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Abstract

Let ke Card and L.[X] be such that the fine structure theory,

condensation and Card “<[X] = card N« hold. Then it is possible to
prove the existence of morasses. In particular, | will prove that there is a
k-standard morass, a notion that | introduced in a previous paper. This
shows the consistency of (wq, 8)-morasses for all B > .

1. Introduction

R. Jensen formulated in the 1970’s the concept of an (o, B)-morass whereby

objects of size g could be constructed by a directed system of objects of size

less than ®,. He defined the notion of an (w,, B)-morass only for the case that

B < @,. | introduced in a previous paper [6] a definition of an (®,, B)-morass for

the case that o < B.

This definition of an (w;, B)-morass for the case that o; < B seems to be an
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axiomatic description of the condensation property of Gdédel’s constructible universe
L and the whole fine structure theory of it. | was, however, not able to formulate and
prove this fact in form of a mathematical statement. Therefore, | defined a seemingly
innocent strengthening of the notion of an (w, B) -morass, which I actually expect

to be equivalent to the notion of (w, B)-morass. I call this strengthening an 18-

standard morass. As will be seen, if we construct a morass in the usual way in L, the
properties of a standard morass hold automatically.

Using the notion of a standard morass, | was able to prove a theorem which can
be interpreted as saying that standard morasses fully cover the condensation property
and fine structure of L. More precisely, | was able to show the following [6].

Theorem. Let k > o, be a cardinal and assume that a k-standard morass

exists. Then there exists a predicate X such that Card (]« = Card LeIX] ang L [X]
satisfies amenability, coherence and condensation.

Let me explain this. The predicate X is a sequence X = (X, |v e sX ), where
sX < LimNxk, and L[X] is endowed with the following hierarchy: Let I, =
(J\ﬁ(, X|v) for ve Lim-S* and I, = (Jj( X|v, Xy) for ves*X, where
X, < JVX and

W =0,
X X
‘]v+o) = rUd(Iv )v
31X Z U X L2
o =U{y |v e} for & e Lim® := Lim(Lim),

where rud(1) is the rudimentary closure of JX = U{JX} relative to X|v if

v e Lim—-S* and relative to X |v and X, if ve s*. Now, the properties of
L.[X] are defined as follows:

(Amenability) The structures I, are amenable.

(Coherence) If ve SX, H <¢ I, and A =sup(H NOn), then & e s* and
X5 = X, NIF.
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(Condensation) If & e S* and H <1 |, then there is some p € s* such
that H = I,

Moreover, if we let B(v) be the least B such that Jg(mlzv singular, then
s* = {B(v)|v singular in 1}.

As will be seen, these properties suffice to develop the fine structure theory. In
this sense, the theorem shows indeed what I claimed. In the present paper, I shall
show the converse:

Theorem. If L [X], k € Card, satisfies condensation, coherence, amenability,

sX = {B(v)|v singular in 1.} and Card LeIXT = card Nk, then there is a «-

standard morass.

Since L itself satisfies the properties of L [X], this also shows that the
existence of k-standard morasses and (ay, B) -morasses is consistent for all k > @,

andall & > oy.

Most results that can be proved in L from condensation and the fine structure
theory also hold in the structures L, [X] of the above form. As examples, | proved

in my dissertation the following two theorems whose proofs can also be seen as
applications of morasses:

Theorem. Let A >y be a cardinal, $* < LimN A, Card NA = Card L X]
and X =(X, |veS X ) be a sequence such that amenability, coherence, condensation

and SX = {B(v)|vsingularin1,_} hold. Then O, holds for all infinite cardinals

K <A

Theorem. Let S* < Lim and X = (X, |v e SX) be a sequence such that

amenability, coherence, condensation and S* = {B(v)|v singular in L[X]} hold.
Then the weak covering lemma holds for L[X]. That is, if there is no non-trival,

L[X] +)L[X]

elementary embedding = : L[X] — L[X], x e Card
then

-~y and t=(x

1< k" = cf (1) = card(x).
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2. The Inner Model L[X]
We say a function f :V" -V is rudimentary for some structure 20 =
(W, X;) ifitis generated by the following schemata:
f(Xq, s Xp) =X fOr 1<i <n,
f (X, o Xn) = {5, xj} for 1<, j <,
f(Xg, o Xp) = X = xj for 1<, j<n,
f(Xg, s X)) = D910, s Xn)s vor Gn(Xs oor X)),
where h, g4, ..., g, are rudimentary
f(y, Xa, o Xn) = Ul9(z, X2, s Xp)IZ € Y},

where g is rudimentary

f (X, - Xn) = Xj N xj, where 1< j <n.

Lemma 1. A function is rudimentary iff it is a composition of the following
functions:

Fo(x, y) = {x, y},

F(x y)=x-vy,

Fa(x, y) = xxy,

F3(x, y) = {(u, 2, v)|z € x and (u, V) € v},
Fa(x, y) ={(z, u, v)|z € x and (u, v) € y},
Fs(x, y) = Ux,

Fo(x, y) = dom(x),

Fr(x, y) =€ N(xx x),

Fa(x, y) = {Xl{z}]lz e v},

Foti(X, y) = X X;

for the predicates X; of the structure under consideration.
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Proof. See, for example, in [3]. O

A relation R < V" is called rudimentary if there is a rudimentary function

f:V" >V suchthat R(x)) < f(x)# @.

Lemma 2. Every relation that is X, over the considered structure is

rudimentary.

Proof. Let yr be the characteristic function of R. The claim follows from the
facts (i)-(vi):

(i) R rudimentary < yg rudimentary.

< is clear. Conversely, xyg = U{g(y)|y € f(x;)}, where g(y) =1 is constant
and R(xj) & f(x) = <.

(ii) If R is rudimentary, then —R is also rudimentary.

Since y_r =1- %R

(iii) x € y and x = y are rudimentary.

By xgyo{X-y=d, xz2y < (x-y)U(y-x) = and (ii).

(iv) If R(y, x;) is rudimentary, then (3z € y)R(z, x;) and (Vz € y)R(z, X;)

are rudimentary.
If R(y, ) < f(y, xj) = &, then
3z € Y)R(z, ) & U{f(z, %)z e y} = O.
The second claim follows from this by (ii).
(v) If Ry, R, < V" are rudimentary, thenso are R; v R, and Ry A Ry.

Because f(x, y)=xUy isrudimentary, (Ry v Ry)(X;) < xr (%) U xr, (%)
# & is rudimentary. The second claim follows from that by (ii).

(vi) x e X; is rudimentary.

Since {x}N X; # T < x € X;. O
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For a converse of this lemma, we define:

A function f is called simple if R(f(xj), yx) is Zo for every X,-relation
R(z, ).

Lemma 3. A function f is simple iff

(i) ze f(x) is Zg,

(i) A(z) is g = (Fz € T(X))A(2) is Zg.

Proof. If f is simple, then (i) and (ii) hold, because these are instances of
the definition. The converse is proved by induction on X,-formulas, e.g., if
R(z, yx) 1= 2 = Yk, then R(f(x;), yk) & F(X)=yx & (Vz e T(x))(z € y)
and (Vz € y,)(z € f(x;)). Thus we need (i) and (ii). The other cases are similar. [J

Lemma 4. Every rudimentary function is X, in the parameters X;.

Proof. By induction, one proves that the rudimentary functions that are
generated without the schema f(xq, ..., X,) = Xj N x; are simple. For this, one
uses Lemma 3. But since the function f(x, y) = x(\y is one of those, the claim
holds. O

Thus every rudimentary relation is Xq in the parameters X;, but not necessarily
Yo with the X; as predicates. An example is the relation {x, y} € X.

A structure is said to be rudimentary closed if its underlying set is closed under
all rudimentary functions.

Lemma 5. If W is rudimentary closed and H <; 20, then H and the collapse of

H are also rudimentary closed.
Proof. That is clear, since the functions Fy, ..., Fg,; are Xy with the predicates
Xj. O

Let Ty be the set of £, formulae of our language {e, Xy, ..., Xy} having

exactly one free variable. By Lemma 2, there is a rudimentary function f for every
Yo formula y such that w(x«) < f(x,) # <. By Lemma 1, we have

Xo = F(x) = B (X1, X2),
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where x; = R, (X3, Xq)
Xo = Fi (X5, Xp)

and Xz =---.

Of course, X, appears at some point.
Therefore, we may define an effective Gédel coding
TN 2>G, wyy—u
as follows (m, n possibly = *):
k, I, m,n) eu:= x = F{Xn, Xy).

Let h% (U, x4) =

v, is £ formula with exactly one free variable and 20y, ().

Lemma 6. If 20 is transitive and rudimentary closed, then I:%(x, y) is

>, -definable over 23. The definition of I:% (u, x,) depends only on the number of

predicates of 20. That is, it is uniform for all structures of the same type.

Proof. Whether lzgg(u, X.) holds, may be computed directly. First, one
computes the x, which only depend on x,. For those (k, I, %, *) e u. Then one
computes the x; which only depend on x, and X, such that m,ne

{k|(k, I, *, *) e u} —etc. Since 20 is rudimentary closed, this process only breaks

off, when one has computed xy = f(x,). And %g(u, X«) holds iff xq = f(xg)
= .

More formally speaking: I:%(x, X,) holds iff there is some sequence

(xi|i ed), d = {k|(k, I, m, n) e u} such that

(k, I, m,n) eu= x¢ = {(Xy, X,) and xy # &.

Hence .:gg is . O
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If 20 is a structure, then let rud(20) be the closure of W U {W} under the
functions which are rudimentary for 20.

Lemma 7. If 20 is transitive, then so is rud(20).

Proof. By induction on the definition of the rudimentary functions. O
Lemma 8. Let 20 be a transitive structure with underlying set W. Then
rud(209) N PW) = Def (20).

Proof. First, let A e Def (20). Then Ais =q over (W U {W}, X;), i.e. there are
parameters p; e W U {W} and some X, formula ¢ such that x € A < o(X, pj).
But by Lemma 2, every X, relation is rudimentary. Thus there is a rudimentary
function fsuch that x e A & f(x, p;) = &. Let g(z, x) = {x} and define h(y, x)
=U{g(z, x)|z € y}. Then h(f(x, pj), x)=U{g(z, x)|z € f(x, pj)} is rudimentary,
h(f(x, pj) x)=@ if x¢ A and h(f(x, pg) X)={x} if xe A Finally, let
H(y, pj)=Uh(f(x, pj), X)|x € y}. Then H is rudimentary and A =H(W, p;).

So we are done.

Conversely, let A e rud(20) N P(W). Then there is a rudimentary function f
and some a e W such that A= f(a, W). By Lemma 4 and Lemma 3, there exists
Yo formula such that x € f(a, W) < w(x, a, W, X;). By £ absoluteness, A =
{xeW W UW, X;}Fy(x, a,W, X;)}, since X; cW. Therefore, there is a formula
esuchthat A= {x e W |20 Fop(x, a)}. O

Let k e Card — o, S* < LimN« and (X, v e S*) be asequence.

For v e Lim—S*, let I, =(3X, Xv, X,) and let I, = (3X, X v, X,) for

v e 8% such that X, < JVX, where

IX =UQRX | ver)if aeLim? = Lim(Lim).

Obviously, L [X]=U{QX |v e «}.
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We say that L [X] is amenable if I, is rudimentary closed for all v e SX.
Lemma 9. (i) Every JVX is transitive,
(ip<v=3) i),

(iii) rank(3X)=J3X Non =v.

Proof. That are three easy proofs by induction. 0
Sometimes we need levels between Jf and vam. To make those transitive,
we define
Gi(x, y, z) = F(x, y) for i <8,
Go(x, ¥, 2) = xN X,
Gio(X, ¥, 2) =(x, ¥),
Gui(x, y, 2) = x[y],
Gia(x, ¥, 2) = {(x. y)},
Giz(x, ¥, 2) = (X, ¥, z),
Gua(x, , 2) = {(x y), z}.
Let

Sua = Sy U (S, UUIGI[(S, U {8, 1)°li € 15},
S) = UiS, Iu € A} if & e Lim.
Lemma 10. The sequence (I, [ € Lim ) v) is (uniformly) X, -definable over
I,

Proof. By definition Jﬁ( =S, for pelim, that is, the sequence

n

(Jﬁ( |u e Lim N v) is the solution of the recursion defining X, restricted to Lim.
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Since the recursion condition is Xy over |, the solution is X;. Itis X, over I, if

the existential quantifier can be restricted to Jf. Hence we must prove (S“ lper)

€ JVX for t € v. This is done by induction on v. The base case v = 0 and the limit

step are clear. For the successor step, note that S, 4 is a rudimentary function of S,
and p, and use the rudimentary closedness of JVX. O
Lemma 11. There are well-orderings <, of the sets J3< such that

) u<v=<, c<y,

u
(if) <, .1 Is an end-extension of <,,,
(iii) the sequence (<, [ € Lim N v) is (uniformly) =, -definable over 1.,
(iv) <, is (uniformly) X, -definable over 1,,,
(v) the function pr,(x) = {z|z <, x} is (uniformly) =, -definable over I,,.
Proof. Define well-orderings <, of S, by recursion:
) < =2.
(I (@) For x, y e S, let x <, 11 y < X< V.

(2) xeSyand y e S, =y <1,

yeS,and xeg S, =y <, X

(3) If x, ye§,, then there is an i €15 and x;, X, X3 € S, such that
X = Gj(X, X2, X3). And there is a j €15 and yy, Y, y3 € S, such
that y = Gj(y1, Y2, Y3) First, choose i and j minimal, then x; and v,
then x, and y,, and finally x3 and ys.

Set:

(@ x <1 Y ifi<],

Y <usr X ifi=].



CONSTRUCTING (wy, B)-MORASSES FOR o] < 123
(b) X1 <” X1 ifi = j and X1 <H X1s
Yy <usr Y ifi=jand y <, x.

(€) X <y Y ifi=]jand x =y and x <, Y,

Y <usr X ifi =] and x =y and y, <, X,.

(d) x<uq1 y ifi=jand x; =y, and X =y, and x3 <, s,
Y <usr X ifi=jand x =y, and y, = xp and y3 <, X3.
(my <, = U{<H\p,ek}.

The properties (i) to (v) are obvious. For the X, -definability, one needs the
argument from Lemma 10. ]

Lemma 12. The rudimentary closed <va , X1v, A) have a canonical £ -Skolem

function h.

Proof. Let (yj|i € w) be an effective enumeration of the ¥, formulae with

three free variables. Intuitively, we would define:
h(i, ) = (2),

for

the <, -least z e 3¢ such that (3%, X v, A) E yi((2)g, X (z))
Formally, we define:
By Lemma 11(v), let 8 be a £y formula such that
w=1{vv<, 2} o (X, XTv, A E @)e(w, z, t).
Let u; be the Godel coding of
6(()1, (8)or (8)2) A W(((S)o o 83 ((8)o)1) A (WV € (8)1) = wi((V)g. (8)3, (V)

and
2o

y =h(i, x) & (35)(((s0)g = y A (s)3 = XF X X,

A>(Ui , S))

This has the desired properties. Note Lemma 6! O
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I will denote this X -Skolem function by h,, 4. Let h, = h,, 5.

Let us say that L [X] has condensation if the following holds:

If veS* and H <1 1, then there is some p e s* suchthat H = -
From now on, suppose that L [X] is amenable and has condensation.
Set 19 = (3%, X1v) forall veLimNk.

Lemma 13 (Godel’s pairing function). There is a bijection @ : on? - On
such that ®(o, B) > a, B for all o, B and @1 is uniformly =, -definable over

|3 forall o € Lim.

Proof. Define a well-ordering <* on on? by

(o, B) <" (1, )

max(a, B) < max(y, 8) or
max (o, B) = max(y, 8) and o <y or
max(a, B) = max(y, 8) and o =y and B < 8.
Let @ : (On?, <*) = (On, <). Then & may be defined by the recursion
@(0, B) = sup{d(v, v)|v < B},
® (0, B) = DO, B) + a if a < B,
®(a, B) = DO, o) + o + B if a > B. 0

So there is a uniform map from o onto o x o for all o that are closed under
Godel’s pairing function. Such a map exists for all o € Lim. But then we have to
give up uniformity.

Lemma 14. For all o € Lim, there exists a function from o onto o x o that is

%, -definable over |3.
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Proof. by induction on o € Lim. If o is closed under Gddel’s pairing function,
then Lemma 13 does the job. Therefore, if o = + ® for some B e Lim, we may

assume B = 0. But then there is some over |3 >, -definable bijection j: o — B.
And by the induction hypothesis, there is an over Ig >, -definable function from 8
onto B xB. Thus there exists a ¥; formula o(x, y, p) and a parameter p Jg<
such that there is some x e B satisfying ¢(x, y, p) forall y € B xB. So we get an
over Ig ¥, -definable injective function g:pBxp — B from the =; -Skolem function.
Hence f((v, 1)) = g({(j(v), j(r))) defines an injective function f : o — B which

is X, -definable over Ig. An h which is as needed may be defined by
h(v) = f1(v) if v e mg(f),
h(v) = (0, 0) else.

For rg(f) = rng(g) e JX.

Now, assume a e Lim? is not closed under Godel’s pairing function. Then
v,tea for (v, 7)=®Y(a), and c:={z]z <* (v, 1)} liesin JX. Thus @ jc:c
— o is an over |3 ¥, -definable bijection. Pick a y € Lim such that v, t < y. Then
o oo yz is an over |3 >, -definable injective function. Like in the first
case, there exists an injective function g:yxy —> vy in Jgf by the induction

hypothesis. So f((&, ¢)) = g((gd)‘l(é;), gd)‘l(q)))) defines an over 12 =, -definable
bijection f : a® — d such that d := g[g[c]x g[c]]. Again, we define h by

he) = f7@E) ifged,
h(g) = (0, 0) else. O

Lemma 15. Let o € Lim—-®+1. Then there is some over |3 %, -definable

function from o onto Jgf. This function is uniformly definable for all o closed

under Godel’s pairing function.
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Proof. Let f : a — o x o be a surjective function which is X, -definable over
|3 with parameter p. Let p be minimal with respect to the canonical well-ordering
such that such an f exists. Define 0, 1 by f(v)=(f%v) fl(v)) and, by
induction, define f; =id o and f,,1(v) = (fO(v), fy o f1(v)). Let h:=h, be
the canonical X, -Skolem function and H = h[w x (o x {p})] Then H is closed

under ordered pairs. For, if y; = h(jq, (vi, p)), Y2 = h(jp, (v2, p)) and (vq, vo)
= f (), then (yy, y,) is Z; -definable over 12 with the parameters t, p. Hence it is
in H. Since H is closed under ordered pairs, we have H <, Ig. Leto:H — Ig be
the collapse of H. Then o =, because oo < H and cla =id[a. Thus off] = f,

and of f] is X -definable over |3 with the parameter o(p). Since o is a collapse,
o(p) < p. So o(p) = p by the minimality of p. In general, n(h(i, x)) = h(i, n(x))
for =, -elementary n. Therefore, o(h(i, (v, p}))) = h(i, (v, p)) holds in our case for

all iewand veao. Butthen oJH =id[H and H = J&(. Thus we may define

the needed surjective map by g o f3, where
9(i, v, ) =y if Bz € S)e(z, y, i, (v, P)),
g(i, v, 1) = O else.
Here, S_ shall be defined as in Lemma 10 and
y = h(i, x) & 3t e IX)o(t, i, X, y). O
Let (12, A) == (3%, X [v, A).

The idea of the fine structure theory is to code X, predicates over large

structures in X, predicates over smaller structures. In the simplest case, one codes

the X, information of the given structure Ig in a rudimentary closed structure
{Ig, A), i.e., we want to have something like:

Over IS, there exists a X; function f such that

1= 35
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For the 2, formulae o,
(i, x) € A 19 Egi(f(x)
holds. And

(Ig, A) is rudimentary closed.

Now, suppose we have such an (Ig, A). Then every B ¢ Jpx that is =, -definable

over Ig is of the form
B = {x|A(i, (x, p))} forsome ic o, p e Jg(.

So (Ig, B) is rudimentary closed for all B € Zl(lg)ﬂ s13(‘]px).
The p is uniquely determined.
Lemma 16. Let § > » and (Ig, C) be rudimentary closed. Then there is at
most one p e Lim such that
(Ig, C) is rudimentary closed for all C e El((lg, B)) N EB(Jg()

and

there is an over (Ig, B) %, -definable function f such that f[JS(] = Jg(.

Proof. Assume p < p both had these properties. Let f be an over (Ig, B) =;-
definable function such that f[JpX] = Jg( and C={xe Jg [x ¢ f(x)}. Then
Cc Jg( is X, -definable over (Ig, B) So (Ig, C) is rudimentary closed. But then
c=Ccn Jg( € J%(. Hence there is an x e Jpx such that C = f(x). From this, the
contradiction x € f(x) < x e C < x ¢ f(x) follows. O

The uniquely determined p from Lemma 16 is called the projectum of (Ig, B).
If there is some over (Ig, B) =, -definable function f such that f[Jg(] = Jg(, then

hBﬁB[u)x(Jg( x{p})] = Jg( fora p e Jg. Using the canonical function hg g, we

can define a canonical A:
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Let p be minimal with respect to the canonical well-ordering such that the above
property holds. Define

A={(i,x)[icoand x e 3 and (17, B) F ;(x, p)}.
We say p is the standard parameter of (Ig , B) and A the standard code of it.

Lemma 17. Let B >0 and (Ig, B) be rudimentary closed. Let p be the

projectum and A the standard code of it. Then for all m > 1, the following holds:
S1em((18, BYNBES) = (13, A).

Proof. First, let R e 21+m(<lg, B)N ‘B(Jg() and let m be even. Let P be a
relation being X, -definable over (Ig, B) with parameter g, such that, for x e J;(,
R(x) holds 3yyVyi3ys---Vyy,_1P(vyi, X). Let f be some over (Ig, B) with
parameter g,% -definable function such that f[JpX] = JBX. Define Q(z, x) by
Z, X € Jpx and (3y;)(y; = f(zj)and P(y;, x)). Let p be the standard parameter of
(I[g, B). Then, by definition, there is some u e J;( such that (g, dp) is Z;-
definable in (IS, B) with the parameters u, p, i.e., there is some i € o such that
Q(z, x) holds z;, x J;( and (Ié’, B) F ¢i((zj, x, u), p), i.e, iff z;, x e J;(
and A(i, (z;, x, u)). Analogously thereisa jew anda ve Jg( such that z
dom(f)N Jg( iff ze J;( and A(], (z, v)). Abbreviate this by D(z). But then, for
x € 3%, R(x) holds iff
AYoVy13yz -+ V¥m_1(D(z0) A+ A D(z_2) and (D(z1) A D(z3) A+ A) = Q(z;, X)).
So the claim holds. If m is odd, then we proceed correspondingly. Thus
S1em((1§, BN NPAF) = Zn((15, A) s proved.

Conversely, let ¢ be a Xy formula and q e Jpx such that, for all x e JS(,

R(x) holds iff (Ig, A) E ¢(x, q). Since (Ig, A) is rudimentary closed, R(x) holds
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iff (Ju e Jg)(aa € Jg) (u transitive and x eu and g eu and a= ANu and

(u, @) F @(x, q)). Write a= AN u as formula: (Vv ea)(veuandveA) and

(vwweu)(ve A= v ea) If m=1 we are done provided we can show that this is
¥, over (IS, B). If m > 1, then the claim follows immediately by induction. The
second part is TI;. So we only have to prove that the first part is X, over (Ié’, B).

By the definition of A, v e A is £, -definable over <I§, B), i.e., there is some X,

formula and some parameter p such that ve A < (Ié’, B) E (3y)w(v, y, p). Now,
we have two cases.

In the first case, there is no over <I§, B) X, -definable function from some
y < p cofinal in B. Then (Vv e a)(v e A) is =, over (Ié’, B) because some kind
of replacement axiom holds, and (Vv € a)(3y)wy(v, y, p) is over (Ig, B) equivalent
to (Iz)(vv e a)(@y € 2)y(v, y, p). For p = w, this is obvious. If p # o, then
pe Lim? and we can pick vy < p such that a e JYX. Let j:y—> JYX an over 1,
%, -definable surjection, and g an over (Ig, B) -definable function that maps

Ve Jg( to g(v) e Jg( such that (v, g(v), p) if such an element exists. We can

find such a function with the help of the X,-Skolem function. Now, define a

function f :y —> B by
f(v) = theleast T < B suchthat go j(v) e S; if j(v)ea
g(v) =0 else.

Since fis %4, there is, in the given case, a 8 < B such that f[y] < 8. So we have as

collecting set z = Sg, and the equivalence is clear.

Now, let us come to the second case. Let y <p be minimal such that
there is some over (Ig, B) 3, -definable function g from cofinal in B. Then
(Wv e a)@y)w(v, y, p) isequivalentto (Vv € a)(3v € y)(3y € Sgy)) w(v, ¥, p).

If we define a predicate C Jg( by (v, v) e C < y € Sy and y(v, y, p), then
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(18, BYE (wv e @)@y)w(v, y, p) is equivalent to (19, C) = (Vv € a)(3v € v)(3y)
-({v, v) € C). But this holds iff (IS, B)E(3w) (w transitive and a, y e w and
(w, CNw) E (Vv ea)@vey)3y)((v, v) e CNw)). Since C is =, over (Ig, B),
(Ig, C) is rudimentary closed by the definition of the projectum, i.e., the statement
is equivalent to (Ig, C) F (3w)(3c) (w transitiveand a, y e w and ¢ = C \ w and

(w, ¢) E (Vv ea)@vey)3y)(v, v) ec)). So,to prove that this is T, it suffices

to show that ¢ = C Nw is Z,. In its full form, this is (vVz)(zea < zew and

zeC). But ze C iseven A; over ( B) by the definition. So we are finished.

O

Lemma 18. (a) Let w: (J X|B, B) > (JBX, X B, B) be %, -elementary

and n[B] be cofinal in B. Then = is even 3, -elementary.

(b) Let (J;X, X v, A) be rudimentary closed and n: (JVX, X|V) -
(JVX, Y|v) be Eq-elementary and cofinal. Then there is a uniquely determined
AcJ) such that m:(3X, XV, A) > (IX, X|v, A) is Z,-elementary and

(3X, X 1v, Ay is rudimentary closed.

Proof. (a) Let ¢ be a ¥, formula such that ( X B, By E (32)o(z, m(X)).

Since n[B] is cofinal in P, there is a vep such that <JB , XIB, B)E
(32 € Syv))o(z, n(x;)). Here, the S, is defined as in Lemma 10. If n(S,) = Sy,
then (Jg(, X 1B, B) F (3z € n(S,))9(z, n(x;)). So, by the X-elementarity of
m, (Jg, X1B, B)YE @z eS,)oz X), ie., (Jg, X|B, B) E(32)¢(z, x). The
converse is trivial.

It remains to prove mi(S, ) = Sy(y). This is done by induction on v. If v =0 or

v ¢ Lim, then the claim is obvious by the definition of S, and the induction

hypothesis. So let L € Lim and M = n(S;). Then M is transitive by the Z;-

elementarity of 7. And since A e Lim (i.e.S; = J;X), (S, |v < 1) is definable over
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(J{(, X L) by (the proof of) Lemma 10. Let ¢ be the formula (¥x)(3v)(x € S,).
Since 7 is T -elementary, n]'S; : (3, X [A) = (M, (X 1) M) is elementary.
Thus, if (35X, X A)E@, then also (M, (X 1) M)E . Since M is transitive, we
get M =S, fora t e Lim. And, by (%) = n(S; N On) = S, N On = 1, it follows
that TE(Sx) = Sn(k)-

(b) Since (3%, X |V, A) is rudimentary closed, A N S, € IX forall pu<v,
where S, is defined as in Lemma 10. As in the proof of (a), n(S,,) = Sy,). So we
need m(ANS,) =AM Sy, to get that m:(JF, XV, A) > (I, X[v, A) is
¥, -elementary. Since r is cofinal, we necessarily obtain A = U{n(A N Sl < Vi

But then (J¥, X v, A) is rudimentary closed. For, if x e J)X, we can choose

some p < v such that x € Sy(,). And XN A=xN(ANSy,)) =xN(ANS,)
e JX. Now, let (3, X1¥, A)E@(x), where ¢ is a £, formula and u e J&
is transitive such that x; e u. Then (u, X [V u, ANu)Ee(x) holds. Since
m: (I8, X9 o (3Y, Xv) is =g -elementary, (n(u), Y [ v w(u), AN n(u))
= o(n(x;)). Because m(u) is transitive, we get (3, X | v) E @(n(x;)). This argument
works as well for the converse. O

Write CondB(Ig) if there exists for all H <; (Ig, B) some B and some B

such that H = (I%, B).

Lemma 19 (Extension of embeddings). Let B > ®, m >0 and (IS, B) be a
rudimentary closed structure. Let CondB(Ig) hold. Let p be the projectum of
(Ig, B), A the standard code and p the standard parameter of (Ig, B). Then
CondA(Ig) holds. And if (Ig, A) is rudimentary closed and = : (Ig, A) > (Ig, A)
is X, -elementary, then there is an uniquely determined X, , -elementary extension

T (I%, B) - (I, B) of = where p is the projectum of (I%, B), A is the

standard code and 7 Y(p) is the standard parameter of (12, B).

=|o
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Proof. Let H = hg g[ox(rng(m)x {p})] <1 <|,§>, B) and 7 : <|§’ B) — (Ig, B)
be the uncollapse of H.

(1) = is an extension of

Let p = sup(x[p]) and A = AN JIZX. Then n:(3X, X[BA) > (X, X P, A)
is Ty -elementary, and by Lemma 18, it is even X, -elementary. We have rng(r) =
HN Jg. Obviously, rng(n) = H N Jg(. Solet yeHI Jg(. Then there is an
iem and an x e rng(r) such that y is the unique vy e JBX that satisfies
(Ig, B) F ¢i({y, X), p). So by definition of A, y is the unique y e Jé( such

that A(i, (y, x)). But x ermg(r) and m: (3%, X|p, A) - (JZ, X|p, A) is
¥, -elementary. Therefore y e rng(n). So we have proved that H is an e-end-
extension of rng(rn). Since = is the collapse of rng(n) and 7 the collapse of H, we

obtain © c T.

2 =n: (I%, B) > (1§, B) is Sy, -elementary

We must prove H <41 (Ig, B). If m =0, thisisclear. Solet m > 0 and lety

be 1 -definable in <|§, B) with parameters from rng(n) U {p}. Then we have to

show y e H. Let ¢ be a Z,,,1 formula and x; e rng(r) such that y is uniquely

X
Jg

by the definition of p. So thereisa z Jpx such that y = ﬁ(z). If such a z lies in

determined by (Ig, B) E (Y, Xj, p). Let E((i, x)) = h(i, (x, p)). Then H[Jpx]

Jg( N H, thenalso y € H, since z, pe H < (Ié), B). Let D = dom(ﬁ)ﬂJg(.

Then it suffices to show
(¥) (3z9 € D)(vz € D)-+(1§, B) k w(h(z;), h(2). x;p)

for some ze H ﬂJg(,

where y is ¥; for even m and I1; for odd m such that
o(y, X, p) & (Ié’, B) F (3zg)(Vz1)---w(zj, ¥, X, p). First, let m be even. Since A

is the standard code, there is an iy € ® such that z € D < A(ig, x) holds for all
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23X~ anda jy € o such that, for all z, z < D(IJ, B) = w(h(z), h(z), x;p)
Thus (*) is, for z € J X equivalent with an obvious X, formula. If m is odd, then
write in (*)~~-ﬁ(I§, B) E —y(---). Then —y is £; and we can proceed as above.

Eventually  : (Ig, A) - (IS, A) is =, -elementary by the hypothesisand = < =

by (1) -ie, HN Jg( <m (Ig, A). Since thereisa z € JpX which satisfies (*) and
Xi, pe HN Jg(, there exists sucha z € H Jg(. Let H <; Ig, A). Let & be the

{
uncollapse of H. Then 7 has a X, -elementary extension 7 = (Ig, B) - (Ig, B). So
H = (12, A) for some 5 and A, ie., Conda(19).

(3) A={(i, x)|i cwand x € IX and (12, B) F g;(x, T (p))}

9
B H

Since 72 (12, A) (17, A) is 2 -elementary, Ai, x) < A(i, n(x)) for x € 3.

Since A is the standard code of (Ig, B), A, n(x)) < (Ig, B)E ¢j(n(x), p). Finally,
(18, B)E gi(n(x), p) & <|§, B)Foj(x, 7 Y(p)), because 7 : <|§, B) > (I§. B)
is X -elementary.

(4) p is the projectum of (I%, B)

By the definition of H, J%( = hgvg[wx(\]g x TP So f((i, x)=

hs 5(i, (x, T X(p))) is a over (I%, B) X -definable function such that f[JEX]

B,
=1

™I W

It remains to prove that (Ig, C) is rudimentary closed for all C e
21((I§, BY)N sIB(JEX ). By the definition of H, there existsan i e ® anda y e J%(
such that x e C < <|§, B) F oi((x, y), @ H(p)) for all x e JX. Thus, by (3),
x e C < A, (x, y)). Foru e J%(, let v ={(i (x, y))|x eu}. Then v e Jg( and

KﬂVer

5, because (Ig, A) is rudimentary closed by the hypothesis. But

x € CNu holds iff (i, (x, y)) e ANv. Finally, J%( is rudimentary closed and

therefore CNu J%(.
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(5) ﬁ_l(p) is the standard parameter of (I, B)

=|o

By the definition of H, Jé( = hg glox (J% x (Y (p)h] and, by (4), p is the

projectum of (1=, B). So we just have to prove that 7Y(p) is the least with this

=|o

property. Suppose that p’ < }E‘l(p) had this property as well. Then there were an
i co and an x e X such that n7(p) = hg 5@, (x 7). Since E:(Ig, B) —>
(Ig, B) is Z; -elementary, we had p = hg g(i, (x, p’)) for p’ = n(p’) < p. And so
also hg gl x (Jg x{p'})] = J1§<. That contradicts the definition of p.

(6) Uniqueness

Assume (I%O, Bp) and (I%l, B;) both have p as projectum and A as standard
code. Let p; be the standard parameter of (I%, E) Then, for all jeo
and x e JZ, (|§O, Bo) F 0j(x, Po) iff A(], x) iff <|§1, By) F ¢j(x, Py). SO
G(hﬁo,go(j’ (X, Po))) = hﬁlﬂ(j’ (x, Pp)) defines an isomorphism o : (I%O, By) =
(I%O, By), because, for both hﬁi,gi[mx (J% x{pihH] = Jé holds. But since both
structures are transitive, o must be the identity. Finally, let 7 : (I%, B) - (Ié’, B)
and m : (I%, B) —» (Ig, B) be X;-elementary extensions of . Let p be the
0

standard parameter of (12, B). Then, for every y e JX, thereisan x e Jﬁx and a

=

jeo such that y=hg g(j, (x, P)) and mo(y) = hg g(j, n(x), n(p)) = m(y).

Thus io = El' ]
To code the X, information of 15, where B e s* in a structure (Ig, A), one

iterates this process.
For n > 0, BeSX, let
p? =B, p =2, A’ = X,

p"*1 = the projectum of (1° , A"),
p
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n

p"*! = the standard parameter of (1° , A"),
p

A" = the standard code of (Ign, AM).
Call

p" the nth projectum of B,

p" the nth (standard) parameter of p,

A" the nth (standard) code of p.

By Lemma 17, Al Jpxn is X,, -definable over Iﬁ and, forall m > 1,

z:ner(I[f») N ‘J3(J;(n) = Zm((lsn ) An))-
From Lemma 19, we get by induction:

For p>o, n>1 m=>0, let p" be the nth projectum and A" be the nth code
of B. Let (Ig, A) be a rudimentary closed structure and @ := (Ig, Ay (10, A"
p

be X, -elementary. Then:

(1) There is a unique p > p such that p is the nth projectum and A is the nth
code of B.

For k < n, let
pk be the kth projectum of B,
pk be the kth parameter of 3,

AX pe the kth code of B

and

p* be the kth projectum of B,
P* be the kth parameter of B,

AKX be the kth code of B.
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(2) There exists a unique extension 7 of x such that, forall 0 <k <n,

2%, A 5 (10 ARY s =, -elementary
p p
and 7(pX) = p*.
Lemma20. Let o < B € s*. Thenall projecta of B exist.

Proof. By induction on n. That p0 exists is clear. So suppose that the first
projecta p?, ..., p" L, p = p", the parameters p°, ..., p" and the codes A, ..., A",
A= A" of B exist. Let y e Lim be minimal such that there is some over <I8, A
%, -definable function f such that f[3.]=J3). Let C e ({19, A)NPI)).
We have to prove that (I?, C) is rudimentary closed. If y = o, then JYX =H,
and this is obvious. If y > o, then y e Lim? by the definition of y. Then it suffices
to show C JSX € JYX for e Limy. Let B:=CI J§< be definable over
(Ig, A) with parameter g. Since obviously y <p, C JBX is %, -definable over
Ig with parameters py, ..., p", g by Lemma 17. So let ¢ be a =, formula such that

xeC < lgEo(x, pl, ... p", q). Let
Hny = hpn’ AN [ox (‘]SX x{qp)],
Hp = hpn—lyAn—l[(D x (Hp x {p" D],

Hp = hpn—zyAn—z [0 (Hpg x {p" )],

etc.
Since L[X] has condensation, there is an I, such that H; = I,,. Let « be the
uncollapse of H;. Then = is the extension of the collapse of H,,, defined in the
proof of Lemma 19. Therefore, it is X, -elementary. Since B ¢ JSX and wt| JSX =

id[J§<, we get x € B < I, F o(X, nY(pt), ... n(p™), nY(q)). So B is indeed
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already X -definable over I,. Thus B € Jlﬁl by Lemma 8. But now we are done

because u < p. For, if

hy4a (i, X)) = hpn, AN (i, (x, p)),

hn«il X>) = hpn—lvAn—l(i, (X, pn>),

etc.,
then the function h =hy o---ohy,y is X, -definable over Ig. Thus the function
h = afh N (Hy x Hy)] is . -definable over 1, and A[3Z]=JY. So A N(3))?
is 3, -definable over (Ig, A) by Lemma 17 and Lemma 19. And by the definition of
v, there is an over (Ig, A) %, -definable function f such that f[JYX] = Jg(. So if
we had p > p, then f oh was an over (Ig, A) =, -definable function such that

(f oh) [J5X] = Jg. That contradicts the minimality of y. O

Let @ <v e SX, p" be the nth projectum of v, p" be the nth parameter and

A" be the nth Code. Let

hn+l(<iv X>) = hpn’An (i1 X),

hn«i' X>) = hpn—lvAn—l(i, <X' Pn)),

etc.
Then define

ho*t =ty ooty
We have:

(1) hy is =, -definable over I,

() NW[exQ]=, Iy, ifQ c J;(n_l is closed under ordered pairs.
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Lemma?2l. Let o< P € sX and n > 1. Then

(1) the least ordinal y e Lim such that there is a over IgX, -definable function
f such that f[JYX] = pr(,

(2) the last ordinal y e Lim such that (I?, C) is rudimentary closed for all
C e 2,(1g) NPE)),

(3) the least ordinal y e Lim such that B(y) NZ,(lg) Jg(, is the nth

projectum of B.

Proof. (1) By the definition of the nth projectum, there is an over (I 0 A”_l)

pn

3, -definable f" such that f“[Jpxn] = Jpxn,l, an over (Ign_z, A""2) 5, -definable
"1 such that f”‘l[Jan,l] = J;(n,z, etc. But then X is =, -definable over Ig
by Lemma 17.S0 f = flo f20...0 f" is =, -definable over Ig and f[Jan] = Jé(.

On the other hand, the projectum p of a rudimentary closed structure (Ig, B)
is the least p such that there is an over (Ig, B) X, -definable function f such
that f[J2]=Jg. For, suppose there is no such p <p such that such an f,
f[JpX] = JBX, exists. Then the proof of Lemma 16 provides a contradiction. So if
there was a y < p" such that there is an over Ig Zp, -definable function f such that
f[Jg( 1= Jg(, then g = f N (J;(n_l)2 would be an over (Ign_l, A”‘l) ¥, -definable
function such that g[JYX] = Jpxn_l. But this is impossible.

(2) By the definition of the nth projectum, (I0 C) is rudimentary closed

n,
for all C e 5 ((1° ,, A")N ‘I?(J;(n). But by Lemma 17, 5,((1° ,, A"1) =
P P
=n(lg) NP X ). So, since p" <p" %, (1%, C) is rudimentary closed for all
P P

Ce En(lﬁ)ﬂ 513(‘];1)
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Assume y was a larger ordinal € Lim having this property. Let f be, by (1), an

over g ¥, -definable function such that f[J;(n] = J[§<. SetC={ue J;(n lug f(u).

Then C is X, -definable over Ig and C c Jpxn. So (Jf, C) was rudimentary

closed. And therefore C =C ﬂJ;(n € J;( c Jg( and C = f(u) for some u e J;(n.

But this implies the contradictionthat u € f(u) < ue C < u g f(u).

(3) Let p:=p" and f by (1) an over Ig £ -definable function such that
f[J;n] = Jg. Let j be an over Ig ¥, -definable function from p onto J;(. Let
C={veplve fojn). Then Cis an over lgZX,-definable subset of p. If
Ce Jg(, then there would be a v e p such that C = f o j(v), and we had the
contradiction ve C < ve f o j(v) < veC. Thus B(p) N EZa(lg) < I3 But if
yeLimNp and D e P(y)NZ,4(lp) then D=DN IS €3S < I So P(r)N

n(lp) < I3 0

3. Morasses
Let o <B, S = LimN oy, and k = oy

We write Card for the class of cardinals and RCard for the class of regular
cardinals.

Let < be a binary relation on S such that:

@If v<r, then v<r

Forall v e S — RCard, {t|v < 1} is closed.

For v € S — RCard, there is a largest p such that v <.
Let p, be this largest p with v <p.

Let

vC 1t velim{s|d<t})U{s|8 a1}
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(b) C is a (many-rooted) tree.

Hence, if v ¢ RCard is a successor in C, then p, is the largest p such that
v C . To see this, let p}, be the largest u such that v C . It is clear that
uy, <y, since v<p implies v C p. So assume that p, < uy. Then v+ puy

by the definition of .. Hence v e Lim({3|8 < uy}) and v e Lim({8|8 C u}}).

Therefore, v e Lim(C ) since v is a tree. That contradicts our assumption that C is
a successor in C.

For a € S, let | a| be the rank of a in this tree. Let
S* ={v e S|vis a successor in },
$% = {o e S||a|=0}

S*:={u. |t e S* - RCard},
S ={u.|teS—RCard}.

Let S, = {ve S|vis a direct successor of o in =}. For ve S*, let a, be
the direct predecessor of v in . For v e S°, let a, :=0. For ve ST U SO, et
oy, = V.

() For v, 7 e (5* U s%)-RCard such that o, = o, suppose:

v<t=pu, <71

Forall a € S, suppose:

(d) S, is closed.

(e) card(S,) < a¥,

card(S,,) < card(a) if card(a) < a.

() o = max(5°) = sup(s° N wy),

O1i41 = max(Swl”) = SUp(SmM No4iq) forall i <p.
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Let D = (D, |v e S) be asequence such that D, < JD.

Letan (S, <, D)-maplet f be a triple (v, | f |, v) such that v, v e S — RCard
and|f|:JuDV—>JEV.

Let f(v,|f | v) bean (S, <, D)-maplet. Then we define d(f) and r(f) by
d(f)=v and r(f)=v. Set f(x):=]| f|(x) for x e Jr?v and f(uy) = p,. But
dom(f), rng(f), f | X, etc. keep their usual set-theoretical meaning, i.e., dom(f) =

dom(| f [), rng(f)=rng( f|), fIX, etc.

For T <py, let £ =(7,| f]132), where t = f(7). Of course, f(*) needs
not to be a maplet. The same is true for the following definitions. Let f % =
(v,| F79). For g=(v,|g|,v') and f=(v,| f|,v), let gof =(v,|g]o| f| V). If
g=(v,|g}v) and f =(¥,| | v) suchthat rg(f) < rng(g), then set g~1f =
(v, | [ £ ], v'). Finally, set id, = (v, id[JD v).

Let § be a setof (S, <, D)-maplets f = (v, | f | v) such that the following
holds:

(0) f(v)=v, f(ay) =0, and | f | is order-preserving.

(1) For f = id, thereissome BC ay suchthat f B =id[B and f(B) > B.

@fTeS and vCTC py, then £ e 3.

3)If f,geF and d(g)=r(f), then go f € F.

@) Iff, g € 3, r(g) = r(f) and rg(f) < rng(g), then g1 o f € 3.

We write f:v=vif f=(|fv)eF If feF and r(f)=v, then
we write f = v. The uniquely determined {8 in (1) shall be denoted by B(f). Say
f e § is minimal for a property P(f) if P(g) holdsand P(g) implies g*f € 3.

Let

f(u,x,v) = the unique minimal f e § for f = v and uU {x} c rg(f),
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if such an f exists. The axioms of the morass will guarantee that f, y ,) always

exists if v e S — RCard (P! Therefore, we will always assume and explicitly

mention that v e S — RCard “<[®] when f(u, x, v) is mentioned.
Say veS-Rcard"<[P] is independent if d(fg g )<, holds for all
B<a,.
For tC v e S — RCard LK[D], say v is E-dependenton tif f, . ) =id,.
For f e F, let A(f) :=sup(f[d(f)]).
For v e S — RCard “«[P] Jet
C, ={Mf)<v|f =V}
A, v) = Mg, x,v)) < VIB < v
It will be shown that C,, and A(x, v)are closed in v.
Recursively define a function q, : k, +1 — On, where k, € o:
a4y(0) =0,
dy(k +1) = max(A(qy [ (k +1), v))

if max(A(q, | (k +1), v)) exists. The axioms will guarantee that this recursion

breaks off (see Lemma 4 of [6]), i.e. there is some k,, such that either
A(qv[(kv + l)' V) =9
or

A(q, | (k, +1), v) is unbounded in v.

Define by recursion on 1 < n € o, simultaneously for all v € S — RCard LK[D],

Bevand x e JEV the following notions:

1
f(ﬁ,x,v) = f(g,x,v)
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1(n, v) = the least t € S U S* U S such that for some x e JHD :

fl id

(O.T,X,V) Bt

x(n, v) = the least x e JEV such that f(’& ) = id,,
T(n,v) ™

Ky = {d(f(B, x(n,v),v)) < Oy, v) B < Vi,

f=,viff f =>vandforall1<m<n,

MO0, 1 02, Dl KD,

m,v)

x(m, v) e rng(f),

f(TJ,v) = the minimal f =, v such that u c rng(f),

n _en
fe.xv) = fpui, vy
f:vao,vief=s,vand f :v=w

Here definitions are to be understood in Kleene’s sense, i.e., that the left side is
defined iff the right side is, and in that case, both are equal.

Let
n, = the least n such that f(’; Xoy) is confinal in v for some x e JE ,
» Ay Ry A%
Y v,

X, = the least x such that f(r('xV xopy) = iy
v Xy Ky v
Let
ay =a, if veS™,

oy = sup{o < VIB(f(r&V,XV,uV)) =a}if veS’.

Let P, = {X.|[vCtCu,,1eSTU{x,}.
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We say that 9t = (S, <, §, D) is an (o, B)-morass if the following axioms
hold:

(MP - minimum principle)

If ves-RCard*[Pl and x ¢ JuDV’ then f(g 4 v) exists.

(LP1 - first logical preservation axiom)

If f:v=v, then|f|: (JEV, Dlpy) > (JEV, Dlu,) is Xy -elementary.

(LP2 - second logical preservation axiom)

Let f : v = v and f(X)=x. Then

(f132): (32, DI¥, AKX, ¥)) > (3P, DIv, A(x, v))

is Xg -elementary.

(CP1 - first continuity principle)

Fori<j<A, let fi:vi = vand g;:vj= vjsuchthat g; = fj‘lfi. Let
(gi i <) be the transitive, direct limit of the directed system (gjj |i < j <) and
hg; = fi forall i <. Then g;, h e 3.

(CP2 - second continuity principle)

Let f :v = v and A = sup(f[v]). If, for some 2, h:(Jxﬁ, D)— (32, DI

is 21 -elementary and rng( f [JQ) < rng(h), then there is some g : A = A such

that g JXS h.

(CP3 - third continuity principle)

If C, ={\(f)<v|f = v} is unbounded in v e S - RCard Le[P] then the
following holds for all x JEV :

g (fio,x,v)) = Utmg(fio, x,2))1% € Cy .

(DP1 - first dependency axiom)

If uy <pg,, then v e S —RCard Le[P] g independent.
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(DP2 - second dependency axiom)

If veS - Rcard=x[Pl s n-dependenton tCv,1eS*, f:v=v, f(T)=1

and n e rng(f), then 17 = 1.
(DP3 - third dependency axiom)

For ve S —Rcard™[Pl and 1<n ¢ o, the following holds:

(@ If f(r(; xv) = id,, t e ST U s% and tCv, then Uy = My

(b) If B < a(n, ), thenalso d(f(E,x(n,v), V)) < Oy, v)-
(DF - definability axiom)
@) If f(0,zy,v) = id, forsome v e § - Rcard [P and Zg € JEV, then
{(z, %, f0,2,v)(X)1z € JBV, x e dom(f(o 7 v))}
is uniformly definable over (va, DIluy, Dy, )-
(b) Forall v e S — RCard "«[P], x ¢ 32 the following holds:

ny

f(O, X,v) = f(o, (X, v, 05, P, 1y )

This finishes the definition of an (®;, B) -morass.
A consequence of the axioms is (x) by [6]:

Theorem.
{z, © % fo, 20Nt <v,pr=v, 2 € JEI, x € dom(f(o, 7, 7))}
Uz, x, f(O,z,v)(x»mv =V, 7€ ‘]E\,’ X € dom(f(o,z,v))}
U@Env?)

isfor all v e S uniformly definable over (J2, DI v, D, ).
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A structure 9 = (S, <, §, D) is called an oy, 5 -standard morass if it satisfies

all axioms of an (wy, B) -morass except (DF) which is replaced by:
v <t = visregularin JP°
and there are functions oy ) for v e Sand xe J\',3 such that:
(MP)*
o(x,v)lo] = mg(f x v))

(CP1)*

If f:V=vand f(X)=x then o) = f o o(x,5)
(CP3)*
If C, is unbounded in v, then o(y ) = U{o(x. 5|2 € C,, x € IP}.
(DF)*
(@) If f(o,x,v) = id, forsome x e JE, then
{i, 2, o2, )|z € 30, i e dom(c(y, )}

is uniformly definable over (JEV, Dlpy, Dy, )

(b) If C, is unbounded in v, then D, =C,. If it is bounded, then D,
{(i, G(quv)(i»“ € dom(c(quv))}.

Now, | am going to construct a k-standard morass.

Let B(v) be the least B such that J§(+1I:v singular.

Let L [X] satisfy amenability, condensation and coherence such that sX

{B(v)|vsingularin L [X]} and Card LeIXT = card N k.

Let

v a1t vregularin 1.
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Let
E = Lim — Rcard -<[X],
For v e E, let
B(v) = the least B such that there is a cofinal f :a — v e Def(lg) and
acvVv <v,

n(v) = the least n > 1 such that such an fis X, -definable over Ig,),
p(v) = the (n(v) —1) th projectum of Iy,

A, = the (n(v) - 1) th standard code of Iy,

v(v) = the n(v)th projectum of Ig,).

If veS* —Card, then the n(v)th projectum of B(v) is less or equal o, :=
the largest cardinal in I, : Since a, is the largest cardinal in 1, there is, by

definition of B(v) and n(v), some over Ig ) Zp)-definable function f such that

fla, ] is cofinal in v. But, since v is regular in B(v), f cannot be an element of
I3ty S0 POvx V)N (Ip) < Jé((v). By Lemma 14, also B(v) N Zn(v)(Ip(v))
& Jév). Using Lemma 21(3), we get y <v, i.e., there is an over lg.)Zpn()-
definable function g such that g[v] = Jg((v). On the other hand, there is, for every

T<vin Jj(, a surjection from o, onto t, because a, is the largest cardinal in
l,. Let f. bethe <, -least such. Define ji(o, 1) = f()(c) for o, T < v. Then j;
is Xp(y)-definable over lg,y and ji[a, x a,] = v. By Lemma 15, we obtain an

over lg(,) Zp(y)-definable function j, from a subset of o, onto v. Thus g o j, is
anover g Xy(y)-definable map such that g o jy[a, ] = Jg((v).

Moreover, a, <v <p(v): By definition of p(v), there is an over
Ig(v) Zn(v)_l_ -definable function f such that f[p(v)] = B(v) if n(v) >1. But v is

Zn(v)_l_ -regular over lg(,). Thus v < p(v). If n(v) =1, then p(v) = B(v) > v.
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By the first inequality, there is a g such that every x e J;((V) is X, -definable in

(IS(V), A,) with parameters from o, U {q}. Let p, be the <,)-least such.
Obviously, p, < p, if vC 1 C p,.
Thus P, == {p.|vC 1 C n,, T e S*} is finite.
Now, let v e E —S™. By definition of B(v), there exists no cofinal f :a — v

in Jg such that a a < v' <v. S0 P(v = v) N Zy)(lg)) & Jé}v). Then, by

Lemma 14, P(v) N Zy)(Ipv)) € Jg((v). Hence, by Lemma 21(3),

y(v) <.
Assume p(v) < v. Then there was an over lg) Zp)-1 -definable f such that
f[p(v)] = v. But this contradicts the definition of n(v). So
v < p(v).

Using Lemma 21(1), it follows from the first inequality that there is some over

I3(v) Zn(v) -definable function f such that f[J3.']= Jg(,). Sothereisa p e I,
such that every x e Jg((v) is X, -definable in <|§(v)’ A,) with parameters from

v U {p}. Let p, be the least such.
Let
OLT, = SUp{OL < V|hp(v),Av[(DX (Jo)f X {pv})] Nv= a},

Then o} <v because, by definition of B(v), there exists a v <v and a
pe Jpx(v) such that hp(v),A\,[wX(‘J\zs x{p,})] is cofinal in v. But p is in
Mo, a, [0 (33 x {py })]. So there is an o < v such that hy(,) o [0 x (o x {p,})]

N v is cofinal in v. Thus o), < a < v.

If veS*, then we set Oti =y
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For ve E, let f:v = v iff, forsome f*,
— % D
D f=(f NW,V),

2) f7 11, > 1, is Ty, -elementary,

(3) g, py, oy, Py e mg(f7),
(4) verng(f*)if v<up,,
G) f(¥)=vand veS" < veS™.

By this, § is defined.

Set D = X.
Let P, be minimal such that h:gv)_l(i, Py) =P, foranic o

sk .. n(v)_l - wk O\ ok
Let oy, be minimal such that huv (i, o) =0

Set

<
I

Y=g ifv=p(v),

v = v if v <p(v)

y for some i € .

149

For T € On, let S, be defined as in Lemma 10. For t € On, E; < S; and a

¥ formula o, let

h;'f E, (X1, -y Xy) the least xg € S, w.r.t. the canonical well-ordering such that

(S¢, Ej) F o(x;) if such an element exists,

h? E (Xq, s X)) = D else.

Hy' "V

For t € On such that v, a, p,, o, , Py € S, let Hy (o, t) be the closure of
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So UV, al, py, oy, Py} under all h;"’meT’AVﬂST. Then

Hy (o ©) =g (S X NSy, A, NSy, v, ad, by, oy PUY)

by the definition of héP,XﬂST,AvﬂST' Let M, (o, t) be the collapse of H, (o, 1).
Let 7o be the minimal t such that v*, o, py, oy, Py € S;. Define by induction
for 15 <1 < p(v):

(1) = oLy,

a(t +1) = sup(M (a(t), T+1)Nv),

a(r) = sup{a(t)|T < A} if A e Lim.
Set

B, = {a(r). My (aft), 1))t < T € p(V)} if v < p(v),

B, = {0} x A, U{(L v, a3, py, oy, PY)} else.

Lemma22. B, < JX and (19, B,) is rudimentary closed.

Proof. If v =p(v), then both claims are clear. Otherwise, we first prove

MY(a, t) e JX forall a < v andall te p(v) suchthat tg < t < p(v). Let such

at be givenand 1’ € p(v) — Lim be such that X N'S;, A, N S; € S (rudimentary

closedness of (Ig(v), A,)). Let n :=sup(z’ (N Lim). Let H be the closure of

OLU{V*’ Ottl Py OL:‘:/, P\;k’ XN Sr' Sr' Av N S‘C’ T]}

Y~ _ = X
under all h¥. Let 6: H =S be the collapse of Hand o(n) = 7. If ne S”, then
S =S5 for some T by the condensation property of L[X]. If n¢ sX, then
S = S§ M for some T, where Syﬁ is defined like Sz with X [T instead of X.
The reason is that, even if n ¢ s, it is the supremum of points in s*, because

S* = {B(v)|v singular in L _[X]}. In both cases, S e Jgi and there is a function
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in 15, that maps

aU{o(v'). o(ay). o(py). olay, ), o(R)), o(X N'S,), o(S,), o(A, NS,), o(n)}

onto S. So v would be singular in Jva if v <7'. But this contradicts the definition

of B(v). Therefore,
o(v*), o(ay), o(py), olay ), o(Ry),
(X NS;), o(S:), (A, NS:), o(n) € I
Let H, (o, t) be the closure of
So Ufo(v™), o(a), olpy ), olag ), o(Py),
(X NS), o(S:), o(A, NS:), o))

under all hc‘s"(sr), o(XNS.), o(A, NS, ) where these are defined like hi_‘f E but with

o(S;) instead of S;. Then
Hy (e, 1) <1 (0(S,). o(X N S,), o(A, N'S), {o(v7),
o(oy) o(py), oloy, ) o(RY), (X N1S,), o(S:), o(A, N S:), o(n)}

and M, (a, t) is the collapse of H,(a, t). Since v < p(v) and v is a cardinal in

Ig(v)s JX = ZF~. So we can form the collapse inside J.X. Thus M (o, 1) € JX.

Now, we turn to rudimentary closedness. Since B, is unbounded in v, it

suffices to prove that the initial segments of B,, are elements of Ji(. Such an initial
segment is of the form (M, (a(t), t)[t <), where y<p(v), and we have
H,(a(r), 8;) = H, (o), ), where &, is for t <y the least n >t such that
neHy(a(r) Y)Ufy}: Since ;e Hy(aft), v) <1 (Sy, X NSy, ANS,y, {-),
(Hy(au(x), 3)™O0) = 1 (a(x), ). Let 7 M, (aly), v) > S, be the uncollapse
of H,(a(y), y). Then, by the X, -elementarity of =, M (a(z), 1) = M, (), 8;)
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is the collapse of (H(a(t), 115, ))Mv(*(117) 50 (M (a(t), t)[T <) is definable
from M (a(y), y) € IX. 0

Lemma 23. For X, yj € Jﬁ(, the following are equivalent:

(i) x is X, -definable in (IS(V), A,) with the parameters y;, v, ay, Py,
P

(ii) x is £, -definable in (12, B,) with the parameters y;.

Proof. For v = p(v), this is clear. Otherwise, let first x be uniquely determined

in (Ig(v), Ay) by 32)w(z, X, (yi, V', oy, Py, oy, PY)), where is a £ formula.

That is equivalent to (37)(3z € S.)w(z, X, (¥i, V', oy, Py, o, P)) and that

sk

Hy?

*

again to (3t)H, (a(r), 7) F (F2)w(z, X, {Vi, v, oy, Py, o, Py)). If T is large

enough, the y; are not moved by the collapsing map, since then y; J;((T) c

*k

Hy(a(t), 7). Let v, o, p, o, P be the images of v*, oy, py, o, P under

the collapse. Then
(30 (% € 3 and My (a(x), 1) F (3F2)w(z, %, (vi, V., o, P, o', P)))
defines x. So it is definable in (12, B, ).

Since B, and the satisfaction relation of (I?, B) are X;-definable over

(Ig(v), A, ), the converse is clear. O

Lemma 24. Let H <4 (19, B,) fora ve E and n: (I, B) > (17, B,) be

the uncollapse of H. Then u € E and B = B,,.

Proof. First, we extend r like in Lemma 19. Let

M ={xe J‘f(v) |x is X, -definable in (IS(V), A,) with parameters from

rg(m) U {py, V', oy, oy, Pl
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Then rng(n) =M N JVX. For, if x e M N JX, then there are by definition of

AVAR ]
M y; e rgn(r) such that x is = -definable in (IS(V), A,) with the parameters y;

and p,, v*, a, , PJ. Thusitis £, -definable in (19, B,) with the y; by Lemma
23. Therefore, x e rg(n) because y; e rg(x) <, (12, B,). Let 7: (Ig, A >
<|§(v)’ A,) be the uncollapse of M. Then 7 is an extension of =, since M X is

an e-initial segment of M and rng(n) = M N Jf. In addition, there is by Lemma
19, a Zp(y)-elementary extension m: lg — lg(,) such that p is the (n(v)-1)th
projectum of g and A is the (n(v) — 1) th standard code of it. Let n(p) = p, and
(o) = ay. And we have m(u) = v if v <B(v). In this case, v € rng(n) by the
definition of v*. Since 7 is X;-elementary, cardinals of JJ are mapped on

cardinals of J\f( .

Assume v € S*. Suppose there was a cardinal t© > o of Jﬁ(. Then =n(t) > o,

was a cardinal in Jﬁ( . But this is a contradiction.

Next, we note that p is Xp()-singular over Ig. If ve S*, then, by the

definition of p,, Jg( = hy, alox (o x {p})] is clear. So there is an over (|8, A)

¥, -definable function from o cofinal into p. But since p is the (n(v)-1)th

projectum and A is the (n(v) —1)th code of it, this function is T, -definable over

lg. Now, suppose v & S™. Let A :=sup(n[u]). Since % > ay, there isa y <2
such that

Sup(hp(v), A, [('0 x (‘]}?( X {qv })] N V) 2 A

And since rng(r) is cofinal in A, there issucha v e rng(xn). Let vy = n(y). By the

¥, -elementarity of 7, ¥ < p and setting w(q) = g, we have for every n < p,
(15, A F (3x € 3X)@i)h, Al (x, ) > n.

Hence hy alo x (J% x {q})] is cofinal in . This shows p e E.
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On the other hand, p is X,,)_g-regular over lg if n(v)>1. Assume there
was an over lg X, -definable function f and some x e p such that f[x] was

cofinal in p, i.e, (Vy ep)(3z e x)(f(x)>y) would hold in Ig. Over Ig,
(Fz e x)(f(z)>y) is Zpn)-1- So it is Zo over (Ig, A). But then also
(Vy e )@z e x)(f(2) > y) is Ty over (Ig, A) if u<p. Henceitis Z,, over
Ig. But then the same would hold for 7(x) in Ig,). This contradicts the definition
of n(v)} Now, let u = p. Since A is the largest cardinal in I, we had in f also an
over lg ()1 -definable function from a onto p and therefore one from a onto .

But this contradicts Lemma 21 and the fact that p is the (n(v) —1) th projectum of B.
If n(v) =1, then we get with the same argument that p is regular in Ig.

The previous two paragraphs show B = B(u) and n(u) = n(v). We are done if
we can also show that o = o, n(a;’;) = o, , p=py n(R) =Py, because 7 is

¥, -elementary, w(h?

t,XﬂST,Au,AuﬂsT(Xi)) = h%P(T)vXﬂSE(T)yA\/ﬂSﬁ(T)(Xi) for all ¥,

formulas ¢ and x; € S..

For veS* a= a,, Was shown above. So let v ¢ S*. By the X, -elementarity

of 7, we have forall o € p,

hp,A[(’)>< (‘](i( X {p})]ﬂ p=a < hp(v),AV[CD>< (‘]é((a) x {pv})] Nv= TC(OL).

E

The same argument proves n(a;’;) = oy . Finally, p = p, and n(R;) = Py can
be shown as in (5) in the proof of Lemma 19. O
Lemma 25. Let H <; (12, B,) and A =sup(H Nv) for a v eE. Then
A eE and B, NI} =B,.
Proof. Let mng : (IS, B,) — (12, B, NJ;) be the uncollapse of H and let

m (12, B, NIN) — (12, B,) be the identity. Since L[X] has coherence, =

and m; are Xg-elementary. By Lemma 18, g is even X, -elementary, because it is
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cofinal. To show B, = B, NJ;¢, we extend my and m; to 7 :<|2(u)’ A) -

0 ~ .0 0 ; A
(I, A) and 7y :(l5, A) — <|p(u)’ A,) in such a way that my is X, -elementary

and m; is T, -elementary. Then we know from Lemma 19 that p is the (n(v) —1) th

projectum of some B and A is the (n(v)—1)th code of it. So there is a Xp(y)-
elementary extension of 7 : IB — lg. We can again use the argument from
Lemma 24 to show that A is X(,,)_1 -regular over lg. But on the other hand, A is as

supremum of H (1 On Znw) -singular over lg. From this, we conclude as in the

proof of Lemma 24 that B, = B, N J5.

First, suppose v e S*. Since o, € H =<4 (12, B,), a, < < v. Since I, E(a,
is the largest cardinal), we therefore have A ¢ Card. In addition, o, is the largest
cardinal in I,. Assume t was the next larger cardinal. Then t was X, -definable

in 1, with parameter o, and some t" € H and hence it was in H. By the
5, -elementarity of o, mpl(t) > mp (o) = o, was also a cardinal in 1. But this
contradicts the definition of o,
But now to B, = B, N J;. First, assume v ¢ S*. Let = = m om: (1, B,)
0 ~ . /10 0 : ;
—(ly,B,) and 7 : <|p(u)’ A)— (Ip(v), A,) be the extension constructed in the
_ ~ N X Xy. /10
proof of Lemma 24. Let y = sup(rng(n)). Then n' = © N (Jp(“) xJ)): (Ip(“), A
- (I?, AN J;() is T -elementary, by coherence of L [X], and cofinal. Thus
n' is Tq-elementary. Let H' =h s [ox (I x{p, )] and 7, : (12, A) >
v, ANy p
(Ig(v), A,) be the uncollapse of H'. Then H = rng(n’) = H'. To see this, let z e

rng(n') and z = w'(y). Then, by definition of p,, there isan x e J:f andan i e o

such that y = hp(“)’%(i, (X, py)) By the ¥, -elementarity of 7', we therefore have
2= o (0 (FOO R (R But #(p,) = 7(p,) = py and () < 37

In addition, sup(H’ N v) = A. That sup(H' () v) > A is clear. Conversely, let



156 BERNHARD IRRGANG

xeH'Nv, ie, x = {y, p,)) forsome i € » anda y e J;. Thenx

hY, AVnJ;( (l,
is uniquely determined by (I$, AN Jyx)lz(az)\ui(z, X, {y, py)). But such a z
exists already in a H2(a, t), where H?,(oc, t) is the closure of S, under

¢
all W%y s s,

Since y = sup(rng(n)) and A = sup(rng(w)) we can pick
such terng(z) and o erng(n). Let T=a"(xr) and @ =7 (o). Let 9 =

sup(v N Hf,’(oc, 7)) and 9 = sup(u N HS(&, 7)). Since v is regular in 1 <.

p(v):

Analogously, 9 < p. Butof course (9) = 9. So x < 9 = (9) < sup(a[u]) = A.

If veS*, then we may define H' as h [@ x (Jgfv x {p, })] and still

v, AN
conclude that H = rng(n’) < H' and sup(H' N v) = A by the definition of p,.

By Lemma 19, 7 : (Ig, A) > (Ig(v), A,) may be extended to a Zn(v)_l_
elementary embedding 7 @ 1g — lg(y) such that p is the (n(v)-1)th projectum
of Ig and A is the (n(v)-1)th standard code of it. Let 7y = &1_10&. Then
T :<|g(u)’ A — (Ig, A) is Zg-elementary, by the coherence of L [X] and
cofinal. Thus it is X, -elementary by Lemma 18. Applying again Lemma 19, we get
a Zp(y)-elementary mg : g,y — lg.

As in Lemma 24, it suffices to prove B =), n(v)=n), p=p®),
A=A, 7t(py)=pp 7 (R) =P o) =aj and 7oy ) = ay . So, if
n(v) > 1, we have to show that & is ()1 -regular over Ig. If n(v) =1 then

Ig F (A regular) suffices. In addition, A must be X,-singular over 1lg. For

regularity, consider wy and, as in Lemma 24, the least x e A proving the opposite

if such an x exists. This is again X, -definable and therefore in rng(mg). But then

Fco‘l(x) had the same property in Ig,). Contradiction!

Now, assume v e S*. Since I, F (a, is the largest cardinal), H'Nv is

transitive. Thus H' (N v = A. Since 7y : (Ig, A) > (I?, AN JYX) is %, -elementary
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and A < H' =rng(n;), we have A =1 h, alox (J(;< x (a7t (py )], ie., there
isa X -map over (l,, A) from o, onto A. But this is then X,,-definable over Ig

and & is Z(yy-singular over Ig.

If veS™, then the fact that A is Z,.)-singular over lg, o} =o; and

ook

fcl‘l(oc:’i) =y, may be seen as in Lemma 24 because mo(ay,) = o, € mg(m).

That 77%(p,) = p, and A75(PY) = P can again be proved as in (5) in the

proof of Lemma 19. 0

Lemma 26. Let v € E and
A, v) = fsup(hy, g, [ x (I x {EDIN V) < VB e Lim N v}
Let <V and n: (12, B) - (12, B,) be = -elementary. Then A(E, V)N 7 € I3
and n(A(E, V)N ) = A& v) N n() where (€)= & and n(T) = n
Proof. (1) Let A € A(&, v). Then A(E, 1) = A(E, V) N A
Let By be minimal such that
sup(hy, , [0 x (Ig; x {EDIN V) = 1.
Then, by Lemma 25, for all § < By,
hy, g, [0x (I8 < {&D] = hy g, [0 x (I x (£})]
and for all o < B,
g, B, [0 x (IF5 x ED] < My g, [0 x (35 x {£})]
< hy g, [0x (5 x )]
S0 A& 1) = A& V)N

2 AG V)NT € I3
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Let & :=sup((&, V)N +1). Then, by (1), A(E, V)N +1=A(E, v)U {L}
But A(E, V) is definable over lg)- Since B(X) <V, we get A(E, V)N +1
€ J%.

(3) Let sup(hy, g_ [ x (Jg x {€))]) < v and =(B) = B. Then
n(sup(hy, g, [0 x (35 x (BHINV)) = sup(hy, g [o>x (I5° x ENIN V).
Let A = sup(hy, By [© % (Jé( x {EN]NV). Then

(19, Bg) E =(3% < 0)(3i € 0)(3&; < B)(0 = hy g, (i, (&, E)).

So

(

where m(1) =1, i.e., sup(h, g [0x (I3 x ENINV) < A. But (nu%):ug, B)

v By) E =31 < 0)(3i € 0)(3E; < P)(O =hy g (i, &, &)

— (12, B,) is elementary. So, if
(17, Bp) F (yn)(E&; € B)(3n € 0)(n < by g_(n, (&, E)))
then
(17, BL) F (Yn)(3&; € B)(3n € w)(n <y g, (0, (&, &)
But by Lemma 25, hy g [0x (Jg' x{ED] < hy g [0x (35 x {£})], ie., itis indeed
% = sup(hy, g [0 x (I8 x EHIN V).
(4) n(AE, V)N7) = A(g, v) N ()
For & e A(E, V),
n(A(E, V)N2)
by (2)

= n(A(E, 1)
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by Z, -elementarity of ©
= A&, n(R)).
by (1) and (3),
= A&, v) N (R).
So, if A(E, 1) is cofinal in Vv, then we are finished. But if there exists
% = max(A(E, v)), then, by (1) and (2), A(E, 1)e Y, and it suffices to
show m(A(E, V) = A(E, v). To this end, let B be maximal such that A =

sup(hg, g [cox(‘]g xEPINV), ie, hy Bv[‘*’x(Jgﬂ x {€})] is cofinal in V. So,

since nfhy, g_[o x (Jg+1 x{ENT < hy, g, [ % (Jé(+1 x {€})], where

n(&) = B, sup(mg(m) N v) < sup(hy, g, [0 x (Isa x ENIN V).
Hence indeed n(A(E, V)) = A(E, ). O

Lemma27.Let v e E, H <, (I, B,) and & =sup(H N v). Let h: 12 — 17
be X, -elementary and H < rng(h). Then L € E and h: (I% By) — (12, B,) is
2, -elementary.

Proof. By Lemma 25, B, = B, J{(. So it suffices, by Lemma 24, to show
rng(h) <4 (Ii’, B;.). Let x; € rng(h) and (I;?, B,.)F (3z)w(z, x;) for a £y formula
. Then we have to prove that there exists a z e rg(h) such that (19, B, )k
w(z, X;). Since L =sup(H N v), there is a n e H (N Lim such that (Ig, B, N Jﬁ()

F (3z2)y(z, x;)- And since H <, <|9, B, ), we have (I;?, B, N J%() e H < rng(h).

So also
mg(h) E (15, B, NI3) E (F2)w(z, %)
because rng(h) <; 1. Hence there is a z e rng(h) such that (Ig, B, N Jﬁ() E

w(z, x), ie., (Ig, By.) Fwy(z, Xj). O
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Lemma 28. Let f:v=v, VCTLCpuy and f(r)=1 If TeSTUS is

independent, then (fJ2): <Jo?u D, Kz) = <J(1D s Dy, K¢) is Zp -elementary.

Proof. If T =pz <pug, then the claim holds since | f[: 1, — I, is Z;-
elementary. If p, =, and n(z) = n(v), then P, < R,. l.e. T is dependent on v.
Thus 7 is not independent. So let p = u, = p,, n:=n(t) <n(v) and t € S* us
be independent. Then, by the definition of the parameters, o, is the nth projectum
of p.

Let

1B = Crit( f(ByoyT)) < Oy
forap and
Hp := the Z,-hull of BU P, U {o,, <} in 1,

e, Hp =h[ox (3 < {a,, v, P{})], where

oy, := minimal such that hj(i, ay,) = oy, foran i e o,
P := minimal such that h](i, P) = P foran i € o,
7’ ;= minimal such that hS(i, t)=1 foran i e o (resp.tv’ =0 for 1 = p).
For the standard parameters are in P,.
So Hyg is X, -definable over 1, with the parameters {8, T, “:}U P.. Let
p = a. = the nth projectum of p,
A := the nth standard code of ,
p = (oc'u, v, P)).

So HgN Jg is X -definable over (Ig, A) with parameters B and p (fine

structure theory!).
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And yg is defined by
YB "3 HB and (VS € ’YB)(S € HB)’
i.e., yg isalso Zq-definable over (Ig, A) with parameters  and p.

Let fo = fg,0,r) fora p, 7o = d(fo) < a; and y := crit(fy) < a. Let f) =
fg,y, 1y T =d(f) <o, and &= crit(fy) < o,. Then pz, is the direct successor
of pz, in K. So fg, 5 =idg. Hence u, =pz holds for the minimal n e
s* U S? suchthat y < 8. Thus

W e K = K, — (Lim(K,) U {min(K.)})
=3

(3B, v, 8 m) (v = vg and 3 = y(y541)

and 1 e $* U S® minimal such that y < nC8 and p' = ).
Therefore, K is £ -definable over (Ig, A) with parameter p.

Now, consider (Ig , Ki) E @(x), where ¢ is a £; formula. Then, since K is
unbounded in o,
0
<I0‘T’ KT> ': (p(x)
=
(3 e K and (1g, K,) F ¢(x)).

So (Ig , Ko F o(x) is Zq over (Ig, A) with parameter p, resp. X, over I, with
parameters o, t, P,. Butsince n =n(t) < n(v), fis at least X, 4 -elementary.

In addition, f(a3)=af, f(T)=1 f(R)="P. So for xermg(f), (12, K:)F

o(f 1(x)) holds (I gr, K.) E o(X). 0

Theorem 29. 9 = (S, <, §, D) is a k-standard morass.
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Proof. Set
o)) = MG, & al, py))

Then D is uniquely determined by the axioms of standard morasses and

(1) DY is uniformly definable over <va XTv, Xy),

(2) X, is uniformly definable over (J°, D, D).

(1) is clear. For (2), assume first that v e S and fo, Qv) = id,. Since the set
{ilogg,, (i) € Xy} is Zy()-definable over (3¥, X1v, X,,) with the parameters
Py, 0y, Gy, thereisa j € o such that

(g, v)({i, 1) exists < o(q (i) € X,.
Using this j, we have

Xy = 1o(q,,v)DI(, i) € dom(o(q,, v))}
So, incase that f(g g v) = id,, thereis the desired definition of X,.

Let ves, f(0,q,,v) 1 vV = v cofinal and f(q) = g,. Then f(g g,v) = idy. And
by Lemma 6(b) of [6], § = dy. So, if v = v, then fq Qyv) = id,. Thuslet v < v.
Then fg q,,v)(X) =y isdefined by: Thereisa v < v such that, forall r, s € o,

(a5, )" = F(g5,9)(8) = (g, (1) < 5(g,,)(S)
holds and for all z J%( thereisan s € o such that
Z = 0(qy,v)(8)
and there isan s € ® such that
O(gy,7)(8) = X = (g, v)(8) = ¥-
And since (JX, X,) is rudimentary closed,

Xy = Ul (X3 Nn)in <V}
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Finally, if v e S and f(0,q,,v) Is not cofinal in v, then C, is unbounded in v

and
Xy = U{Xk |\ e Cv}
by the coherence of L [X].

So (2) holds. From this, (DF)* follows.

By (1) and (2), JX = JD forall v e Lim, andforall H ¢ JX =32,

H < (3%, XTv) & H < 3P, D).
Now, we check the axioms.
(MP) and (MP)*
| f(0,¢,v) | is the uncollapse of hS\(/V)[(DX &5 v oy, o, POE], where &
is minimal such that hSS")‘l(i, £*) = & Therefore, (MP) and (MP)* hold.
(LP1)
holds by (2) above.
(LP2)
This is Lemma 26.
(CP1) and (CP1)*
This follows from Lemma 24 and the definition of o(¢ ).
(CP2)
This is Lemma 27.
(CP3) and (CP3)*
Let xeJX, icwand y= hy g, (i, X). Since C, is unbounded in v, there is

aLeC, suchthat x, y e JX. By Lemma 25, B, =B, NJ;*. So y = M., B, (i, X).
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(DP1)

Holds by the definition of p,,.

(DF)

Let u=p,, k:=n(u) and

n(n, B, &) := the uncollapse of hﬁ*”[mx (Jg( x fou, s 579,

where

¢* == minimal such that h:fv*”’l(i, g =¢ forani e o,

Py = minimal such that hﬁ*”’l(i, Pu) = py forsome i e o,

oy’ = minimal such that hf*"~X(i, o) = o, for some i € o.

Prove

0 =509

forall n € ® by induction.

For n =0, this holds by definition of f(}iiyu) = fg,gn)- SO assume that

| f(g‘& ") | = n(m -1, B, €) is already proved for all 1 < m < n. Then, by definition
of t(m, ),

O(m, u) = the (k +m —1)th projectum of p.

Let n(n, B, &) : Iy — 1. Then

(*) &(m, u) = n(n, B, £)&(m, ) forall L<m < n:

Let n:=n(n, B, &), o = n_l[at(m’“) N rng(n)], p = n(a),
r := minimal such that hﬁ*m‘z(i, r)=p, foranieco,
a’ := minimal such that hfj*m‘z(i, o) = oy, foranie o,

p = the (k + m — 1) th parameter of u
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and
of)=r, mP)=p =na)=a.

Let & :=&(m, ). Then p = hﬁ*m’l(i, (X, &, F, @) fora X e IS, because o =
Ge(m, i) SO P = h5+m_1(i, (x, & r, '), where n(X)=x and n(€) =& Thus
hi Mo x (Joﬁ(myu) x{o, 1, €5 = 3 by definition of p. So &(m, p) < &
Assume E(m, u) < & Then

I, E (@ <8)@ic )@ e I)E =", (x,n, 1, ).
So

Ip E (3N <8)@i e )@ e IX)(E = M, (x, m, F, @)).
But this contradicts the definition of & = &(m, f1).

So, forall 1<m < n,

&m, u) € mg(x(n, B, £)).

In addition, for all B < Or(m, p)»

d ( f(anv Es(m' H)v H)) < (X'T(m, p,)

Consider n:=m(m-1, B, &) =| f(g‘i W) |, where &=¢g(m, ). Then m:ly

— 1, is the uncollapse of h&+m_1[o)x (B x{& o, r}=®)], where
r := minimal such that hﬁ*m‘z(i, r)= p, forsomeiec o,
o’ := minimal such that hﬁ*m‘z(i, o') = oy, forsome i € w.

And hﬁ*m‘l[m x (B x{E o, F)<°)] = Jg, where () =&, mn(a’) =o' and
n(F) = r. ASSUme oy ) < | < p. Then there were a function over I from

B < Og(m,u) ONMO oy ). This contradicts the fact that oy ) is a cardinal in

— _ m _ — - - - - - -
I, If w=n, then f(B, £ ) id,. This contradicts the minimality of t(m, p).



166 BERNHARD IRRGANG

Since &(m, p) € rg(x(n, B, £)), we can prove

D D
rg(n(n, B, £)) M Jo‘r(m,u) <1 <J°‘T(m,u)' Do‘r(m,u)’ KIP)
forall 1 <m < n asinLemma 28.

We still must prove minimality. Let f = p and B U {€} < rng(f) such that

rng(f)ﬁ\]D

D m
Qr(m,p) ~1 <‘]ar(m,u), Daf(mvli), KI’L >,
&(m, p) e rg(f)

holds for all 1<m <n. Show that f is X, ,-elementary and that the first
standard parameters including the (k +n-1)th are in rng(f). That suffices

because =n(n, B, &) is minimal.
Let pﬁ*m be the (k + m)th standard parameter of p.

Prove, by inductionon 0 < m < n,
fis Zy,m -elementary,

k+m-1

pﬁ, o P e rmg(f).
For m =0, this is clear because f f = p. So assume it to be proved for
m<n already. Then let o= dy(iy,,) and o= f o N rng(f)] Consider
n=(f132):(J2, Dz, K) > (32, D,, K"™). Constructa Xy, . -elementary

extension 7 of . To do so, set

_ gm+l
fu = f(B, g(m+1, p), w)’
u() = d(fp),

H = Ulfg[rng(n) N J&m]m < al.

Then HNJ2 =mg(x). For rmg(z) = HNJI2 is clear because fB[JBD =id[ Jg .

Solet ye HN JO'?, ie, y= fg(x) forsome x e rng(n) anda B < o. Let K" =
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1 1 1 -
K™ — Lim(K ™) and B(n) = sup{B| f(g"z(mﬂ, o # idn} Then

<‘]ol?1 Do Kprtn+l> F@y)@neK)(y = f(r[;-gierlvn)’n)(X) € ‘]pl,)(n))-

Since rng(n) <1 (J2, Dy, KL“”), y = f(r[?,zl(mﬂ,n),n)(x) erng(n) if xe

m+1

rng(rw) for such an n. But since y = f(B £(m+1m) n)(x) € JﬁD(n), we get fg(x) =

f m+1

(. £(m+1,m),m (¥) € Mg(m)

Show H < ms1 Iy Since f(’é‘vz%u) = 1(M, B, &), Or(m+1,) I the (k +m)th

projectum of p. Like in (*) above, we can show that the (k + m)th standard

K+m

parameter p;, +m,

of wis in rg(fg). Now, let 1, F (3x)e(x, v, pﬁ, pﬁ
where ¢ is a I, formulaand y € H J(E’. Since fg is Iy -elementary, the
following holds:

Ly E @)X, ¥, Phy oo PET™)

& @ e KM@l = ok Y, pyoe py ™)

And since mg(n) <, (32, D, Kﬂ”l),

mg(n)F 3y € K@) (1, Fo(x, y, pl, ... p&t™).
Thus there is such an x in rng(r) and therefore in H.

Let m be the uncollapse of H. Then & is X, -elementary and, since

pfl, pﬁ*m e mg(fg) for all B <o, we have pfl, pﬁ*m e rng(n) = H. In
addition, by the induction hypothesis, f is Z, , ,, -elementary and pﬁ, pfﬁm‘l €

rng(f). Again as in (*) above, we can show that pﬁ*m e rng(f) using Em +1, p)

e rng(f). But since © and f are the same on the (k + m)th projectum, we get

n=f.

(SP) follows from | f(};g ) | = n(n, B, &), because for all vCtC p, such
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that T € S™ (resp. t = v) the following holds:
Py € rg(n(n, B, &)) < &; e rmg(x(n, B, £)).
This may again be shown as (*).
(DP2)
Itis like (*) in (DF).
(DP3)

(@) is clear.
(b) was already proved with (DF)*. O
Theorem 30. Let (X, |v e S*) be such that
(1) L[X]ES® = {B(v)| vsingular}
(2) L[X] is amenable
(3) L[X] has condensation
(4) L[X] has coherence.
Then there is a sequence C = (C, |v e S) such that
(1) L[C] = L[X],
(2) L[C] has condensation,
(3) C, isclubin JVC w.r.t. the canonical well-ordering <, of JVC,
(4) opt((Cy, <)) > @ = C, = v,
(5) peLimC,)=C, =C, Ny,
(6) opt(C,) < v.

Proof. First, construct from L[X] a standard morass as in Theorem 29. Then

construct an inner model L[C] from it as in [6]. O
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