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Abstract

In the original Black-Scholes model, the risky asset process is driven by
a standard Brownian motion and the risk is quantified by a constant
volatility parameter. The volatility that corresponds to actual market data
for option prices in Black-Scholes model is called the implied volatility.
Thus, if we may observe the market price of the option, then the implied
volatility, that is, the volatility implied by the market price, can be
determined by inverting the option formula.

A natural generalization is to model the constant volatility parameter by a
stochastic process. There is precedent for the work where the risky asset
process and the volatility-driving process are driven by standard Brownian
motions. A typical situation is as follows: The risky asset process X is
driven by a standard Brownian motion W and the volatility-driving

process Y is driven by another standard Brownian motion B sothatYisa
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fast mean-reverting Ornstein-Uhlenbeck process, under the assumption

that the standard Brownian motions W and B have constant correlation
p e (-1,1). For instance, Fouque et al. [7] consider such a situation, derive
an approximation for option prices by a singular perturbation expansion
and obtain the implied volatility by an approximating price. However,
Fouque et al. [6], Lee [15] and Sircar and Papanicolaou [26] show the
need for introducing also a slowly varying factor in the model for the
stochastic volatility. The fast mean-reversion approximation is particularly
suited for pricing long-dated options, whereas the slow mean-reversion
approximation is particularly suited for pricing short-dated options.

Here we consider a Black-Scholes model where the risky asset process X
is driven by a standard Brownian motion W and the volatility-driving
process Y is driven by a fractional Brownian motion (fBm) By with

arbitrary Hurst parameter H < (0,1) so that Y is a mean-reverting

fractional Ornstein-Uhlenbeck process (fOU process); we assume that W
and By are independent, that is, volatility shocks are uncorrelated with

asset-price shocks.

The rate of mean-reversion o of a mean-reverting fOU process Y is
characterized in terms of 1/e and & with small positive parameters ¢ and &

according to fast scale and slow one, respectively. In each case, we obtain
the corrected Black-Scholes price for European call option and hence
asymptotic expansion for the implied volatility. In the case of fast scale,
the corrected Black-Scholes price is derived by a singular perturbation
analysis of the pricing partial differential equation as ¢ — 0 and the
asymptotic expansion for the implied volatility is obtained by a regular
perturbation analysis as € — 0. On the other hand, in the case of slow
scale, both the corrected Black-Scholes price and the asymptotic
expansion for the implied volatility are derived by a regular perturbation
analysisas 6 — 0.

In order to obtain a pricing partial differential equation, we shall need to
apply fractional Ito formula to the differential of the total value of the
portfolio influenced by fBm By with arbitrary Hurst parameter H e

(0,1). For this purpose, we shall take the stochastic integral with respect
to fBm By for algebraically integrable integrands in the sense of Hu [11]

and hence obtain a concrete and computable expression for fractional Ito
formula.
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Our theorems correspond to an extension of the results in Fouque et al.
[6, 7], Lee [15] and Sircar and Papanicolaou [26] to a Black-Scholes
model with fOU process as volatility-driving process under the
uncorrelated condition such that volatility shocks and asset-price shocks
are independent.

1. Introduction

A one-dimensional fractional Brownian motion (fBm) with Hurst parameter
H e (0, 1) is a Gaussian stochastic process with By (0) = 0 such that

EBY (D] =0, E[By (0B (s)] = 3 {1t +[s P ~|t—s )

forall s, t € R. Here E[-] denotes the mathematical expectation with respect to the

probability law py for By (+).
The fBm By (-) is self-similar with self-similar index H, that is, for every
c > 0, the process {By (ct); t € R} is identical in distribution to {c" By (t); t € R}.

Since for H = 1/2, fBm By (-) is neither a Markov process, nor a semimartingale,

usual stochastic calculus cannot be applied to the field of the network traffic analysis
and mathematical finance. If H =1/2, then By(-) is one-dimensional standard

Brownian motion (sBm).

Let us consider the Black-Scholes (BS) model in a market with stochastic
volatility driven by fBm By (-) with T, the time of maturity, where the price of a

risk-less asset (a bank account or bond) A(t) at time t € [0, T] and the price of a
risky asset (a stock) X (t) attime t [0, T] are given by the following equations:
dA(t) = rA(t)dt, A(0)=1.

Here r represents the constant risk-less interest rate and hence A(t) = e,

X (t) = pX (t)dt + o(t) X () dW (), (1.1)
s(t) = f(Y (1), (1.2)
dY (t) = a(m — Y (t))dt + BdBy (t) (1.3)

with constants pw(>r), m>0, a>0 and B >0, where f is positive suitably

regular function. The factor (Y (t)) is called the volatility-driving process.
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Assumption 1.1. We assume the following:
(i) (W(t)) is a one-dimensional standard Brownian motion (sBm).

(ii) (By (1)) is a one-dimensional fractional Brownian motion (fBm) with Hurst

parameter H. Throughout this paper, let H be arbitrary in (0, 1) and fixed.
(iii) (W(t)) and (By (t)) are independent.
(iv) f:R — R iscontinuous.

The process (Y (t)) is a mean-reverting fractional Ornstein-Uhlenbeck process

(fOU process); o. measures the characteristic speed of mean-reversion of (Y (t)).

In our case, there is one risky asset X and two random sources W and By.

Namely, there are two sources of randomness instead of one as in the classical BS
model, and hence the market is incomplete and martingale measures are not unique
(see Hu [12] for the case, where 1/2 < H < 1).

Remark 1.2 (European call option). A European call option is a contract that
gives the right (but not the obligation) to buy at time T (the maturity) a stock at price
K (the strike or exercise price), which is fixed when the contract is signed. If
X(T) > K, then the option enables its owner to buy the asset at price K and then

sell it immediately at price X(T); the payoff, that is, the difference X(T)- K
between the two prices is realized gain. If X(T) < K, then the gain is zero. For
example, we can express the payoff F(w) at time T of a European call option in BS
model by

F(o) = h(X(T, ©)) with h(X) = (X = K)":= max{X - K, 0}.

Remark 1.3 (Black-Scholes price Cgg). In the classical BS model, the risk is
quantified by a constant volatility parameter c. Denote by P(t, X) the European
call price with time t [0, T] and the current stock price X = X(t). Then P(t, X)

is found as the solution of the BS equation, that is, the partial differential equation
(PDE) of the second order. We denote the price function P by Cgg; this will

be given by (6.1) in Section 6. We denote Cgs by Cgg(c), emphasizing the
dependence on . Further, we denote Cgg by Cgs(t, X; K, T; o), emphasizing the

dependence on K, T and c.
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Remark 1.4 (Fast scale volatility factor). When volatility shocks are
uncorrelated with stock-price shocks, Narita [17, 18] extends that of Fouque et al.
[7] to the case where the volatility-driving process can be driven by fBm By (t)

with arbitrary Hurst parameter H < (0, 1), rather than only sBm, and obtains the

corrected price of European call option of the BS model. In this case, the rate of
mean-reversion o, of the volatility-driving process (Y (t)) is fast as follows:

a=1¢ and B=0(/e"), 0<e<<1l

In the case of fast scale, let P® denote the corrected price of a European call

option. Then P? is expanded in power of e, such as
P® = Py + Vel +eP, + eePy + -+
for small €. Moreover,
Pe~ Py + P

for small €. Here P, is the solution of the classical BS equation with effective

constant volatility G, that is, Py = Cgs (), where G2

is the quadratic average of
volatility with respect to the invariant distribution of the volatility-driving process
(Y(t); ie, G2 =(f2). The first correction P is given by P, = V&P, with
P = R(t, X), and P; is the solution of PDE of the Black-Scholes type. These are
obtained by a singular perturbation expansion with respect to e.

We shall revisit the results above in Section 5 (Lemma 5.2 and Theorem 5.3) in
order to compute the implied volatility.

Remark 1.5 (Implied volatility). The implied volatility is the volatility
parameter implied by the market price which can be determined by inverting the
option formula. More precisely, given a time-t asset price X and observed option
price, Cqps, the implied volatility is defined as the | that solves

CBS(L X, K, T; I):CODS'

where Cpgg is the Black-Scholes price. We refer to Lee [14, 15] and the references

therein for the implied volatility.
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Remark 1.6 (Slow scale volatility factor). If the rate of mean-reversion is slow,
then the volatility-driving process (Y (t)) can be described by

dY (t) = da(m — Y (t))dt + 3" BdBy (t) (1.4)

depending on a small parameter & > 0. The motivation for the specification (1.4) is
that Y (t) = Y (5t), where

dY (t) = a(m =Y (t))dt + BdBy (t)

for fBm By (t) with Hurst parameter H e (0,1). We notice that By (5t) is

identical in law with 5" §H (t). Thus, Y can be viewed as Y modified to run on a
time scale slower by a factor of 5. We also notice that (1.4) is formally obtained by

(1.3) with o and B replaced by 8o and 6H[3, respectively.

Fouque et al. [7] develop a theory of pricing, hedging and implied volatility
under rapidly mean-reverting stochastic volatility in sBm environment. Following
Sircar and Papanicolaou [26] (S-P, for short), Lee [15, Section 5] assumes that
volatility varies slowly in time in sBm environment, where Y (t) is described by

(1.4) with H =1/2, reviews S-P’s calculation of an asymptotic expansion for

implied volatility and hence extends it to the next order.

Remark 1.7 (Slow variation versus rapid variation). A given volatility process
can be said to vary rapidly or slowly, depending on the time horizon in the
application at hand. Lee [15, Section 5.5] comments on the differences, and suggests
how these two lines of development can be reconciled as follows: If the goal is to
price a sufficiently long-dated option, then the volatility process will appear to vary
rapidly; it will have many fluctuations over the long lifetime of the option. If,
however, the goal is to price a sufficiently short-dated option, then that same
volatility process will not have much time to vary, and thus it will appear to vary
slowly, relative to the option’s lifetime. It follows that the fast-mean-reversion model
in Fouque et al. [7] is best suited to long-dated options, and the slow variation model
to short-dated options.

(i) The first purpose of this paper is to obtain the asymptotics for the implied
volatility when the volatility-driving process (Y (t)) is fast-mean-reverting and

described by (1.3) with arbitrary Hurst parameter H < (0,1). By a regular
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perturbation expansion, we shall obtain as follows: Up to an error of order O(e),
where ¢ =1/a, the implied volatility I is expanded around effective constant

volatility & such that

| =G ++ely +0(e).
Here Vel = -V, /G with a small coefficient V, (Theorem 6.1).

(if) The second purpose of this paper is to obtain the corrected price of
European call option of the BS model when the volatility-driving process (Y (t))
is slow-mean-reverting and described by (1.4) with arbitrary Hurst parameter
H e (0, 1). By a regular perturbation expansion with respect to §, we shall obtain

the corrected price P9 as follows: For & small enough,
P® ~ By + VoP, + OP,.

Here Py(t, X, y) is the Black-Scholes price of the claim at the volatility level
lg = f(y), i.e,, Py =Cpgs(lg), under the assumption that f(y)> 0. The first
correction Pi(t, X, y) and the second correction P,(t, X, y) are the solutions of

PDEs of the Black-Scholes type. These are given in terms of f(y), y(y),

oCpgs o°C
. (Ip) and

risk, the Vega and the DVegaDvol in the Greeks, in that order (Theorem 7.2).

p 25-(1p), ie., the volatility-driving function, the market price of
(e}

(iii) The final purpose of this paper is to obtain the asymptotics for the implied
volatility when the volatility-driving process (Y (t)) is slow-mean-reverting and

described by (1.4) with arbitrary Hurst parameter H e (0,1). By a regular
perturbation expansion with respect to 8, we shall obtain the implied volatility 19 as
follows: For 6 small enough,
I ~ lg +/3ly +8ly.
1

=-H
Here 1g = f(y)>0, I3 =—T -t)a? By(y) f'(y) with y(y) the market price of

risk. Further, 1, is given in terms of f(y), y(y), the Vega ag%(lo) and the

2
DVegaDVol aac—gs(lo) in the Greeks (Theorem 8.1).
(o}
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The model of fast mean-reverting stochastic volatility under sBm environment is
investigated by many authors; we refer to Fouque et al. [5-8] and the references
therein. A typical assumption in their works is that volatility shocks are correlated
with asset-price shocks. Namely, instead of (1.3), the volatility-driving process
(Y (1)) is given by the following equation:

dY (t) = a(m — Y (t))dt + BdB(t),

B(t) = pW(t) + v1- p* B(1),
where (W(t)) and (B(t)) are independent sBms, and p is the correlation between
price and volatility shocks with p e (-1, 1). We notice that sBms (W (t)) and (B(t))

are uncorrelated but sBms (W (t)) and (B(t)) are correlated; d{w, é)(t) = pdt. In

this case, Fouque et al. [7] obtain the corrected price of the European call option and
hence show the asymptotics of the implied volatility as given by an affine function
form as follows:

strike price
asset price
time to maturity

+b+0/w).

Here the parameters a and b are estimated as the slope and intercept of the linefit.
That is, if Cgp is the stochastic volatility call option price with payoff function

h(X) = (X — K)", then | defined by

CBS(I) = Cops>

where Cgg is the Black-Scholes formula, is given by

K
log| —
IZa(T(——Xt)) +b+O0la).

Moreover, Fouque et al. [6] generalize the one presented in Fouque et al. [5]
where only the fast scale factor is considered, and then introduce the multiscale
stochastic volatility model with fast and slow scale volatility factors. Fouque et al.
[6] combine a singular perturbation expansion with respect to the fast scale with a
regular perturbation with respect to the slow scale, obtain a leading order term which
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is the Black-Scholes price with an effective constant volatility, and hence show a
simple and accurate parametrization of the implied volatility surface. Their model is
as follows:

dX (t) = pX(t)dt + F(Y(t), Z(t) X (t)dw O (1), (1.5)
dv (t) = %(m _Y(t)dt + % dw Do), (1.6)
dZ(t) = 8c(Z(t))dt + V5g(Z(t))dw P t), (1.7)

depending on small parameters € and 8; 0 < ¢, & <<1. Here m and v are positive
constants which relate to the invariant distribution of (Y(t)), such as Y(t)~

N(m, v2) in the long-run distribution. The function f(y, z) is a smooth positive
function that is bounded and bounded away from zero. The volatility process o(t) is

driven by two diffusion processes Y (t) and Z(t):
o(t) = f(Y(t), (1))

The coefficients ¢(z) and g(z) are smooth and at most linearly growing at infinity.
In (1.5), (1.6) and (1.7), wW© and W@ are standard Brownian motions such that
they have constant correlation p; € (-1, 1), i.e., d(\N(O), W(l))(t) = pydt, and W
is another Brownian motion. Here a general correlation structure between the three
standard Brownian motions W(O), w® and w® s given as follows:

wOwm) (1 0 0

W) |=|pr V1-pf 0 W(t), (1.8)

2

w® | p, P12 V1-p3 - ph

where W(t) is a standard three-dimensional Brownian motion, and where the
constant coefficients p;, p, and py, satisfy |p; | <1 and p3 + pi < 1. Observe
that with this parametrization, the covariation between W(l)(t) and W(Z)(t) is given
by tpyp, where p; = pips + 512\/1——p12 . However, only the two parameters p;

and p, will play an explicit role in the correction derived from the asymptotic
analysis in Fouque et al. [6].
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Remark 1.8 (Multiscale and perturbation). Note that the slow factor in the
volatility model corresponds to a small perturbation and the resulting regular
perturbation scenario has been considered in many different settings. The fast factor
on the other hand leads to a singular perturbation situation and gives rise to a
diffusion homogenization problem that is not so widely applied. The model
described by (1.5), (1.6) and (1.7) is the correction to the model given in Fouque et
al. [7], where p, = p;, = 0. Fouque et al. [6] obtain the asymptotics of the price

p&% of a European call option with strike K, maturity T and payoff h, which is
produced by the model described by (1.5), (1.6) and (1.7), and hence find an
expansion for the corresponding implied volatility such that

L=l + 18+ 19 +--.

Here 1o = 5(z) and 52(z) = (fz(-, z)), i.e., the quadratic average of volatility with
respect to the invariant distribution of the volatility-driving process (Y (t)), which
depends on the slow factor z, and 1{ (respectively, If) is proportional to e
(respectively, 8).

In (1.1)-(1.4), we assume that sBm (W (t)) and fBm (B (t)) are independent;
each of them governs risky asset price (X(t)) and mean-reverting fOU process
(Y(t)), respectively.

Our model described by (1.1), (1.2) and (1.3) (resp. (1.4)) corresponds to the
multiscale model described by (1.5), (1.6) and (1.7) with f(Y(t), Z(t)) replaced by
f(Y(t)), where Y(t) stands for the fast (resp. slow) mean-reverting fOU process
driven by fBm By (t) with arbitrary Hurst parameter H e (0, 1).

In particular, our result in the slow scale model described by (1.1), (1.2) and

(1.4) extends that in Lee [15, Section 5] to a slowly varying volatility model driven
by fBm By (t) with arbitrary Hurst parameter H < (0, 1).

In order to proceed to asymptotic analysis for corrected price and implied
volatility, we shall prepare for stochastic integral (Section 2), Ito formula and fOU
process (Section 3), pricing PDE (Section 4) and fast scale (Section 5).
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2. Stochastic Integral

Here we begin to introduce stochastic integration theory. For given H e (1/2, 1),
define ¢ : R xR — R, by

o(s, t) = H2H —1)[s -t ?"72, s teR.

Let f : R > R be Borel measurable such that
112 J J‘ £(5) f(£)d(s, t)dsdt < oo.
RJIR

Then the stochastic integral with respect to fBm By is well defined to be a Gaussian
random variable. It follows from Gripenberg and Norros [9] and Nualart [23] that for
any deterministic integrand f e L2(R, R) N LX(R, R),

EU: (t)dBy, (t)} _ 0,

E[UOOO f(t)dBy (t)ﬂ - j ) J‘ OGO

In this paper, we follow the stochastic integration theory with respect to fBm
By by Hu [11, Chapters 6-7]; Hu [11] extends the integral above to the general

integrands under arbitrary Hurst parameter H < (0, 1).

Remark 2.1 (Pathwise integral). There are several definitions of stochastic
integrals for general integrands with respect to fBm By. One of them is the

fractional pathwise integral which is taken by the limit of the usual Riemann sum as
defined using pointwise products. However, this integral does not have expectation
zero. Further, Rogers [25] shows that arbitrage is possible when the risky asset has a
log-normal price driven by a fBm if stochastic integrals are defined using pointwise
product.

Remark 2.2 (Wick-Ito integral). In the white noise approach, the Wick product
is used instead of the ordinary product in the Riemann sums in order to define the
stochastic integrals. The Wick product for F and G is written by F 0G; here

commutative law, associative law and distributive law hold. If at least one of F and
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G is deterministic, e.g., F = ag € R, then the Wick product coincides with the

ordinary product in the deterministic case. Such an integral is called Wick-Ito
integral or fractional Ito-integral. By the method of the Wick-Ito integral, Duncan et
al. [3] and Hu and @ksendal [13] obtain no-arbitrage property and fractional Black-
Scholes formula for pricing of European call option in financial market where the
risky asset is driven by fBm By with Hurst parameter H e (1/2, 1). Elliott and Van
Der Hoek [4] extend the preceding results to the case of arbitrary Hurst parameter
H e (0, 1). We can refer to Holden et al. [10] for Wick calculus.

In BS model, a risky asset is often formulated by a geometric Brownian motion
(gBm) which is a solution of linear stochastic differential equation (SDE). For an
application of Wick calculus to option pricing, for instance, we can refer to Necula
[22] and Narita [19]; here risky asset is formulated by a fractional gBm which is a
solution of SDE driven by fBm By with Hurst parameter H < (1/2, 1). For the
details of an application of the Wick calculus to SDEs, we can also refer to Biagini
etal. [1, 2], Holden et al. [10], Narita [20, 21] and the references therein.

Remark 2.3 (Fractional calculus). Another definition of stochastic integrals
with respect to fBm By for general integrands is given by fractional calculus for
arbitrary Hurst parameter H < (0, 1). In this case, the stochastic integration theory

is based on both the left- and right-sided Riemann-Liouville fractional integral and
the left- and right-sided Riemann-Liouville fractional derivative. A risky asset in BS
model can be formulated by a fractional gBm which is a solution of SDE driven by
fBm By under fractional calculus. We can refer to Mishura [16], Nualart [23] and

the references therein for the existence of pathwise solutions and the uniqueness in
law for SDEs driven by fBm By .

In general, quadratic variations of stochastic integrals with respect to fBm By
for general integrands have abstract and complicated expression, and hence there is
difficulty in application of Ito formula.

Remark 2.4 (Stochastic integral in the sense of Hu [11]). In this paper, we take
the stochastic integral in the sense of Hu [11, Chapters 6-7] (Hu integral, for short).
This is the stochastic integral with respect to By (H < (0, 1)) for algebraically

integrable integrands; the integration theory is developed by using Wiener chaos
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expansion and an idea of creation operator from quantum field theory. If 1/2 <
H <1, then the Hu integral coincides with the Wick-Ito integral in the sense of
Duncan et al. [3]. If 0 < H <1, then the Hu integral for deterministic integrands

coincides with the stochastic integral of variation in the sense of Hu [11, Definition
6.11] and Nualart-Pardoux [24].

The Hu integral with respect to fBm By (H < (0, 1)) has expectation zero and

can be concretely evaluated in the case of deterministic integrands. This enables us
to apply Ito formula to linear SDE of the form

dX (t) = a(t) X (t)dt + b(t) X (t)dBy (t) (H e (0, 1))

with deterministic coefficients a(t) and b(t). Therefore, we can obtain an explicit

formula for the solution X (t) of the SDE above and hence derive a pricing PDE.

By reason of above mentioned background, in this paper, we adopt the Hu-
integral, derive an applicable Ito formula, compute financial derivatives and hence
obtain the corrected Black-Scholes price.

For consideration of implied volatility, we shall need understanding of
derivation of the corrected price formula for European call option in a market with
fOU process (Y (t)) as the fast- and slow-mean-reverting volatility factor. Hence, we

shall make preparations for fOU process and asymptotics for option pricing in the
following Sections 3 and 4, respectively. We can refer to Fouque et al. [7, Chapters
2 and 5] and Narita [17, Sections 8 and 9] for the details of option pricing in a
market driven by sBm and fBm, respectively.

3. Ito Formula and fOU Process

Let ®y = Oy([0, T]) be the Hilbert space as defined in Hu [11, Chapter 5];
®p is the space of integrands associated with the induced transformation of
representation for fBm By (t). Let f(s) be given over [0, T] Let 0 <s<t<T.
Then, considering the functions fi(s) restricted to [0, t], that is, fi(s)=
f(8)x[0,4(5), we shall use ©y ; to denote © ([0, t]), where the norm | f, "®H,t

is well defined. According to Hu [11, pp. 102-103], we summarize expression for
I fi llg,, . as follows:
H,t
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(i) Let H >1/2. Then

tpt
2 2H-2
(I ||@H’t =H(2H —1)_[0I0|V— ul f(u) f (v)dudv.
(ii) Let 0 < H < 1/2 and let f be continuously differentiable. Then

t t
I 1B, , = Hf(O)IOVZH_lf(v)dv+ Hf(t)J‘O|t—v|2H’1f(v)dv
tet 2H-1
+ HI J [v—ul"" sign(v—u)f'(u) f(v)dudv.
0Jo

For, example, if f =1, then | f; ||, ~=t", and hence %” fi lloy, = HE™"

Hu [11, p. 103] shows Ito formula for general deterministic f and Hurst
parameter H < (0, 1) as follows:

Theorem 3.1 (Ito formula). Let 0 < H <1 and let f € O 1 N L2([0, T]) be
a deterministic function. Denote fi(s) = f(s),[o 11(s), 0 <s <t <T. Suppose that

fie @y ¢ and | f; ”®H,t is continuously differentiable as a function of t e [0, T].

Denote

t t
X(t) = X(0) + jo g(s)ds + jo f(s)dBy(s), 0<t<T, 3.1)

T
where X(0) is a constant, g is deterministic with .[o | g(s)|ds < oo. Let F be an
entire function of order less than 2. Namely,

M¢(r):= sup | f(z)| < ceK forallr,

|z|=r

where K is a positive number less than 2 and C is a constant. Then

F(t, X (1) = F(O, x(o))+_[; LS X(s))ds+I; (s, X(s)dX(5)

1t o%F d 2
+§Io ax_z(s, X(S))[E" fs ||®H’st, 0<t<T. (3.2)

Here the stochastic integral in (3.2) is in the sense of the Hu integral.
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Equation (3.2) is rewritten by the stochastic differentials as follows:

dF(t, X (1)) = %—f(t, X (1)) dt +%—'):((t, X () dX (t)

10°F dy e 2

3R O] k1B, Ja
Let a(t) and b(t) be bounded measurable functions of te [0, T]. Let
(By(t),0<t<T) be a fractional Brownian motion with Hurst parameter
H e (0,1). Then we first consider the fractional gBm governed by the following

linear SDE:

dX(t) = a(t) X (t)dt + b(t) X (t)dBy (t), 0<t<T,

X(0)=xeR. (3.3)

Let H > 1/2. Then, Biagini et al. [1], Hu and @ksendal [13] and Narita [20, 21]

obtain the existence and uniqueness of the solution of (3.3) when the stochastic
integral is in the sense of the Wick-Ito integral. We notice that if H > 1/2, then the

Wick-1to integral coincides with the Hu integral.
The following theorem is due to Hu [11, Chapter 14].

Theorem 3.2 (Expression for solution of linear SDE). Let 0 < H < 1. Let a(t)
and b(t) be continuous functions of t € [0, T] If 0 < H <1/2, then we assume
that (b(t), 0 <t <T) is continuously differentiable. Then equation (3.3) has a

unique solution such that
X(t) = xex t d tb dB L 2 3.4
= xexpq | a(s)ds + | b(s)dBy ()~ 3lbu [y, 1 (3.4)

where by(u) = b(u),[p (u), 0<u<t<T.

We next consider the solution of SDE (1.3) with the initial state Y(0)=yy e R.
Define x(t) by

t t
X(t) = Jo e®*(am)ds + J.O e*BdBy (s) + Yo-
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at

Apply Theorem 3.1 to the process x(t) and the function F(t, x) = e"*x. Then, we

obtain that the process Y (t) := e"*'x(t) is the pathwise unique solution of (1.3) with

the following lemma (Narita [17, Lemmas 8.1 and 8.8]):

Lemma 3.3 (Property of fractional OU process). Let 0 < H < 1. Let Y(t) be
the fractional OU process given by SDE (1.3) with the initial state Y (0) = y; € R.

Then Y (t) is the pathwise unique solution of (1.3) with the following form:
t
Y(t)=m+e *(yy—m)+ Be’“tj e®dBy, (s). (3.5)
0

Further, Y (t) is a Gaussian stochastic process and has the long-run distribution

which is the normal distribution N(m, VzH) with mean m and variance vZH such

that the density is given by

_ 1 (y - m)zj
n(y) = exp{ , (3.6)
\/2nv|2_| 2V|2-|
where
Vv = BZH(%)ZH T(2H), 3.7)

and () is the Gamma function, i.e., I'(x) = jgo e %X e,

4. Pricing PDE

Under Assumption 1.1, we consider the BS model described by (1.1), (1.2) and
(1.3). In this case, there are one risky asset X and two random sources W and By .

Namely, there are two sources of randomness instead of one as in the classical BS
model. When constructing a portfolio, the derivatives cannot be perfectly hedged
with just the underlying asset. Instead, we also need a benchmark derivative called
G. A risk-less portfolio IT is formed, containing the quantity —Ay of the underlying

asset X, the quantity —Ag of another traded asset G (benchmark option) and the

priced derivative, whose value we denote by P(t, X, y). The total value of the
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portfolio is
IMM=P-AyX - AgG. (4.1)

The differential of the portfolio value is needed to construct a risk-less and no-
arbitrage, satisfying

dIT = dP — Ay dX — AgdG. 4.2)

Then, the classical Ito formula and the fractional one are applied to dP and dG,
respectively, to obtain the stochastic differential dIT. Collecting the dX and dY, we
get

oP oG oP oG
dIl = [W_AG W—Ax}dx +|:W_AG W:|dY + LPdt —AGLGdt

Here L is the operator defined by

—g l 2y 2 o° 1 —2at i 2 i

where

9t(s) = 9(s)xpo.)(8), 9(s)=e*B, 0<s<t<T.

We can refer to Remark 4.2 for concrete expression for (4.3).

We want this portfolio to be risk-less by eliminating the coefficients in front of
dX and dY. This yields a linear equation with respect to Ag and Ay, which is

solved as follows:

-(FE)"

Thus, if the portfolio is well-balanced according to (4.4) and (4.5), then the risk is
eliminated. Moreover, we want TI(t) to be risk-less with instantaneous interest rate

r, and hence the avoidance of arbitrage is the following condition:

dIT = rIIdt = r(P — Ax X — AgG)dt. (4.6)
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In (4.6), if the risk is eliminated, then

dIT = LPdt — AgLGdt.

Substitute expressions (4.4) and (4.5) for Ag and Ay into equation (4.6). Further,

collect all P terms on the left-hand side and all G terms on the right-hand side. Then
we get the following equation:

~ (P! -~ (ae)‘l

LP)| = | =(LG)|—=] . 4.7

(5] - oS @7)
where L = L + r(x & - ) with the operator L as defined by (4.3), i.e.,

0 12 @ 1 ow[d 2 ]0% o
L_at+2f(y)Xax2+2e |:dt||gt"®H,t:|ay2+rxax :

In (4.7), the left-hand side is a function of P only and the right-hand side is a
function of G only, and hence both sides of this equation are equal to some function
depending only on t, X and y. Thus, we write both sides as —k(t, X, y), where k is

the real-world drift term less the market price of risk. This results in the following
PDE:

~ -1
(LP)(%) - K(t, X, ). 4.8)

Hereafter, without loss of generality, the arbitrary function k will be given as
k(t, X, y) = a(m = y) - Bo(t, X, y; H)

with a function ¢ characterized by the market price of volatility risk and the Hurst
parameter H e (0, 1) (see (4.13) and (4.14)).

Equation (4.8) yields the following PDE (Narita [17, Lemma 9.1]):

Lemma 4.1 (Pricing PDE). The equation governing P can be written as

P 10%P ., 202 10%°P suf[d, 2 oP
E'Fiax—zf(y) X +§?e |:E" gt ||®H,t:| rP+rXW

- K(t, X, y)% (4.9)
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with a suitable function k of variables t, X and y. Here g¢(u) = g(u)x[o,¢j(u),
gu)y=e*B, 0<u<t<T, and || g; lo,, . denotes the norm of the function g

in a Hilbert space ®y ; as defined by Hu [11, Chapter 5]. The terminal condition
for P is the contract function h(X), i.e., P(T, X, y)=h(X(T)); for example,

h(X(T)) = (X(T) - K)* with T and K, the time of maturity and the strike price,

respectively.

Remark 4.2. If g¢(u) = g(u)x[o,y(u) and g(u) = e®p for 0<u<t<T,

then the explicit form of

_oat] d 2
o2 Lol |

is given by Narita [17, Lemma 8.7] as follows:

(i) If H > 1/2, then

~2at| d 2 20y —aty2H-1 , (1
e a[ﬁ" o "®H,t:|:2B H{e oty +(§)

(ii) If 0 < H < 1/2, then

2H-1

B(oct)}. (4.10)

~20t| d 2 202H-1 -
o2 g, | = HBAEH e

1
a

+ HaBZtl(%JZH {tB(at) - (%)C(at)}

+ Haﬁz(%jm B(at). (4.11)

+2H 2B2t‘1( )ZH B(at)

Here

X X
B(x) = I 2?29 7%e"2d;, c(x) = I z22He 2dz. (4.12)
0 0
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In Lemma 4.1, the function k cannot be determined by arbitrage theory alone.
However, it is completely determined in terms of the traded benchmark asset G. We
can say that the market knows the function k. In our model described by (1.1), (1.2)
and (1.3), it is convenient to assume that

1
=—H

kt, X, y)=oa(m-y)-a? Byt X, ), (4.13)

appealing to the Hurst parameter H < (0, 1). We notice that (4.13) is equal to the

function as given in Fouque et al. [7], if H = 1/2 is formally substituted into (4.13).

The function y(t, X, y) is called the market price of risk. Further, for simplicity, we

assume that the function y depends only on the variable y. Consequently, we take the
following assumption:

Assumption 4.3. Let 0 < H < 1. Then the function k has the form
N
k(t, X, y)=a(m-y)-a? Py(y). (4.14)
5. Fast Scale
We shall introduce the following assumption on the scaling to model fast mean-
reversion in market volatility.
Assumption 5.1. Let 0 < H < 1. Then we assume the following:

(i) The rate of mean-reversion a or its inverse, the typical correlation time of
(Y (), is characterized by a small parameter ¢ such that

1
£==.

(i) Let vﬁ be given by (3.7), which controls the long-run size of the volatility

fluctuations. Then we assume this quantity remains fixed as we consider smaller and
smaller values of ¢ such that

VH

= ) = (o

Then we can obtain the pricing in terms of ¢ as follows (Narita [17, Lemma 10.3]):
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Lemma 5.2 (Pricing PDE in terms of ¢). Let 0 <H <1. Then, under
Assumptions 1.1, 4.3 and 5.1, for € small enough, the pricing PDE (4.9) of Lemma
4.1 can be written in terms of ¢ as follows:

opP* 1aP vk O%P° Pt g
- f(y)2X e o7 X S =P

for t <T with the terminal condition P*(T, X, y)=h(X), where h(X) stands
for the nonnegative payoff function.

Finally, we can obtain a corrected Black-Scholes price formula as given by
Theorem 5.3; the fractional European call price can be expanded around the classical
European call price and the explicit expression for the quantity in the corrected term
can be given. This results from singular perturbation method.

In Section 6, we shall need to apply Theorem 5.3 in order to derive implied
volatility in the case of fast scale. Therefore, in the following, we shall introduce the
outline of the asymptotic analysis for singularly perturbed equation (5.1).

We write PDE (5.1) with the notation as follows:

@ Lo+ %gl . .czj P =, (5.2)
where we define
Lo =4 ;y—zz +(m- y)%, (5.3)
£ = —[ﬁj )5 (5.4)
Lo = Las(f(y)) = +—f( )2x2%+r(x§—1j (5.5)

Here Lgs (o) is the classical Black-Scholes operator with the deterministic volatility
parameter o, that is,

1 2 2 0 0 B
Lgs(o) = +2 X a><2+r(x X 1). (5.6)
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The method is to expand the solution P# in power of Ve,
P® = By + Vel + ¢P, + evePy + - (5.7)

for small ¢, where Py, P, ... are functions of (t, X, y) to be determined by the
terminal conditions

Po(T, X, y)=h(X), R(T, X,y)=0 fori=>1

In the following, we let (-) denote the averaging with respect to the invariant

distribution N(m, vzH) of the fractional OU process (Y (t)) (see Lemma 3.3 and

(3.6)):

o 0 2
(9) = J_w g(y)n(y)dy = \/Zl—zj g(y)exp(—(yz_—zm)de- (5.8)
TCVH —® v

H

Notice that this averaged quantity does not depend on €. Further, we let G denote
the effective constant volatility defined by

5% =(f%) = Iw f(y)®n(y)dy, (5.9)

—00

which is the average with respect to the invariant distribution N(m, VzH) of the
process (Y (t)).
In the following, let y(y) be the solution of the Poisson equation:
Loy = f(y)* -5~ (5.10)

Then, y(y) will play an essential role in derivation of the first correction for the

Black-Scholes price.
According to Fouque et al. [7], we denote the first correction by
P, = VeP. (5.11)
Then, by the method of singular perturbation, we can obtain that Py, and P, are

constants with respect to the variable vy, i.e., Py = Py(t, X) and B = R(t, X).

Further, we can obtain that B, and P, satisfy the following equations:
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Lgs(G)Py =0 (5.12)

with terminal condition Py(T, X) = h(X), and
Lgs(B)P = H(t, X) (5.13)

with terminal condition I51(T, X) = 0. Here

2
H(t, X) = VX2 —prg , (5.14)

where V, is a small coefficient, given in terms of o = 1/¢ by

11 v n.
V, = Eg(JHF(HZH)wa), (5.15)

y(y) is the market price of risk appearing in Assumption 4.3 and y(y) is the
solution of (5.10).
Moreover, the solution of equation (5.13) is explicitly given by
R(t, X) =T —t)H(t, X). (5.16)

Hence we obtain the following theorem (Narita [17, Theorem 11.1, Theorem
12.1]):

Theorem 5.3. Let 0 < H < 1. Suppose Assumptions 1.1, 4.3 and 5.1. Then, for
¢ small enough, the corrected Black-Scholes price is given by

_ 2
P~Py+P =R —(T —t)(VZXZZX—PS], (5.17)

where Py is the solution of the classical BS equation with effective constant volatility
G as given by (5.9), i.e., Lgs(c)Py = 0 with terminal condition Py(T, X) = h(X)
for a payoff function h(X). Further, V, is a small coefficient as given by (5.15) in

terms of o = 1/e. The first correction I51(t, X)(= VePy(t, X)) is a solution of
Lgs(@)P = H(t, X),

and the terminal condition F~>1(T, X) = 0, where the source term H(t, x) is defined
by (5.14). Moreover, in equation (5.15), we find that
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(') = [%Jjw v(y)U_yw(f(z)2 —62)n<z>dzjdy _ L (a(f2 -5,

VH —®© VH

where G(y) is the primitive function of y(y), thatis, G(y) = Iy(y)dy. Hence V,

has the explicit expression of the following form:

1 1 1 2 =2
Vy = =" | ——=|(G(f° - . 5.18
? JEZVH[ Hr(2H)j< ( ) (519
6. Implied Volatility in the Case of Fast Scale

We will show how our corrected price as given by (5.17), and in particular, the
parameter V, as given by (5.15) or (5.18), is easily related to observed prices or

implied volatilities.

We recall the classical BS model. Namely, the prices of the risk-less asset A(t)
and the risky asset X (t) attime t e [0, T] with the time of maturity T, are given as
follows:

dA(t) = rA(t)dt, A(0) =1,
where r represents the constant risk-less interest rate.

dX(t) = pX(t)dt + oX (t)dW(t),

where W (t) is a standard Brownian motion, and p € R, o > 0 are deterministic

constants. The coefficient p is a constant appreciation rate of the stock price and the
coefficient o, referred to as the (stock price) volatility, is interpreted as a measure of
uncertainty about future stock price movement.

In a standard European call option with strike price K and the time of maturity
T, the payoff function is given by

h(X) = max{X - K, 0} := (X - K)*.

The payoff at maturity date T is h(X(T)). If X(T) < K, then the option is
worthless, and if X(T) > K, then the holder of the call can buy the underlying asset
for K (dollars) and sell it at market price, making a profit of X(T) - K.
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The price C; at time t € [0, T] of a European call option with strike price K

and maturity date T in the classical BS market is given by the following formula:
Ci = Cas(t, X(1)),
where

Cgs : [0, TIxR, » R
is the Black-Scholes call option pricing formula
Cas(t, X) = XN(d;) - Ke "T-IN(d,) (6.1)

with

Iog(%) + (r + %GZJ(T -t)

o T —t | ©2
X 1 o
Iog(?j +(r ~50 j(T -t)
d2 = G,\/T . (= dl —ovT —t), (63)

and N(-) isthe cumulative probability of the standard normal distribution, i.e.,

z 2
N(z) = % j_w exp(—yTj dy.

Using the relations

;L
N'(d) = Ee 2
e_% i __1( Xer(T_t)]
K )
we can easily derive the following ‘Greeks’:
Delta Lo _ N(dy) > 0, (6.4)

oX
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df
2 7
Gamma 2.CBS _ ¢ > 0, (6.5)
oX 2 Xoy2n(T —t)
_df
2 JT
Vega JCBs _Xe *VT-t 6.6)
oo N2m

Occasionally, it will be convenient to explicitly account for the dependence of
the option’s price on some or all of the parameters K, T, r and o. For example, to
stress the dependence of the BS price on the volatility o, we write Cgg(c). We will

also denote Cgs by Cgs(t, X; K, T; ) to emphasize the dependence on K, T and
c. Only the volatility o, the standard deviation of the returns scaled by the square
root of the time increment, need to be estimated from data, assuming that the interest
rate r is known.

Given an observed European call price Cy,s for a contract with strike price K
and time of maturity T, the implied volatility | is defined to be the volatility
parameter that must go into the BS formula (6.1) to match the observed price:

CBs(t, X, K, T; I):CObS! (67)

where Cgg is the BS price.

Then a unique nonnegative implied volatility | >0 can be found given
Cops > Cgs(t, X; K, T;0). In fact, the BS call pricing formula Cgg(o)=
Cgs(t, X; K, T; o) is a continuous — indeed, differentiable — increasing function of

c by (6.6) with boundaries

lim Cgs () =
o—0

{X(t)— Ke "™T9 if X(t) > Ke "9,
if X(t) < Ke (T,

lim CBS(G) = X(t)

Hence the inverse function exists.

When studying a real market price, the implied volatility is not constant as
assumed in the classical BS model, but varies. The result, when plotting the implied
volatility against K or the ratio of the strike price to the current price, is called the
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smile curve or volatility smile. It is interesting to investigate if there are any smile
effects in reality.

In the following, the implied volatility for a European call option will be
calculated in terms of V, as given by (5.15) or (5.18). The implied volatility is

computed by solving the relation between theoretical and observed prices given in
(6.7) with respect to the implied volatility I. Theorem 5.3 shows that the
approximating price is given by

P0+§|_.

Here Py = Cgg, the BS formula for a call option is given by (6.1), d; and d, are

given by (6.2) and (6.3), respectively; in this case, the constant volatility o is
replaced by the effective volatility G as given by (5.9). Namely, d; = d;(c) and

d, = d,(%), depending on the deterministic volatility parameter &, and hence
Lgs(G)Py = 0 with By = Cgs(3).
Further, P, = V&P, & =1/a, and P; is the solution of
Lgs(G)R = H(t, X)

with the source function H(t, X) as given by (5.14). In order to apply the

approximate solution

~ 2P,
PrPy+P =P —(T-t) VX220
ox 2

we need the second derivative of P, with respect to X, i.e., the Gamma (6.5). Then
equation (5.14) gives
*d12

2 wE
H(t, X) = Vyx 22 Pg _|_Xe
ox 5.2n(T —t)

2.

This implies that expression (5.16) for I51(T, X)) is written as

—df
R(t, X) = (T —t)H(t, x) = 5322_ (-VodT —1). (6.8)
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Taking the corrected pricing formula as observed price,
Cops = Py + Pi(t, X) (6.9)
in equation (6.7), the relation that determines the implied volatility is thus
Cas(t, X: K, T: 1) = Py + By(t, X). (6.10)
Equation (6.10) can be solved by expanding | as
| =G+ el +ely +-, (6.11)

and inserting this in the left-hand side of (6.10) (see Appendix):
Ces(t, X; K, T;6)+\/E|18g%(t, X; K, T;G)+-
= P0+I51(t, X)+ - (6.12)
Here we recall (5.11), that is,
R(t, X) = VeR(t, X), &=1/a.

Then (6.12) leads to

-1
Vel = R, X)FCBS (t, X, K, T; 6)} : (6.13)

0G

In other words, up to an error of order O(g), where ¢ = 1/a, the implied volatility

is given by
I =5+ el +O(e),
that is,
~ ocC -1
I =5+ Rt x)[ 625 (t, X, K, T; 6)] +0(l/a). (6.14)

Inserting expressions (6.6) for Vega at ¢ = ¢ and (6.8) for F~>1(t, X) into equation

(6.14), we have
-1

—df df
_ | Xe 2 Xe 2T -t
|l =5+ — (=VoT —t) | x 7 +0(Ya)
= E—V:2+O(]/(x).

(¢
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Therefore, we obtain the following theorem:

Theorem 6.1. Suppose Assumptions 1.1, 4.3 and 5.1. Then the implied volatility
I is given by

<

Z 1 O(/w). (6.15)

l=c-=
o

Remark 6.2. The source term H(t, X), that is, V2X2(62P0/6X2) depends on
the market price of volatility risk y; see (5.14), (5.15) and (5.18). Adding equations
(5.12) for P, and (5.13) for F~>1 we obtain

_ = %R
Lps(c)(Py + H)ZVZXZKS (6.16)

with the terminal condition (Py + R)(T, X) = h(X). According to Fouque et al. [7,
p. 140], introduce, for V, small enough, the corrected effective volatility

5 =52 - V,.
Then equation (6.16) can be written as

252F~’1_

Ls(G) (R + R) = VX w2 O(e).

Here by (5.15) and (5.11), we used that V, = O(ve) and P, = O(+&), respectively,
and assumed sufficient smoothness in I5i so that azﬁl/axz = O(\/E). Thus, the

corrected price Py + 51 has the same order of accuracy as the solution P of
Lgs(G)P =0

with the same terminal condition P(T, X) = h(X). By reason of this, the V, term is

simply a volatility level correction.
7. Slow Scale

Let H € (0,1) be arbitrary Hurst parameter and fixed. Let 0 < 8 << 1. Then
we consider the BS model described by (1.1), (1.2) and (1.4), where (Y (t)) is the
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slow scale volatility factor such that
dY (t) = da(m - Y(t))dt + " BdBy (t) (7.1)

depending on a small parameter & > 0. Observe that (7.1) (i.e., (1.4)) is obtained by
(1.3) with the coefficients o and B replaced by da and 8HB, respectively. Then, in

order to derive the pricing PDE for this model, we have only to consider the pricing
PDE (4.9) of Lemma 4.1, except that oo and P are replaced by do and SHB,

respectively. Then, in the multiplier of the partial derivative 62P/ay2 appearing in

(4.9), we shall compute the factor
—2(3a)t| d 2
¢~2(50) [E" 9t ||®H’t},

where g¢(s) = x[o,1}(s)9(s) and g(s) = e(®)s(5HB); we shall apply Remark 4.2
with o and B replaced by 8o and SH[B, respectively.

Recall the functions given by (4.12), i.e.,
X 2H-1 X _2H
B(x)=J 27" ez, C(x):J. z°e"%dz.
0 0

Observe that for t > 0,
B(dat) > 0, C(dat) >0 as & — 0.

Then, by (4.10) and (4.11), we have the following:

(i) If H > 1/2, then

o200t i" 2 _ 2(52HpB2)H e datg2H-L 1 2H_1B(8 t)
at 1 9tlep ¢ | = P Sau ¢

2H 2H-1
_ 2)87 oH-1 (1

Notice that for t > 0,

52H
lim ——-=0 and lim 3B(3at) = 0.
50 ot 80
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This yields that for t > 0,

o —2sat| O 2 _
tim e S g 2, |0t >12) 72)

(ii) If 0 < H < 1/2, then
2ot Ll 1R, | - HEHp2EH et
+2H2(5%M Bz)t‘l(%)m B(5at)
+ H(5a) (32" Bz)tl(%)m {tB(&xt) - (%)C(Sat)}

+ H(Scx)(SZHBZ)(%jZH B(5att)

2H 2H
= Hp?t2H ‘1(6—] +2H Zszt‘l( 1) B(5at)

e&ott o

o

N Hth_l( 1 )ZH —1{(&) B(dat) — (%)C(Sat)}

; HBz(é)ZH_lsB(Sat).

This yields that for t > 0,

L d
lim e #ot| L g f3, | =00 <H <y2) 73)

Equations (7.2) and (7.3) imply that in PDE (4.9) of Lemma 4.1, the multiplier of the

partial derivative 82P/6y2 tends to zero as & — 0 in the case of slow scale.

In the case of slow scale, we shall need Assumption 4.3 with o and 3 replaced

by 8o and st B, respectively. Then we obtain the following theorem:

Lemma 7.1 (Pricing PDE in terms of 3). Let 0 < H < 1. Suppose Assumption
1.1 and Assumption 4.3 with o and 3 replaced by 6a and SHB, respectively, that is,



32 K. NARITA

suppose that
E
k(t, X, y) = da(m—y)—V8a2  By(y).

Then, for & small enough, the pricing PDE (4.9) of Lemma 4.1 can be written in
terms of 3 as follows:

oPd 142 P apd 5
ERET X%~ ™
1 5
Z-H
| a(m—y)=vBaZ  By(y) % -0 (7.4)

for t < T with the terminal condition P®(T, X, y) = h(X), where h(X) stands

for the nonnegative payoff function.

For a moment, assume that f(y)>0(y e R) and set 1o = f(y). Then we
observe that when & = 0, equation (7.4) reduces to the Black-Scholes PDE with

volatility parameter 1g; the solution is Cgg(lg).
For equation (7.4), we will find the asymptotic solution of the form
P® = Py + VoP, + 8P, + -+ (7.5)
with the terminal conditions
P(T, X, y)=h(X), R(T,X,y)=0 for t>1.

Substitution of this form into (7.4) yields

(apo J—apl 8P2+___j
at

1 25Po 1 25P1 25P2 N
( f(y)* X p +52 5 Ty X p f(y)x = J

i) aPl Pt
AR

—1(Py +OP, + 8P, + )
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Ry R 5P,
+ 8au(m — y)( \/gaer 8y+ j

—x/goc By(y)(apo \/—apl %+~-j:0.

Let Lpgs(c) be the Black-Scholes operator with the deterministic volatility

parameter o, i.e.,

In the following Steps 1-4, we assume that f(y)>0(y eR) and that
f'(y)y(y) = 0 (y € R). Define 1y = f(y). Then, equating the coefficients of the

powers of § to 0, we get the following equations:

Lgs(lg)Po =0, (7.6)

Lps(lg)P = (XZ Bv(y) 6P0 (7.7)

1

P o2 "y 5 g (7.8)

Lgs(lg)Py =~ o(m — y)

Step 1. First, consider (7.6), that is, the Black-Scholes PDE with the volatility
parameter 1y = f(y) > 0. Then we get the solution

Py = Cgs(lp)-

Step 2. Next, consider (7.7). Then, since y is a parameter in (7.7), we can find a
solution P, of the form

P,
A=A 2 (7.9)
with a function A(y), independent of (t, X). Then, it is easy to see that

Lgs(lg)P = LBS(IO){A(y) 6P0} A(y)ﬁss“o){apo} (7.10)
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Changing the order of differentiations with respect to y and X, we have

PR, oR, oP 2 rop
EBS('O){ 0} gy{ato +rX af—rPo}+%f(y)2x2£(—2(W°). (7.11)

Here by derivative product rule, we have

0 1 2y20°R oy 2P 120 (207
S H(YPXE 0 = f(y) () X2 L S f ()P | X2 D
ay{z W)X = T FWXT =5+ 5 T 5| X" 2

2 8 PO GPO

1 22 02
1 X2 Lryix L (R

and hence

2107 ()

_ 01 22 0°Ry B 2 02 Po
—ay{zf(y)x X2 } FW X" =3 (7.12)

Substitute (7.12) into the right-hand side of (7.11). Then we get

2
zssuo)[apﬂ §y{£Bs<lo>Po}—f(y)f'(y)XZ‘ZX—Pg. (7.13)

Here P, satisfies (7.6), i.e., Lgs(lg)Py =0 with 15 = f(y), and hence (7.13) is

equal to
ﬁBS(lo){%} — _f(y) f'(y)XZZ;—Pg. (7.14)
Thus, (7.9), (7.10) and (7.14) yield
Lgs(lo)R = A(y){—f(y) f’(y)XZZj(—F?}-

Combining this with (7.7), we get

2 14
A(y){—f(y)f'(wxzzx—ﬂ a2y N5 B (7.15)
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Observe the Black-Scholes operator (5.6) and formula (6.1). Recall the Greeks
(6.4), (6.5) and (6.6) for the Black-Scholes price Cgg(t, X; o) with respect to the
deterministic volatility parameter . Then we shall need the following equations for

the nomenclature of the Greeks:

Lgs(c)Cgs =0, (7.16)

2
Gamma 258 _ n(dy) , (7.17)
X2 XovT -t

Vega ag—gs = X~T —tn(dy)

2
=(T - t)cxzaa;—BS, (7.18)
2
DVegaDVol 660_53 = XAT —tn(dl)(%j. (7.19)
(e}

‘DVegaDVol’ corresponds to the change in Vega resulting from a change in

volatility. Here d; and d,(i =1, 2) are given by (6.2) and (6.3), respectively, and
d2

n(d) — L ¢77. We notice that for i=12 we can write d; as d;(o),

J2rn

emphasizing dependence on the deterministic volatility parameter c.

When Py = Cgg(c) with 6 = 1y = f(y) > 0, it holds that

R _ (aCBS a_Gj _ (5C53j Cf1(y)
oy 0c oy o=l 0 =1 '
and hence equation (7.18) implies
oP, vy 2 0°Py
—=(T-t)f f X —F. 7.20
& = M-I S3 (7:20)

It follows from (7.15) and (7.20) that

A {752} - a%”wy)%.
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Hence

1n
Aly) = =T =tha?  By(y). (7.21)

Therefore, by (7.9) and (7.21), we obtain

l
R = Aly )(’jp0 — (T -t)a? Bv(y) Gy (7.22)

Step 3. For PDE (7.8), we shall find a solution P, of the form
oP, oP
P =B(Y) 5+ C 5 (7.23)

with functions B(y) and C(y), independent of (t, X). We shall find the expressions
for B(y) and C(y) in the following. We first notice

Lps(lg)Py = 553('0){5()’)—} + 555('0){(3()/) apl} (7.24)

Here, consider (7.10) with A(y) replaced by B(y) and observe (7.14). Then we get

2
EBS(IO>[B(y> apﬂ B(y){—f(y) f’(y)xzzx—Pg} (7.25)

Thus, (7.20) yields

EBS(IO)[B(Y) 8P0} B(Y)((—TL_J%)- (7.26)

We next notice that equations (7.11)-(7.13) hold with P, replaced by P, and hence
oR, oR,
Los(10)| C) Gt | = C) Las 1) T

R

2
= C) % (Las ()R}~ 1) () X? ZX (7.27)

1
Z—H
By (7.7), P, satisfies that Lgg(lg)R = a2 By(y)%, and hence equation (7.27)

is equivalent to
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ﬁBs(lo)[C(Y) apl}

1 2
- C(y)[%{az Br(y) 8""} ~f(y) f'(y)XZ%} (7.28)

We shall find another expression for the right-hand side of (7.28) in the following.
By (7.22), we first find

1
a—ay{az By(y) apo} ()5 (7.29)

We next find expression for the remaining term

2
f(y) f(y)x2 2L,

Considering (7.22) and changing the order of differentiations, we have

1 2

%P >-H o (oo 0°P
X220 - (T —t)a?2 G I ) 7.30
X2 T-1) Bv(y)ay( X2 (7.30)

Here and hereafter, we assume that

f(y)f'(y)0(y eR) and y(y)#0(y e R).

Then (7.20) is equivalent to

X szpg - (7= Fmrm) 2

and hence equation (7.30) can be rewritten as follows:

1

oSk B LN (S .

M ~(f(1'(y) | oPy 1o (R
S B { (f(y) Py jW () f'(y))@(wj}

This implies
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%P,
fy)fi(y)x2 <1
(y) f'(y) X2

1
5 (f( )f()) oP, oP,
- i) U | B 2 ()
1
3 (y){w]apo (y)_[ 6%] (1)

f(y)f'(y) oy

Here by (7.22), we have

e e

This is substituted into the last term of the right-hand side of (7.31) as follows:

%R,
f(y)fi(y)x2 <=L
(y) f'(y) X2

71 [ () | R 1o (1
= a2 Bv(ﬁ(w}ﬁo * Y(y)(ﬁja(m Plj
1

_ 3H (f(y) F(y) | R
- ot BY(y){ F () )WO

1 [ Y(y) 1 0P
”(y)(T—t){ [YWJP 1Y) 6‘;}

a2 " Bym{(f(y)f'(y)) ] &

f(y) f'(y)
1 v(y)) 8F’1}
+ P4 7.32
(RS (7:32)
In the last equation of (7.32), we insert expression (7.22) for P, into the term

(M

) ) P, and hence obtain the following equations:
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0°P
fy)fi(y)x2 <1
(y) f'(y) X2

7M. A [(EY) F(y) | R
- BY(V)( ) JWO
Y INE70)) ISR
+(T_J{ (y(y)j[ (-0t

1 Y 14
ot G B o i 2

1 \op
()5

216 L[ IO ), )[R (1 Yo

=a? B{Y(y)[wJJFY(y)}a—;JF(T—_JWl

——H () - (W F W) +7(y) - () )| Ry ( 1 )ﬁ
f(y) f'(y) oy \T-t)oy’

1

0Py | oP
"pr(y) o ] ayl}

Therefore, we obtain

2 0% P1
f(y)f'(y)X vy
Ry () ') | oR 1 )\ oP
- {yyf(y)f(y) }6;+(T—tjﬁl' (739

Thus, by (7.29) and (7.33), we can rewrite (7.28) as follows:

ﬁBS(IO)|:C(y) apl}

_C(y)[ (Tl tjaayp1

bnc [ -G o |8 (1 R
o { 1) }ay (T—J@y]‘ 739
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Step 4. By (7.26) and (7.34), equation (7.24) can be written as follows:

Lgs(lg)P; = B(Y){—(TL_J%}

o] ) 3

aE‘H (r(y)- () () apo_(#jaﬁ
F(y) £'(y) oy \T

Since P, satisfies PDE (7.8), the equation above yields

{3
ol {3

a2 {(y(y) (f(y) 1 (y)))}apo () aa]
T

f(y) f'y) oy —t) oy

1

=—[a<m NG -a? " pr(y) apl] (7.35)

Observe (7.22) and substitute the equation

2
& AKO AT

1
Z—H
with A(y) = —(T —t)a2  By(y) into (7.35). Then, we get

b3

+C(y){ ( L j{A(y)ap‘) + Ay LR PO}
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2 (v(y) (F ) | Py
f(y)f'(y) oy

1 NG o°R,
(v ){A(y) 0+A(V)WOH

1

- —[a(m - y)% - away){A'(y) % - A)S o°Ry }] (7.36)

Compare the both sides of (7.36). Then we choose B(y) and C(y) so that the

coefficients in front of the partial derivatives %F;? and . F;O on the left- and right-
y

hand sides are equal. Namely, we find B(y) and C(y) by the following relation:

{1
+C(y)l( 2 Ja-at {(Y(y)fﬁj)(?{y 1) H

1y
= —[oc(m —y)-a?  Py(y) A'(y)} (7.37)

and

c|-{+2¢ jA(y)}—[aé Bv(y)A(y)}- (7.38)

Thus, solving equations (7.37) and (7.38) with respectto B(y) and C(y), we obtain

_ T-0° 1 (1(y) - (F(y) £'(y))
B(y) = (T -~ ta(m - y) + ——a' ZHBZY()’){Y W) } (7.39)

1
oty = {54 o? " pry) (7.40)
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Theorem 7.2. Let 0 < H < 1. Assume that f(y) is a positive and twice
continuously differentiable function and y(y) is a differentiable function such that
f'(y)y(y)= 0 (y € R). Then, for o small enough, the corrected Black-Scholes
price is given by

P~ Py + V3P, + &P, (7.41)
Here P, is the Black-Scholes price of the claim at the volatility level 15 = f(y),
that is,

‘CBS(IO)PO =0, Po(t, X, y) = CBS(t’ X, K, T; |0)(= CBS(IO)’ for short)
with Cgg as given by (7.6) with terminal condition Py(T, X, y) =h(X) for a
payoff function h(X). The first correction Pj(t, X, y) is given by

1

R = ~(T ~t)a? Bv(y) B

P, is a solution of the equation

Lps(lg)P = az BY(Y) B

The second correction P,(t, X, y) is given by

oR

P, = B(y) 32 8P° e S

where B(y) and C(y) are given by (7.39) and (7.40), respectively; P, is a solution

of the equation

1
R - o
Lps(lg)Py =~ a(m - Y)a—;—az B (y) 1

In Theorem 7.2, the first correction P, is given in terms of R and the

ay 1
Ry P
second correction P, is given in terms of the derivatives Y and T Recall that

Py = Cgs(oc) with o = Iy = f(y) > 0 and consider
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55

o=lg

Then, by (7.18), (7.19) and (7.20), we can rewrite the derivatives % and % at

(t, X; K, T; Ig) in terms of Vega, DVegaDVol and Gamma of the Greeks. These

are summarized in the following remark:

Remark 7.3.
Ro _ fryy s
oy oc '
R , 2 0°Cgg
F0 _ (T —t)f(y) F(y)x2L=Bs
EY (T-t)f(y)f'(y) X

1
- %[—(T ~9a? py(y) aPO]

1 2
(T -t)a? {w)apfj e i) PO}

1
=—(T -t)a?

”

{v(y)f (y)%58s y(y>{ (R L CBS H

1

LS S

oy
x ’ _ i 2 62CBS
{Y(y)(T ) f(y) f'(y)X XZ

, o°C
+v(y){(T 1) f(y)f (y)XZTES

+(F(y)2XAT —tn(dy) (%jﬂ
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Here n(d) is the density function of the standard normal distribution N (0, 1), and
d; and d, are given by (6.2) and (6.2) at the volatility level o =15 = f(y)>0;
dy = dy(lp) and dp = d(lp).

8. Implied Volatility in the Case of Slow Scale

Taking the corrected pricing formula (7.41) as observed price,
Cobs = Py + VP, + 5P, (8.1)
in equation (6.7), the relation that determines the implied volatility is thus
Ces(t, X; K, T; 1) = Py + V/oP, + 6P,. (8.2)
Equation (8.2) can be solved by expanding | as
| = lg+3l; +8ly +---. (8.3)

In (8.3), the same notation |y as that in the preceding section appears. However,
here we denote by |, the zeroth order-term to be determined later on. Inserting (8.3)
into the left-hand side of (8.2), we get the following (see Appendix):

Ces (t, X; K, T; 1g)

Cas(t, X; K, T; 1) + /51, —

2
d CES (t, X; K, T dg) [+
oo

+E{I2 aggs (t, X; K, T; |0)+%|12

= Py +OP + 0P, + - (8.4)

The terms of order (+/5)°, /3, 5, ... will be studied. Equating terms of order (v5)°,
we must have

CBS(t’ X, K, T; |0) = Po,

where P, is the solution of equation (7.6) associated with the Black-Scholes

operator Lgg(c) with the volatility level o = f(y) > 0. Hence we find

Io = f() (85)
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Equating terms of order N get
oC
|1T55(t, X; K, T; 1p) = R,
and hence

-1
Iy = Pl(aggs (t, X; K, T; |0)j :

By (7.22) and Remark 7.3, we observe

1

R =—(T-t)a2  py(y) 22

oy

1
-~ -va? iy 1) 2

This implies

1
=T =0a? " Br)| £ G XK Ti o)

oCps . . -
X( B8 (1, X; K, T; |0)j

S
=—(T-ta?  By(y) f'(y). (8.6)

Further, equating terms of order 8, we get

_ 1,2 0°Cgs . . Cps . N
I, = (Pz _Ell P t, X; K, T; Ig)| x o t, X; K, T; 1g)| . (87)
. . oPy oP, . .
In (8.7), P, is represented by (7.23) in terms of ¥ and R these partial

derivatives are given by Remark 7.3. Moreover, I, is given by (8.6). Then

substitution of these expressions into (8.7) and arrangement of the equation yield the
following:
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I, = B(y) f'(y)

1
+C(y)|~T -aZ

x27'(y) F'(y)

o°C
—B5(t, X; K, T; )

()| 11(y) + 22 (F'(y)?
Tf_s(t, X; K, T; lg)

2
L 9°Ces. Cg‘s (t, X; K, T; o)
-5 (T =02 222 () (H(y)? 22 SNCE)
T‘Bs(t, X; K, T; Ig)

Here B(y) and C(y) are the functions as given by (7.39) and (7.40).

Theorem 8.1. Assume the same condition as that in Theorem 7.2. Then the
implied volatility | is given by

| = 1o + /81y + 81, (8.9)

1
Z-H
as 8§ > 0. Here Ip = f(y) and Iy =—(T —t)a?2 By(y)f'(y). Further, 1, is
represented by (8.8) with the coefficients B(y) and C(y) as given by (7.39) and
(7.40), respectively.

Appendix: Asymptotic Expansion

Let 1 be a small parameter such that 0 < n << 1. Let g : R —» R be a smooth

function. Then we assume that g can be expanded as follows:



with

and
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o0
2
g(Xg + X + M X +00) = Zgn(xo, X1o Xy cony Xg)M"

n=0
9o(Xg) = 9(Xo)
X .X ...X dk
0n(X0, X0 X s X) = D W{d—kg@)} .
Ny +No+:--+NE=n ' S 5=Xp
1<k<n

The first coefficients can be calculated, for example,

[1]

(2]

3]

[4]

[5]

[6]

9o(%0) = 9(%o),

91(%g, %) = %1 - 9'(Xo),

2
! X n
92(X0s X1, X2) = X2 - @ (Xo)+71' 9"(Xo),
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