

Let p_{μ}^{k+m} be the $(k+m)$ th standard parameter of μ.
Prove, by induction on $0 \leq m \leq n$,
f is Σ_{k+m}-elementary,

$$
p_{\mu}^{1}, \ldots, p_{\mu}^{k+m-1} \in r n g(f)
$$

For $m=0$, this is clear because $\mathrm{f} f \Rightarrow \mu$. So assume it to be proved for $m<n$ already. Then let $\alpha:=\alpha_{\tau(m+1, \mu)}$ and $\bar{\alpha}=f^{-1}[\alpha \bigcap r n g(f)]$. Consider $\pi:=\left(f \upharpoonright J \frac{D}{\alpha}\right):\left\langle J \bar{\alpha}, D_{\bar{\alpha}}, \bar{K}\right\rangle \rightarrow\left\langle J_{\alpha}^{D}, D_{\alpha}, K_{\mu}^{m+1}\right\rangle$. Construct a Σ_{k+m+1}-elementary extension $\tilde{\pi}$ of π. To do so, set

$$
\begin{aligned}
& f_{\mu}=f_{(\beta, \xi(m+1, \mu), \mu)}^{m+1} \\
& \mu(\beta)=d\left(f_{\beta}\right) \\
& H=\bigcup\left\{f_{\beta}\left[r n g(\pi) \cap J_{\mu(\beta)}^{D}\right] \mid \beta<\alpha\right\} .
\end{aligned}
$$

Then $H \cap J_{\alpha}^{D}=r n g(\pi)$. For $r n g(\pi) \subseteq H \bigcap J_{\alpha}^{D}$ is clear because $f_{\beta} \upharpoonright J_{\beta}^{D}=i d \upharpoonright J_{\beta}^{D}$. So let $y \in H \cap J_{\alpha}^{D}$, i.e., $y=f_{\beta}(x)$ for some $x \in \operatorname{rng}(\pi)$ and a $\beta<\alpha$. Let $K^{+}=$

$$
\begin{aligned}
& K_{\mu}^{m+1}-\operatorname{Lim}\left(K_{\mu}^{m+1}\right) \text { and } \beta(\eta)=\sup \left\{\beta \mid f_{(\beta, \xi(m+1, \eta), \eta)}^{m+1} \neq i d_{\eta}\right\} \text {. Then } \\
& \qquad\left\langle J_{\alpha}^{D}, D_{\alpha}, K_{\mu}^{m+1}\right\rangle \vDash(\exists y)\left(\exists \eta \in K^{+}\right)\left(y=f_{(\beta, \xi(m+1, \eta), \eta)}^{m+1}(x) \in J_{\beta(\eta)}^{D}\right) .
\end{aligned}
$$

Since $\quad r n g(\pi) \prec_{1}\left\langle J_{\alpha}^{D}, D_{\alpha}, K_{\mu}^{m+1}\right\rangle, \quad y=f_{(\beta, \xi(m+1, \eta), \eta)}^{m+1}(x) \in r n g(\pi) \quad$ if $\quad x \in$ $r n g(\pi)$ for such an η. But since $y=f_{(\beta, \xi(m+1, \eta), \eta)}^{m+1}(x) \in J_{\beta(\eta)}^{D}$, we get $f_{\beta}(x)=$ $f_{(\beta, \xi(m+1, \eta), \eta)}^{m+1}(x) \in \operatorname{rng}(\pi)$.

Show $H \prec_{k+m+1} I_{\mu}$. Since $f_{(\beta, \xi, \mu)}^{m+1}=\pi(m, \beta, \xi), \alpha_{\tau(m+1, \mu)}$ is the $(k+m)$ th projectum of μ. Like in $(*)$ above, we can show that the $(k+m)$ th standard parameter p_{μ}^{k+m} of μ is in $r n g\left(f_{\beta}\right)$. Now, let $I_{\mu} \vDash(\exists x) \varphi\left(x, y, p_{\mu}^{1}, \ldots, p_{\mu}^{k+m}\right)$, where φ is a Π_{k+m} formula and $y \in H \bigcap J_{\alpha}^{D}$. Since f_{β} is Σ_{k+m}-elementary, the following holds:

$$
\begin{aligned}
I_{\mu} & \vDash(\exists x) \varphi\left(x, y, p_{\mu}^{1}, \ldots, p_{\mu}^{k+m}\right) \\
& \Leftrightarrow\left(\exists \gamma \in K_{\mu}^{m+1}\right)(\exists x)\left(I_{\gamma} \vDash \varphi\left(x, y, p_{\gamma}^{1}, \ldots, p_{\gamma}^{k+m}\right)\right) .
\end{aligned}
$$

And since $r n g(\pi) \prec_{1}\left\langle J_{\alpha}^{D}, D_{\alpha}, K_{\mu}^{m+1}\right\rangle$,

$$
r n g(\pi) \vDash\left(\exists \gamma \in K_{\mu}^{m+1}\right)(\exists x)\left(I_{\gamma} \vDash \varphi\left(x, y, p_{\gamma}^{1}, \ldots, p_{\gamma}^{k+m}\right)\right) .
$$

Thus there is such an x in $\operatorname{rng}(\pi)$ and therefore in H.
Let $\tilde{\pi}$ be the uncollapse of H. Then $\tilde{\pi}$ is Σ_{k+m}-elementary and, since $p_{\mu}^{1}, \ldots, p_{\mu}^{k+m} \in \operatorname{rng}\left(f_{\beta}\right)$ for all $\beta<\alpha$, we have $p_{\mu}^{1}, \ldots, p_{\mu}^{k+m} \in \operatorname{rng}(\pi)=H$. In addition, by the induction hypothesis, f is Σ_{k+m}-elementary and $p_{\mu}^{1}, \ldots, p_{\mu}^{k+m-1} \in$ $r n g(f)$. Again as in $(*)$ above, we can show that $p_{\mu}^{k+m} \in r n g(f)$ using $\xi(m+1, \mu)$ $\in r n g(f)$. But since $\tilde{\pi}$ and f are the same on the $(k+m)$ th projectum, we get $\tilde{\pi}=f$.
(SP) follows from $\left|f_{(\beta, \xi, \mu)}^{1+n}\right|=\pi(n, \beta, \xi)$, because for all $v \sqsubset \tau \sqsubseteq \mu_{v}$ such
that $\tau \in S^{+}$(resp. $\tau=v$) the following holds:

$$
p_{\tau} \in \operatorname{rng}(\pi(n, \beta, \xi)) \Leftrightarrow \xi_{\tau} \in \operatorname{rng}(\pi(n, \beta, \xi)) .
$$

This may again be shown as (*).
(DP2)
It is like (*) in (DF).
(DP3)
(a) is clear.
(b) was already proved with (DF) ${ }^{+}$.

Theorem 30. Let $\left\langle X_{v} \mid v \in S^{X}\right\rangle$ be such that
(1) $L[X] \vDash S^{X}=\{\beta(v) \mid v$ singular $\}$
(2) $L[X]$ is amenable
(3) $L[X]$ has condensation
(4) $L[X]$ has coherence.

Then there is a sequence $C=\left\langle C_{v} \mid v \in \hat{S}\right\rangle$ such that
(1) $L[C]=L[X]$,
(2) $L[C]$ has condensation,
(3) C_{v} is club in J_{v}^{C} w.r.t. the canonical well-ordering $<_{v}$ of J_{v}^{C},
(4) $\operatorname{opt}\left(\left\langle C_{v},<_{v}\right\rangle\right)>\omega \Rightarrow C_{v} \subseteq v$,
(5) $\mu \in \operatorname{Lim}\left(C_{v}\right) \Rightarrow C_{\mu}=C_{v} \cap \mu$,
(6) $\operatorname{opt}\left(C_{v}\right)<v$.

Proof. First, construct from $L[X]$ a standard morass as in Theorem 29. Then construct an inner model $L[C]$ from it as in [6].

Acknowledgements

The present paper is a part of my dissertation [5]. I thank Dieter Donder for being my adviser, Hugh Woodin for an invitation to Berkeley, where part of the work was done, and the DFG-Graduiertenkolleg 'Sprache, Information, Logik' in Munich for their support.

References

[1] A. Beller, R.-B. Jensen and P. Welch, Coding the universe, London Mathematical Society Lecture Notes Series, Cambridge University Press, London, 1982.
[2] K. Devlin, Aspects of constructibility, Lecture Notes in Mathematics, 354, SpringerVerlag, Berlin, 1973.
[3] K. Devlin, Constructibility, Springer-Verlag, Berlin, 1984.
[4] H.-D. Donder, R.-B. Jensen and L. J. Stanley, Condensation-coherent global square systems, Recursion Theory, Proceedings of Symposia in Pure Mathematics, Vol. 42, American Mathematical Society, Providence, 1985, pp. 237-258.
[5] B. Irrgang, Kondensation und Moraste, Dissertation, München, 2002.
[6] B. Irrgang, Proposing $\left(\omega_{1}, \beta\right)$-Morasses, $\omega_{1} \leq \beta$.
[7] R.-B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308.
[8] R.-B. Jensen, Higher-gap morasses, Hand-written Notes, 1972/73.

