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Abstract 

The aim of the present work is to study the free convection flow and heat 
transfer through a viscous incompressible electrically conducting fluid 
along an isothermal vertical porous non-conducting plate with time 
dependent suction and exponentially decaying heat generation in the 
presence of transverse magnetic field. The governing equations are solved 
numerically using cubic B-spline collocation method. The effects of 
various parameters on velocity and temperature distributions, skin-friction 
and Nusselt number are studied. 

1. Introduction 

Convective heat transfer and fluid along porous plate in the presence of 
magnetic field and internal heat generation have attracted the interest of scientific 
investigators as its useful applications in different branches of Science and 
Technology such as nuclear science, fire engineering, combustion modeling, 
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geophysical etc. Similarity solutions for natural convection with internal heat 
generation, which decays exponentially, are derived by Crepeau and Clarksean [5]. 
Sattar et al. [17] obtained analytical and numerical solutions for free convection flow 
along a porous plate with variable suction in porous medium. Soundalgekar et al. 
[19, 20] examined viscous dissipation effect of unsteady free convection flow along 
vertical porous plate with different boundary conditions. Variable heat transfer with 
mass transfer effect on accelerated vertical plate is investigated by Raptis and 
Tzivanidis [15]. The effect of mass transfer and free convection past a vertical 
porous plate is studied by Hossain and Begum [8]. Ferdows et al. [7] analyzed free 
convection flow with variable suction in presence of thermal radiation. Alam et al. 
[1] studied Dufour and Soret effects with variable suction on unsteady MHD free 
convection flow along a porous plate. 

In this paper, we consider the flow of a viscous incompressible electrically 
conducting fluid along a porous vertical isothermal non-conducting plate with 
variable suction and exponentially decaying heat generation in the presence of 
transverse magnetic field. In applications where the electromagnetic heating exists 
the exponentially decaying heat generation model can be utilized as heat source [5, 
16]. 

2. Formulation of the Problem 

Consider an unsteady incompressible electrically conducting two-dimensional 
laminar free convective boundary layer flow along a non-conducting vertical porous 
plate with constant temperature ,wT  and Q the internal volumetric rate of heat 

generation of the fluid. Let the x-axis be taken along the plate and y-axis be taken 
normal to the plate. Intensity 0B  of the magnetic field is applied in y-direction. Also 

the external field is assumed to be zero with electrical field due to polarization of 
charges and Hall effects are neglected. Using the Boussinesq approximation within 
the boundary layer, the governing equations of continuity, momentum and energy [2, 
11, 13, 18], respectively, are given by 
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where u and v are the Darcy velocities in x, y directions, t is time variable, v 
⎭⎬
⎫

⎩⎨
⎧

ρ
μ=  

kinematic viscosity, μ is viscosity of fluid, ρ is fluid density, g being the acceleration 
due to gravity, σ is electrical conductivity, pC  is specific heat at constant pressure, 

T is temperature of fluid in boundary layer and k is thermal conductivity. 

The appropriate boundary conditions are 

( ) 0at,,,0 ==== yTTtvvu w  

;at,,0 ∞→→→ ∞ yTTu  (2.4) 

where ∞T  is fluid temperature far away from the plate. 

Using the following dimensionless variables 
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with length scale 

( ),thh =  (2.6) 

( ) ( ) ,0 th
vVtvv −==  (2.7) 

where 0V  is suction parameter [18], into the equations (2.2) and (2.3), we obtain 

( ) θ−=−′+η+′′ GrMffVf 0  (2.8) 

and 

( ) ,Pr 0
η−−=θ′+η+θ′′ SeV  (2.9) 

where η is similarity variable, U is uniform characteristic velocity, f is dimensionless 
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C pPr  is Prandtl number 

and S (0 or 1) is heat generation parameter. 

The boundary conditions are reduced to 

( ) ( ) ( ) ( ) 10,0,00,00 =θ=∞′=′= fff  and ( ) .0=∞θ  (2.10) 

The skin-friction coefficient at the plate is given by 

( ) ( ),0Re2 1 fC f ′= −  (2.11) 

where v
Uh=Re  is the Reynolds number. 

The rate of heat transfer in terms of the Nusselt number at the plate is given by 

( ).0θ′−=Nu  (2.12) 

The governing equations (2.8) and (2.9) are non-linear second order coupled 
differential equations and solved under the boundary conditions (2.10) using cubic 
spline collocation method. 

3. Spline Collocation 

In this section, cubic B-splines are used to construct numerical solutions to 
boundary value problems discussed in equation (2.8). A detailed description of                    
B-spline functions generated by subdivision can be found in [6, 14]. 

Consider equally-spaced knots of a partition bxxxa n =<<<=π 10:  on 

[ ]., ba  Let [ ]π3S  be the space of continuously-differentiable, piecewise, fifth-degree 

polynomials on π. That is, [ ]π3S  is the space of cubic polynomials on π. Prenter 

[14] defined the cubic spline ( )ts  as 
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where n is the number of subintervals of [ ] 101 ...,,,,, +− naaaba  are ( )3+n  

unknowns and the functions ( ),tBi  with additional knots 012 ttt << −−  and >+2nt  
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nn tt >+1  is defined by 
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and 

( ) 0=tBi  for 2+≥ itt  and .2−≤ itt  (3.4) 

Here ( )tBi  is denoted as cubic B-spline with knots at 112 +−− <<<< nn tttt  

.2+< nt  From equation (3.1) it is clear that ( )ts  is a basis of B-splines at different 

knots. 

To compute ( )ts  we use equations (3.2) and (3.3) which give the values of 

( )tBi  and its derivatives are evaluated with the help of the power function ( )+− ktt  

defined by 

( ) kkk tttttt >−=− + if  

.if0 ktt ≤=  

Consider a second-order linear BVP of the form 

( ) ( ) ( ) ( ) ( ) ( ) bxaxfxuxqxuxpxu ≤≤++′=′′ ,  (3.5) 

with boundary conditions 

( ) ( ) ,, 21 KbuKau ==  
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where ( ) ( ) ( )xqxpxu ,,  and ( )xf  are continuous functions defined in the interval 

[ ];, bax ∈  1K  and 3K  are finite real constants. 

In this section, the spline solution of equation (3.5) is determined using a 
collocation method [6]. Let ( )tS  given by (3.1) be an approximate solution of 

equation (3.5), where ja  are unknown real coefficients and ( )tB j  are cubic B-spline 

functions. 

Let nxxx ...,,, 10  be 1+n  grid points in the interval [ ],, ba  so that 

( ) .,;...,,1,0, 0 habhaxniihaxi −===+=  (3.6) 

It is required that the approximate solution (3.1) satisfies the differential equation at 
the points .ixx =  Putting (3.1) in (3.5), it follows that 
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The value of the B-spline functions at the knots 101 ...,,, +− nxxx  are determined 

using (3.2), (3.3), (3.4). A system of 3+n  linear equations in 3+n  unknowns 

101 ...,,, +− naaa  is thus obtained. This system can be written in matrix-vector form 

as follows: 

,FAC =  (3.9) 

where A is ( ) ( )33 +×+ nn  dimensional band matrix, 

[ ]Tnn aaaC 11 ,...,, +−=  

and 

( ) ( ) ( ) ( )[ ] ,,,...,,,, 21101
T

nn kxfxfxfxfkF +=  
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T denoting transpose. Eliminating 11, +− naa  from this system we get a system of 

1+n  equations in 1+n  unknowns ( )....,,1,0 nja j =  The coefficient matrix of 

which is a diagonally dominant three-band non-singular matrix. Hence, we obtain 
the approximate solution (3.1). In case of non-linear boundary value problem, the 
equations can be converted into linear form by any known method like 
quasilinearization [3] or Newton’s linearization [9, 10] and hence, this method can 
be used as iterative method. The procedure to obtain a spline approximation of 

;...,,1,0( jiui =  where j denotes the number of iterations) by an iterative method 

starts with fitting a curve satisfying the end conditions and this curve is designated 
as .iu  We obtain the successive iterations iu ’s with the help of an algorithm 

described as above till the desired accuracy. 

4. Spline Solution 

For the numerical study the outer boundary is set at 5=η∞  so that the domain 

of the problem is restricted to [ ].5,0  Hence, the boundary conditions ( ) 0=∞′f  

and ( ) 0=∞θ  are considered as ( ) 05 =′f  and ( ) .05 =θ  As discussed above the 

collocation equations for the corresponding problem (2.8), (2.9) with (2.10) are as 
follows: 

From (2.9) we obtain 
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The boundary condition ( ) 10 =θ  and ( ) 05 =θ  give 
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and from equation (2.8) we get 
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Boundary conditions ( ) ( ) 0,00 =∞′=′ ff  give 
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For the complete solution of the problem first we solve the collocation equations 
(4.1), (4.2) for ( )ηθ  and using these values in (4.3), (4.4) we get an approximate 

solution ( ).ηf  For various parameters ( ),4,3,2=Gr  ( ),0.1,5.0,0.0=M  

( ),5.1,0.1,5.00 =V  ( ),0.1,0.0=S  ( )0.2,0.1,71.0Pr =  the solution profiles are 

obtained and presented in Tables 4.1, 4.2 and Figures 4.1 to 4.6. 

Table 4.1. Values of ( )0θ′−  for various values of Pr and 0V  

 71.0Pr =  0.1Pr =  0.2Pr =  

5.0,0 0 == VS  0.913524314 1.141186760 1.832815441 

0.1,0 0 == VS  1.180244765 1.525244265 2.638976523 

5.1,0 0 == VS  1.466544812 1.938767256 3.508910801 

5.0,1 0 == VS  0.224777787 0.477705467 1.218343625 

0.1,1 0 == VS  0.457776382 0.821353548 1.968740216 

5.1,1 0 == VS  0.715546351 1.201532301 2.794931312 

Table 4.2. Values of ( )0f ′  for various values of GrV ,Pr, 0  and M 

 0.2,5.0,0.0 0 === GrVS  0.2,5.0,0.1 0 === GrVS  

M 71.0Pr =  0.1Pr =  0.2Pr =  71.0Pr =  0.1Pr =  0.2Pr =  

0.00 1.5142565 0.9839964 0.6902434 1.6419118 1.3743923 0.9306154 

0.5 1.0418941 0.9009161 0.6478582 1.4397677 1.2243343 0.8523637 

1.0 0.9579268 0.8376916 0.6145156 1.2939565 1.1142520 0.7933431 

 0.2,0.1,0.0 0 === GrVS  0.2,0.1,0.1 0 === GrVS  

M 71.0Pr =  0.1Pr =  0.2Pr =  71.0Pr =  0.1Pr =  0.2Pr =  

0.00 1.0487361 0.8647590 0.5614893 1.5321837 1.2442210 0.7854535 

0.5 0.9638364 0.8055893 0.5352573 1.3679737 1.1272801 0.7295907 

1.0 0.8973283 0.7583828 0.5136594 1.2442872 1.0377857 0.6858875 
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Figure 4.1. Velocity profiles ( ).0,0.2,5.00 === SGrV  

 

Figure 4.2. Temperature distribution ( ).0.0,0.2,5.00 === SGrV  
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Figure 4.3. Velocity distribution ( ).0.0,0.1,0.2,71.0Pr ==== SMGr  

 

Figure 4.4. Temperature distribution ( ).0.0,0.1,0.2,71.0Pr ==== SMGr  

 

Figure 4.5. Velocity distribution ( ).5.0,0.1,0.2,71.0Pr 0 ==== VMGr  
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Figure 4.6. Temperature distribution ( ).5.0,0.1,0.2,71.0Pr 0 ==== VMGr  

5. Results and Discussion 

Table 4.1 gives the estimation of ( )0θ′−  (rate of heat transfer) for .0,1=S  

This shows that the rate of heat transfer increase with increase in Prandtl number and 
suction parameter irrespective of absence (i.e., )0.1=S  or presence ( )0=S  of heat 

generation. This is attributed to the fact that with the increase in Prandtl number or 
suction, the thermal boundary layer thickness reduces which consequently increases 
the temperature gradient. 

Table 4.2 shows that with the increase in magnetic parameter, suction parameter 
and Prandtl number the value of ( )0f ′  decreases, but it increases with the increase 

in the Grashof number. It is observed that ( )0f ′  is increased in the presence of heat 

generation ( ),0.1=S  with comparison to absence of heat generation ( ).0.0=S  

Also it is found that some of the results are in good agreement with those obtained 
by Sattar et al. [17]. 

Since as magnetic parameter increases, the Lorentz force, which opposes the 
flow, also increases which leads to deceleration of the flow which is observed from 
Figure 4.1 that fluid velocity decreases with the increase in the magnetic parameter 
M. It is also observed from Figure 4.2 that the velocity profiles and temperature 
profiles decrease with the increase in the Prandtl number. 
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From Figures 4.3 and 4.4, it is observed that when the suction parameter 0V  

increases, fluid velocity and fluid temperature decrease, i.e., more fluid reserved 
through the plate. Both, boundary layer and thermal boundary layer thicknesses 
decrease with the increase in suction parameter .0V  As velocity profiles in the 

presence of heat generation are higher in comparison to absence of heat generation it 
is observed from Figure 4.5 that heat generation assists the flow significantly. It is 
found from Figure 4.6 that fluid temperature increases in the presence of heat 
generation hence the magnitude of temperature profiles are higher in presence of 
heat generation. Boundary layer and thermal boundary layer thicknesses increased 
well in presence of heat generation. 
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