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Abstract 

It is well known that a bandlimited function can be reconstructed in theory 
from a discrete set of its Fourier samples, provided that the samples are 
dense enough. This fact is a direct consequence of extensive studies on 

Fourier frames for [ ]( ).,2 baL  However, when the sample points do not 

form a lattice, there is no practical scheme (to our knowledge) for the 
reconstruction of f. In this paper, we propose a fast and easy to implement 
technique, for reconstructing a compactly supported function f from 

finitely irregular samples of .f̂  The scheme is based on the cubic-spline 

interploation and Gaussian spectral mollifiers. The scheme allows us to 
eliminate the Gibbs oscillations in many cases. 
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1. Introduction 

Let ( )xf  be a compactly supported function in ( ).2 RL  An important question 

one often encounters, both in the study of mathematics itself and in applications, is: 

Given ( ),ˆ ξf  or some sample points of ( ) ,ˆ ξf  how can we reconstruct ( )xf ? Of 

course, if ( )ξf̂  is known for every ξ, then ( )xf  is readily obtained by the inverse 

Fourier transform 

( ) ( )∫ ξξ= ξπ
d

defxf ix
R

.ˆ 2  

However, it is not necessary that we know ( )ξf̂  for all values ξ, given that 

( )xf  is compactly supported. Suppose that ( ) [ ].,supp baf ⊆  Far more useful for 

applications is the Fourier series inversion formula 

( ) ( )∑
Λ∈λ

λπλΔ= ,ˆ 2 xiefxf  (1.1) 

where { }Z∈Δ=Λ nn :  is a lattice in ,R  with ( ) .0 1−−≤Δ< ab  The inversion 

formula (1.1) follows from the well known fact that { }Λ∈λλπ :2 xie  for the above 

Λ forms a tight frame for [ ]( )baL ,2  with tight frame bound .1
Δ

 

The tight frame reconstruction requires ( )ξf  be known on a regular set, i.e., a 

lattice in this case. Unfortunately this is a luxury we may not have in some 
applications, such as in MRI (magnetic resonance imaging). In MRI the Fourier 
transform ( ),ξρ  where ρ is the density function of the scanned image (such as a 

planar section of patient’s head), is sampled along several paths, with each path 
being a curve such as a spiral, a circle or a line. These sampled points do not contain 
a regular set (a lattice). So the image reconstruction in MRI must begin with 
irregular Fourier samples. Currently, samples are taken along many paths, resulting 
in a sufficiently dense set of samples. These sample points allow for a reasonable 
interpolation of ρ̂  on a lattice, and therefore a reconstruction of ρ. The drawback is 

that it takes time to obtain many samples. 
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Another challenge we face is the Gibbs oscillation. Since we can only use 
finitely many sample points, the Gibbs oscillation is inevitable, even when we do 

have a regular set of samples of .f̂  Any reasonable reconstruction scheme therefore 

must address the problem of Gibbs oscillation. 

In this paper, we propose a scheme for reconstruction of ( )xf  from irregular 

samples of .f̂  A key ingredient is a technique called discrete singular convolution, 

first introduced by Wei [12]. This technique allows us to virtually eliminate the 
Gibbs oscillation in many cases. Our scheme is still in its early stage, and there are 
areas that need to be refined. The most important improvement would most likely 
come from choosing the right bases. In our study, we have experimented with Haar 
bases. But it is clear that better results can be expected from other types of bases, 
since the speed of decay in the Fourier transform plays an important role in our 
scheme. We shall discuss possible improvements for future work later. Nevertheless, 
our results have clearly demonstrated its promise. We hope it will serve our modest 
goal, that is, a valuable first step in addressing an important theoretical and practical 
challenge. 

2. Irregular Fourier Frames and Reconstruction 

Since we are concerned only with the reconstruction of compactly supported 

functions ( ),xf  we may without loss of generality assume that [ ]( ).1,02Lf ∈  It is 

well known that { }Z∈π ne inx :2  is an orthonormal basis for [ ]( ),1,02L  which gives 

us the standard Fourier series expansion for ( ):xf  

( ) ( )∑
∈

π=
Zn

inxenfxf .ˆ 2  

However, reconstructing ( )xf  – at least in theory – can be done often without an 

orthonormal basis. In this paper we focus on reconstructing ( )xf  using Fourier 

frames. A set of elements { }jv  in a Hilbert space H is called a frame with frame 

bounds 0, >BA  if for every Hu ∈  we have 

∑ ≤≤
j

j BA ., 222 uvuu  (2.1) 
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If ,BA =  then jv  is called a tight frame. Fourier frames for [ ]( )1,02L  are frames 

of the form { }.2 xi je λπ  The following is a well known result of Beurling (cf. [15]). 

Theorem 2.1. Suppose that { } R⊂λ=Λ j  is uniformly separated and has 

( ) ,1>Λ−D  where ( )Λ−D  denote the lower Beurling densities given by 

( ) [ ]( ).,#2
1infinflim anannD

an
++−Λ=Λ

∈∞→

− ∩
R

 

Then { }Λ∈λλπ :2 xie  is a frame for [ ]( ).1,02L  

Nevertheless, if ( ) ( ) ∞<Λ≤Λ< +− DD1  but Λ is irregular, then there is no 

simple formula to reconstruct ( )xf  from the Fourier samples { ( )} .ˆ
Λ∈λλf  Moreover, 

in practice, we can only take finitely many data, posing an additional challenge to 
the reconstruction. 

Here we propose a reconstruction scheme based on cubic-spline interpolation 
and a technique along the spirit of the discrete singular convolution (DSC), a 
technique introduced by Wei. The DSC technique in our case is essentially a 
Gaussian spectral mollifier aimed to enhance the decay in Fourier transforms of 
bandlimited functions, and it enables us to reconstruct singularities much better than 
without it. We shall discuss the DSC technique in more details later in the paper. 

Let ( ){ } Z∈φ nn x  be an orthonormal basis for [ ]( ).1,02L  Then 

( ) ( ) ( )∑
∈

φφ=
Zn

nn xxfxf .,  

Notice that ( ) ( ) .ˆ,ˆ, xfxf nn φ=φ  Since samples of f̂  are given, it is natural that 

we estimate ( )xf nφ,  by estimating ( ) .ˆ,ˆ xf nφ  Now, given { }nφ  we can often 

compute ( )ξφn
ˆ  explicitly. Furthermore, f̂  is analytic and ( ) .0ˆlim =ξ∞→ξ f  

Suppose we have ( ),ˆ λf  where .Λ∈λ  We now interpolate ( ) ( )ξφξ nf ˆˆ  using 

{ ( ) ( ) }Λ∈λλφλ :ˆˆ
nf  by cubic splines. Let ( )ξnG  be the resulting cubic spline 

interpolation. Then we obtain an estimation of ( )xf nφ,  by ( )∫ ξξ
R

,dGn  and 

therefore a reconstruction of f by 
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( ) ( )∑
∈

φ=
Zn

nnrec xcxf ,   where ( )∫ ξξ=
R

.: dGc nn  (2.2) 

If ( )xf  is known to be real, then we use 

( ) ( ) ,Re
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
φ= ∑

∈Zn
nnrec xcxf   where ( )∫ ξξ=

R
.: dGc nn  (2.3) 

In practice, we are given only a finite set of data, i.e., we know { ( ) }Λ∈λλ :f̂  

with Λ being finite. We can also choose only a finite basis { } .1
0
−
=φ N

nn  But the 

technique will be the same. We use cubic spline to interpolate { ( ) ( ) }.:ˆˆ Λ∈λλφλ nf  

Let ( )ξnG  be the resulting interpolation. (Here we need to set ( ) 0=ξnG  for 

sufficiently large ξ). Then the reconstructed ( )xf  will be 

( ) ( )∑
−

=

φ=
1

0

,
N

n
nnrec xcxf  where ( )∫ ξξ=

R
,: dGc nn  (2.4) 

or if ( )xf  is real, 

( ) ( ) ,Re
1

0
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
φ= ∑

−

=

N

n
nnrec xcxf  where ( )∫ ξξ=

R
.dGc nn  (2.5) 

Our experiments indicate that by taking a simple basis such as the Haar basis 
( ) ( ),1,

xx
N

n
N
nn

⎟
⎠
⎞

⎢⎣
⎡ +χ=φ  this reconstruction scheme works very well if ( ) ∈xf  

[ ]( ),1,00C  i.e., ( )xf  is continuous in R  and ( ) [ ].1,0supp ⊆f  However, the 

Gibbs oscillation poses a big problem if f is discontinuous in ,R  making a “straight 
out-of-the-box” application of (2.4) or (2.5) less useful. By incorporating the DSC 
technique with a Gaussian spectral mollifier, we have either eliminated or severely 
curbed the Gibbs oscillation in our reconstructions. 

3. DSC Technique and Spectral Mollifiers 

Let ( )xψ  be a bandlimited function with ( ) .2
1

2
1ˆsupp ⎥⎦

⎤
⎢⎣
⎡ ⋅−⊆ψ  Then the 

Shannon Sampling Theorem states that for any 10 ≤Δ<  we have 
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( ) ( ) ( )∑
∈

− −ΔΔψΔ=ψ
Zn

nxSnx ,1  (3.1) 

where ( ) ( ) xxxS ππ= sin  is the sync function. While this sampling theorem is the 

cornerstone in signal processing, it possesses some intrinsic difficulties in 
applications. The sampling formula with only finitely many samples among ( ),Δψ n  

which is the case in all applications, is subject to the Gibbs oscillation in the Fourier 
domain. But Gibbs oscillation is only one of the challenges. It is known that the 

sampling formular (3.1) yields only an ( )ΔO  approximation for a general ∞C  

function ψ. This fact explains why (3.1) has little use in applications such as 
numerical PDE, in which higher order of approximations are desired. 

These problems are overcome in the work of Wei and his coauthors, see [12] 
and [14] as well as the references therein. The key ingredient in their work is to 
mollify the sync function with a suitable Gaussian. Let 

( ) ( ) ( ) .0,sin 22
>

π
π== −− aex

xexSxS axax
a  

The sampling formula (3.1) is then modified by using ( )xSa  in place of ( ),xS  giving 

the approximation/reconstruction of ( )xψ  by 

( ) ( ) ( )∑
∈

−∗ −ΔΔψΔ=ψ
Zn

nxSnx ,1  (3.2) 

where a is chosen to be proportional to be roughly ,Δ  .Δ= ca  This simple 

approximation proves to be surprisingly powerful: Gibbs oscillation is eliminated 
completely in many applications, and extraordinarily high accuracy is achieved in 
many numerical PDE solutions. Wei calls this scheme the discrete singular 
convolution (DSC) scheme. The DSC scheme is very robust, as the constant c can be 
taken over a large interval without having apparent impact on the outcome of the 
tasks. Despite the high performance many numerical analysts remained skeptical of 
the validity of the DSC scheme, as there was no mathematical proof that it works. 
Fortunately this is no longer the case, as one of us (Wang [11]) recently has given a 

rigorous proof that (3.2) yields an approximation of ψ, that is, ( )No Δ  for  any N. 

A major reason for the improved performance is that by adding a Gaussian 
factor one overcomes the slow decaying property of the sync function. This is also 
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why the DSC scheme proves useful not just when the sync function basis is used. 
Numerical experiments have indicated similar improvements in performance when 
other types of basis functions are used. To reconstruct a function from its Fourier 
samples we incorporate the DSC scheme to the Fourier transform of Haar bases. 

We incorporate the DSC technique in our reconstruction by adding a Gaussian 
mollifier to the spline interpolation ( ).ξnG  It should be pointed out that curbing 

Gibbs oscillation using spectral mollifiers has been used by many others, see e.g. 
Tadmor and Tanner [10] in all kind of ways. The way we use the mollifiers is 
different from all the existing methods, including those by Wei and those by Tadmor 
and Tanner. Nevertheless all these methods embody essentially the same goal of 

controlling the decay of the Fourier transforms. Now let ( ) [ ]( )1,02Lxf ∈  and 

{ ( ) }Mjf j <≤λ 0:ˆ  be given, where { }jλ=Λ  is inside the interval [ ]., KK−  

Let ( ) ( )xx nIn χ=φ  where .0,1, NnN
n

N
nIn <≤⎟

⎠
⎞

⎢⎣
⎡ +=  We reconstruct ( )xf  

from the Fourier samples { ( )}jf λˆ  in the form 

( ) ( )∑
−

=

φ=
1

0

.
N

n
nnrec xcxf  

Note that N is the “resolution” of the reconstructed function ,recf  and the selection 

of which depends on several factors and the actual application. (In MRI the 
reconstruction resolution is typically .)128128 ×  We require that .NM ≥  Now, 

instead of taking ( )∫ ξξ=
R

,dGc nn  where nG  is the cubic spline interpolation of 

( ) ( )ξφξ nf ˆˆ  using the sample points { ( ) ( )},ˆˆ
jnjf λφλ  we apply the Gaussian mollifier 

by setting ( )∫ ξξ=
R

dGc ann ,  for a suitable ,0>a  where anG ,  is the cubic spline 

interpolation of ( ) ( )
2ˆˆ ξ−ξφξ a

n ef  using the sample points { ( ) ( ) }.ˆˆ 2
ja

jnj ef λ−λφλ  

The Gaussian factor helps making the integrand decay faster. The end result is 
improved reconstructions, as shown in the next section. 

We should remark that there remains much to be done. The main direction for 
future work will be to choose other bases such as perhaps wavelet bases or spline 
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type of bases. The drawback of Haar bases is that their Fourier transforms decay 
slowly. Smoother bases will address this problem. However, we opted for Haar 
bases because their Fourier transforms can easily be computed, a property that most 
of the other type of bases do not have. It would be a challenge to find bases that 
combine both properties. 

Finally, we remark that the scheme is very fast and easy to implement. On a 
Pentium III PC we typically obtain our results in real time with N up to .3000=N  

4. Examples 

For all of examples in this section, 900 irregular Fourier samples ( )if ξˆ  are 

used, where iξ  are randomly chosen from [ ],450,450−  such that ,1+ξ<ξ ii  

.2.18.0 1 <ξ−ξ< + ii  The resolutions, i.e., the number of elements in our Haar 

bases, are set at .512=N  The value 0001.0=a  is used for the Gaussian mollifier 
in all examples. We experimented with different values, and the scheme works fine 
for all [ ].0001.0,00005.0∈a  Furthermore, it does not seem to be affected much by 

the resolution N. However, we have no theoretical explanation why it should be so. 

Example 1. ( ) [ ].1,0,4sin ∈π= xxxf  Figure 4.1 is the reconstruction of ( )xf  

from the cubic spline interpolation without the Gaussian mollifier. Figure 4.2 is the 
reconstruction of ( )xf  from the cubic spline interpolation with the Gaussian 

mollifier .
2axe−  As one can see, there is no discernable difference between the two 

reconstructions and the original signal. This is due to the fact that ( )xf  is continuous 

in .R  
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Figure 4.1 

 

Figure 4.2 

Example 2. Let ( ) [ ].1,0, ∈= xxxf  Note that this function has a jump at 

.1=x  Figure 4.3 is the reconstruction of ( )xf  from the cubic spline interpolation 

without the Gaussian mollifier. One can see the Gibbs oscillation, particularly at 
.0=x  Figure 4.4 is the reconstruction of ( )xf  from the cubic spline interpolation 

with the Gaussian mollifier .
2axe−  There is no discernable difference between the 

original function and the reconstruction. The Gibbs oscillation is completely 
eliminated. 
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Figure 4.3 

 

Figure 4.4 

Example 3. ( ) [ ].1,0,
4
3,4

1 ∈χ=
⎥⎦
⎤

⎢⎣
⎡ xxf  Figure 4.5 is the reconstruction of ( )xf  

from the Fourier expansion. 900 terms are used and 512 points are plotted. Figure 
4.6 is the reconstruction of ( )xf  from the cubic spline interpolation without a 

Gaussian mollifier. In both reconstructions there are pronounced Gibbs oscillations. 
Figure 4.7 is the reconstruction of ( )xf  from the cubic spline interpolation with a 

Gaussian mollifier. Gibbs oscillation is eliminated. The tradeoff are “smoother” 
discontinuities. Despite this tradeoff we view this reconstruction to be far superior to 
the previous two. 
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Figure 4.5 

 
Figure 4.6 

 
Figure 4.7 
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Example 4. This example ( )xf  is created by using step functions and .sin xπ  

Figure 4.8 is a comparison between the original graph and the reconstruction of 
( )xf  from the cubic spline interpolation without the Gaussian mollifier. It is not a 

bad reconstruction but Gibbs oscillation is clearly present. Figure 4.9 is a 
comparison between the original graph and the reconstruction of ( )xf  from the 

cubic spline interpolation with a Gaussian mollifier. It is clearly far superior, with 
Gibbs oscillation completely eliminated. 

 

Figure 4.8 

 
Figure 4.9 
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