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Abstract 

We describe the structure of a 3-dimensional commutative Banach algebra 
B  with identity by the classification of B  through the number of the 
elements of the maximal ideal space .BM  It is proved that B  is 

isomorphic to a Q-algebra of a bidisc algebra. As an application, we study 
BQ-algebras and CQ-algebras which are generalizations of Q-algebras. A 
BQ-algebra (resp. CQ-algebra) is defined to be a commutative Banach 
algebra B  with identity such that there exists a bounded (resp. 
contractive) isomorphism from a Q-algebra to .B  

1. Introduction 

Let A be a uniform algebra on a compact Hausdorff space X. If I is a closed 
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ideal of A, then the quotient algebra IA  is a commutative Banach algebra. If there 

exists an isometric isomorphism from IA  to ,B  then B  is called a Q-algebra of A. 

If B  is a Q-algebra of A for some A, then B  is called a Q-algebra. Bonsall and 
Duncan called Q-algebra B  as an IQ-algebra (cf. [2, p. 270]). Given a Hilbert space 
H, we denote by ( )HB  the set of all bounded linear operators on H. Cole (cf. [1, p. 

216], [2, p. 272], [3, p. 98], [4, p. 31]) proved that there exists a Hilbert space H and 
a closed subalgebra B  of ( )HB  such that IA  is isometrically isomorphic to .B  

Which commutative operator subalgebra B  of ( )HB  with identity is a Q-algebra? 

Drury [5] and Nakazi [9, Corollary 2] proved that a 2-dimensional commutative 

operator subalgebra of ( )2CB  with identity is a Q-algebra. By the example of 

Holbrook [7], it follows that a 4-dimensional commutative operator subalgebra of 

( )4CB  with identity is not necessarily a Q-algebra. Suppose B  is a 3-dimensional 

commutative operator subalgebra of ( )3CB  with identity. Is B  a Q-algebra? This is 

an important question. But it is too difficult for us to solve it. We consider                     
BQ-algebras and CQ-algebras as the following. If there exists a bounded (resp. 
contractive) isomorphism from IA  to ,B  then B  is called a BQ-algebra (resp. 

CQ-algebra) of A. Since we consider a finite dimensional algebra in this paper, 
every such isomorphism is bounded. If B  is a BQ-algebra (resp. CQ-algebra) of A 
for some A, then B  is called a BQ-algebra (resp. CQ-algebra). Hence Q-algebra ⇒ 
CQ-algebra ⇒ BQ-algebra. Nakazi [9, Proposition 1] proved that a 2-dimensional 
commutative Banach algebra B  with identity is a BQ-algebra. He proved that B  is 

spanned by 1 and g, where 02 =g  or .2 gg =  We denote by T  and D  the unit 

circle and the open unit disc in the complex plane, respectively. Then B  is a            
BQ-algebra of the disc algebra ( ).TA  To see this, take ( )TAA =  and =I  

( ) ( ) ( ){ }000: =′=∈ ffAf T  or ( ) ( ) ( ){ }0: ==∈= bfafAfI T  for distinct 

points a and b in .D  

Problem 1. Suppose B  is a 3-dimensional commutative Banach algebra with 
identity. Prove that B  is a BQ-algebra. 

Definition 1.1. We denote by BM  the spectrum of ,B  the space of all 

multiplicative linear functionals on ,B  and denote by ,BM  the number of the 

elements of .BM  
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In Section 2, we will solve Problem 1. We will describe the structure of B  by 
the classification of B  through ,BM  and prove that a 3-dimensional commutative 

Banach algebra with identity is a BQ-algebra of ( ).2TA  

Problem 2. Describe all 3-dimensional BQ-subalgebras of ( ).3CB  

In Section 3, we will solve Problem 2. Is a BQ-algebra always a CQ-algebra? 
This is an important question. But it is too difficult for us to solve it. We consider an 

operator μ
fS  and a CQ-algebra { }AfS f ∈μ :  as the following (cf. [3, p. 98]). 

Definition 1.2. Let μ be a probability measure on a compact Hausdorff space X 

and let A be a uniform algebra on X. Let ( )μ2H  be the closure of A in ( )μ2L  and let 

( ) ⊥μ IH ∩2  be the annihilator of I in ( ).2 μH  Let P be the orthogonal projection 

from ( )μ2H  onto ( ) .2 ⊥μ IH ∩  For any ,Af ∈  we define μ
fS  as the operator on 

( ) ⊥μ IH ∩2  such that ( ) ( ( ) )., 2 ⊥μ μ∈ψψ=ψ IHfPS f ∩  

Then μμ
+ = fkf SS  for k in I and  .IfS f +≤μ  ( ( ) )⊥μ μ→ IHBIAS ∩2:  

is a contractive isomorphism which sends μ→+ fSIf  for each f in A. Hence 

{ }AfS f ∈μ :  is a CQ-algebra. The kernel of μS  contains I. If ,IfS f +=μ  

( ),Af ∈  then ,ker IS =μ  and { }AfS f ∈μ :  is a Q-algebra. 

Problem 3. Suppose B  is a 3-dimensional BQ-subalgebra of ( ).3CB  Prove 

that B  is not necessarily a CQ-algebra { }AfS f ∈μ :  for some uniform algebra A. 

In Section 4, we will solve Problem 3 in the case when 1=BM  or 2. It is too 
difficult for us to prove it when .3=BM  We will study the structure of a                  

CQ-algebra { }.: AfS f ∈μ  By Theorems 4.3 and 4.5, if ,2,1=IAM  then a set of 

all 3-dimensional CQ-algebras { }AfS f ∈μ :  is a proper subset of a set of all               

3-dimensional BQ-subalgebras of ( ).3CB  If ,3=IAM  then we have Remark B, 

but we do not know whether a set of all 3-dimensional CQ-algebras { }AfS f ∈μ :  is 

a proper subset of a set of all 3-dimensional BQ-subalgebras of ( ).3CB  
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As an application of the results in Sections 2, 3 and 4, we will give some 

examples in Sections 5 and 6. If μS  is isometric, then { }AfS f ∈μ :  is a Q-algebra. 

Hence we will consider whether μS  is isometric for a concrete CQ-algebra 

{ }AfS f ∈μ :  in Sections 5 and 6. In Section 5, for the disc algebra ( ),TA  and for 

πθ=μ 2dd  or ,πθ=μ rdrdd  we will describe a 3-dimensional CQ-algebra 

{ ( )}.: TAfS f ∈μ  By Sarason’s theorem (cf. [3, p. 125], [12]), if ,2πθ=μ dd  then 

( ) ( ( ) )⊥μ μ→ IHBIAS ∩2: T  is an isometric isomorphism, and hence 

{ ( )}TAfS f ∈μ :  is a Q-algebra of ( ).TA  In Section 6, for the bidisc algebra ( )2TA  

and for ( ) ,2 2
21 πθθ=μ ddd  we will describe a 3-dimensional CQ-algebra 

{ ( )}.: 2TAfS f ∈μ  

2. Banach Algebras and BQ-algebras 

In this section, we solve Problem 1. Let B  be a 3-dimensional commutative 

Banach algebra. We classify all B  by the number 3,2,1=BM  of elements in 

BM  and establish the structure of B  by the following Propositions 2.1, 2.2 and 2.3. 

These give the solution of Problem 1 as Theorem 2.8. Let φ be in .BM  Then 

( ) ( ) ( ) ( ).,, B∈φφ=φ gfgffg  A 1st point derivation at φ is a linear functional 1D  

on B  which satisfies 

( ) ( ) ( ) ( ) ( ) ( ).,,111 B∈φ+φ= gfgDfgfDfgD  

A 2nd point derivation at φ is a linear functional 2D  on B  which satisfies 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).,,2 21122 B∈φ++φ= gfgDfgDfDgfDfgD  

Proposition 2.1. Let B  be a 3-dimensional commutative Banach algebra with 
identity. Then the following conditions (1) and (2) are equivalent: 

(1) ,1=BM  that is, { }φ=BM  for some φ. 

(2) (a) or (b) below holds: 
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(a) { }hgspan ,,1=B  for some g, h satisfying .022 == hg  

(b) { }2,,1 ggspan=B  for some g satisfying .03 =g  

If (a) holds, then 0=gh  and there exist two nontrivial 1st point derivations 1
1D  and 

1
2D  at φ such that for all f in ,B  

( ) ( ) ( ) .1
2

1
1 hfDgfDff ++φ=  

If (b) holds, then there exists a nontrivial 1st point derivation 1D  and a nontrivial 

2nd point derivation 2D  at φ such that for all f in ,B  

( ) ( ) ( ) ( ).2
2

2
1 B∈++φ= fgfDgfDff  

Proposition 2.2. Let B  be a 3-dimensional commutative Banach algebra with 
identity. Then the following conditions are equivalent: 

(1) ,2=BM  that is, { }θφ= ,BM  for some φ and θ. 

(2) ,2=BM  that is, { }θφ= ,BM  for some φ and θ, and there exists a 

nontrivial 1st point derivation 1D  at φ or at θ. 

(3) There exist g, h in B  such that { },,,1 hgspan=B  where =− gg 2  

.02 == ghh  

If there exists a nontrivial 1st point derivation 1D  at φ, then for all f in ,B  

( ) ( ) ( ) ( ) .1 1 hfDgfgff +θ+−φ=  

Proposition 2.3. Let B  be a 3-dimensional commutative Banach algebra with 
identity. Then the following conditions are equivalent: 

(1) ,3=BM  that is, { }321 ,, φφφ=BM  for some .,, 321 φφφ  

(2) There exist g, h in B  such that { },,,1 hgspan=B  where hhgg −=− 22  

.0== gh  
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Under these conditions, for all f in ,B  

( ) ( ) ( ) ( ).1321 hgfhfgff −−φ+φ+φ=  

Definition 2.4. If φ is an element of ,BM  then we denote by φB  the maximal 

ideal which is the kernel of φ. 

Lemma 2.5. Let B  be a commutative Banach algebra with identity. Suppose g 
and h are in ,B  0≠g  and .0=gh  Then there exists a φ in BM  such that 

( ) .0=φ h  

Proof. It is sufficient to prove that if h is in B  and ( ),0 hσ∈  then there exists a 

φ in BM  such that ( ) .0=φ h  Since h is not invertible, Bh  is a proper ideal. Hence 

there exists a φ in BM  such that φB  contains .Bh  Since .,1 φ∈∈ BB h  ~ 

Lemma 2.6. Let { }hgspan ,,1=B  be a 3-dimensional commutative Banach 

algebra. If ,022 == hg  then .0=gh  

Proof. Since hcgcgh 21 +=  for some ,, 21 C∈cc  ghcgchg 2
2

1
2 +=  and 

.2
21

2 hcghcgh +=  Hence if ,022 == hg  then .021 == ghcghc  This implies 

.0=gh  ~ 

Proof of Proposition 2.1. (2) ⇒ (1) Suppose (a) holds. For every φ in ,BM  

( ) ( ) ,0=φ=φ hg  because ( ) ( )220 gg φ=φ=  and ( ) ( ) .0 22 hh φ=φ=  Hence 

.1=BM  

Suppose (b) holds. For every φ in ( ) ( ) .0, 2 =φ=φ ggMB  Hence .1=BM  

(1) ⇒ (2) Since { }hgspan ,,2dim == φφ BB  for some g and h. 

First, we prove that if 02 ≠g  or ,02 ≠h  then (2)(b) holds. Since (2)(a) is a 

symmetric condition with respect to g and h, it is sufficient to prove that if ,02 ≠g  

then (2)(b) holds. Since hcgcgg 43
22 , +=∈ B  for some ., 43 C∈cc  Suppose 

.04 =c  Then ( ) .03 =− gcg  By Lemma 2.5, ,03 =c  and hence .02 =g  This 

contradiction implies that .04 ≠c  Therefore { }., 2ggspanh ∈  By Lemma 2.5, 
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{ } 3,,1dim 2 =ggspan  and .03 =g  We have proved the equivalence of (1) and 

(2). Next, we prove the latter half. If (a) holds, then for any ,B∈f  there exist 

uniquely complex numbers 210 ,, fff  such that ( ).,210 B∈++= fhfgfff  

Hence ( ) .0ff =φ  If we define 1c  and 2c  by ( ) 11 ffc =  and ( ) ,22 ffc =  then 

,, 21
∗∈ Bcc  where ∗B  denotes the set of all bounded linear functionals on .B  

Then it is sufficient to prove that ., 1
22

1
11 DcDc ==  By Lemma 2.6, .0=gh  

Hence, for hFgFFF 210 ++=  and ,210 hGgGGG ++=  

( ) ( ) ( ) ( ) ( ),1110011 GcFGFcGFGFFGc φ+φ=+=  

( ) ( ) ( ) ( ) ( ).2220022 GcFGFcGFGFFGc φ+φ=+=  

Thus 1
11 Dc =  and .1

22 Dc =  

If (b) holds, then for any ,B∈f  there exist uniquely complex numbers 

210 ,, fff  such that 

( ).2
210 B∈++= fgfgfff  

Hence ( ) .0ff =φ  If we define 1δ  and 2δ  by ( ) 11 ff =δ  and ( ) ,2 22 ff =δ  then 

., 21
∗∈δδ B  It is sufficient to show that 1

1 D=δ  and .2
2 D=δ  For 0FF =  

2
21 gFgF ++  and ,2

210 gGgGGG ++=  

( ) ( ) ( ) ( ) ( ),1110011 GFGFGFGFFG δφ+φδ=+=δ  

( ) ( )2011022 2 GFGFGFFG ++=δ  

 ( ) ( ) ( ) ( ) ( ) ( ).2 2112 GFGFGF δφ+δδ+φδ=  

Thus 1
1 D=δ  and .2

2 D=δ  ~ 

Proof of Proposition 2.2. (2) ⇒ (1) Trivial. 

(1) ⇒ (3) First, we prove that there exists a nontrivial 1st point derivation 1D  at 
φ or at θ. Since θφ BB ∩  is 1-dimensional, there exists a nonzero h in θφ BB ∩  

such that ,2 hh α=  for some .C∈α  Hence ( ) .0=−α hh  By Lemma 2.5, .0=α  
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Hence .02 =h  Since ,2dim =φB  { }hgspan ,=φB  for some g. Since ,02 =h  

( ) { }.,22 ghgspan=φB  If ,0=gh  then ( ) { },22 gspan=φB  and hence ( ) .2
φφ ≠ BB  

Therefore if ,0=gh  then there exists a nontrivial 1st point derivation 1D  at φ (cf. 

[6, p. 22]). Suppose .0≠gh  Since h is in ,θφ BB ∩  gh is in .θφ BB ∩  Since 

.0≠gh  there exists a nonzero C∈γ  such that .hgh γ=  Hence ( ) .0=−γ gh  By 

Lemma 2.5, ( ) 0=−γφ g  or ( ) .0=−γθ g  Since ( ) 0=φ g  and ,0≠γ  this implies 

that ( ) .0=−γθ g  Since 1, g, h are linearly independent, hg,−γ  are linearly 

independent, and hence { }., hgspan −γ=θB  Since ( ) ,02 =−γ= ghh  ( ) =θ
2B  

{( ) }.2gspan −γ  Hence ( ) .2
θθ ≠ BB  Therefore, if ,0≠gh  then there exists a 

nontrivial 1st point derivation 1D  at θ (cf. [6, p. 22]). 

Next, we prove that there exist g and h in B  such that .022 ===− ghhgg  

Suppose { }θφ= ,BM  and { },,, 1Dspan θφ=∗B  where 1D  is the 1st point 

derivation at φ. There exist g and h in B  such that ( ) ,011 =D  ( ( ) ( ) ( ))gDgg 1,, θφ  

( ) ( ( ) ( ) ( )) ( ).1,0,0,,,0,1,0 1 =θφ= hDhh  

Since ( ( ) ( ) ( )) ( ) ( ) ( ) ( )ggDgggggDgg −=−θ=−φ=θφ 21222122 ,0,1,0,,  

,0=  and so .2 gg =  Since ( ) ( ) ( ) .0,0 22122 ===θ=φ hhDhh  Since ( ) =φ gh  

( ) ( ) .0,01 ===θ ghghDgh  

(3) ⇒ (2) Suppose { },,,1 hgspan=B  where .022 ===− ghhgg  If 

,1=BM  that is, { },φ=BM  then ( ) 0=φ g  or ( ) 1=φ g  because .2 gg =  If 

( ) ,0=φ g  then ( ) { }hgspang ,11 −=− B  is a maximal ideal, and hence ( )Bg−1  

,φ= B  because { }.φ=BM  Hence ( ) ( ) .011 =−φ=φ− gg  This contradicts that 

( ) .0=φ g  If ( ) ,1=φ g  then { } .φ⊆/= BB gspang  This contradicts that { }.φ=BM  

Thus .2≥BM  If ,3=BM  then 0=h  and it contradicts that .3dim =B  Thus 

{ }., θφ=BM  It is easy to see that there exists ∗∈δ B  such that =∗B  

{ },,, δθφspan  where ( ) ( ) ( )( ) ( ).1,0,0,,1 =δδδ hg  Since ,02 =h  it follows that 
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( ) ( ) .0=θ=φ hh  We may assume that ( ) 0=φ g  or ( ) .0=θ g  For, if ( ) 0≠φ g  and 

( ) ,0≠θ g  then ( ) ( ) .1=θ=φ gg  This contradicts that .1≠g  If ( ) ,0=φ g  then 

( ) ,1=θ g  because ( ) .0=δ g  We will show that δ is the 1st point derivation at φ or 

at θ. If F and G are in ,B  then hgF γ+β+α=  and chbgaG ++=  for some 

complex numbers .,,,,, cbaγβα  Then ( ) ( ) .hacgbabaFG γ+α+β+β+α+α=  

If ( ) ( ) ,01 =θ−=φ gg  then ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ),0,1,0,,,0,1,11,1,1 =δθφ=δθφ ggg  

( ) ( ) ( )( ) ( ).1,0,0,, =δθφ hhh  Hence ( ) ( ) ( ) ( ) ( ).GFGFacFG φδ+δφ=γ+α=δ  This 

implies that δ is the 1st point derivation at φ. If ( ) ( ) ,01 =θ=φ− gg  then 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ).1,0,0,,,0,0,1,,,0,1,11,1,1 =δθφ=δθφ=δθφ hhhggg  

Hence ( ) ( ) ( ) ( ) ( ).GFGFacFG θδ+δθ=γ+α=δ  This implies that δ is the 1st 

point derivation at θ, and hence (2) follows. 

Therefore (1), (2) and (3) are equivalent. Under these conditions, suppose D is a 
nontrivial 1st point derivation at φ. Since { } { },,,1,,1 hggspanhgspan −=  for all f 

in ,B  there exist complex numbers ( ) ( ) ( )fcfcfc 210 ,,  uniquely such that 

( ) ( ) ( ) ( ) .1 210 hfcgfcgfcf ++−=  Hence ( ) ( ),0 fcf =φ  ( ) ( ).1 fcf =θ  Let 

( ) ( ).2 fcf =δ  Then ∗∈δ B  and ( ) ( ) ( ) ( ) .1 gfhfgff θ+δ+−φ=  ~ 

Proof of Proposition 2.3. (1) ⇒ (2) If { },,, 321 φφφ=BM  then there exist g 
and h in B  such that 

( ) ( ) ( ) ( ) ( ) ( ) .0,1,0,1 312321 =φ=φ=φ=φ=φ=φ hhhggg  

Then hhgg == 22 ,  and ,0=gh  and so { }.,,1 hgspan=B  

(2) ⇒ (1) If { },,,1 hgspan=B  where ,022 ==−=− ghhhgg  then 

{ } { }hgspanhgspan ,1,, −  and { }hgspan −1,  are three distinct maximal ideals of 

.B  ~ 

Lemma 2.7. Let 1B  and 2B  be two 3-dimensional commutative Banach 
algebras with identity. If 1B  and 2B  satisfy one of the conditions (1) ~ (4), then 1B  
and 2B  are algebraically isomorphic: 

(1) 121 == BB MM  and both 1B  and 2B  have two different nontrivial 1st 

point derivations. 
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(2) 121 == BB MM  and both 1B  and 2B  have a nontrivial 1st point 

derivation and a nontrivial 2nd point derivation. 

(3) 221 == BB MM  and both 1B  and 2B  have a nontrivial 1st point 

derivation. 

(4) .321 == BB MM  

Proof. We prove only (1) because other cases are similar. Suppose 1B  and 2B  

satisfy (1). By Proposition 2.1, { },,,1 jjj hgspan=B  where 022 == jj hg  

( ).2,1=j  Now, it is clear to define an algebraic isomorphism from 1B  to .2B  ~ 

Theorem 2.8. A 3-dimensional commutative Banach algebra with identity is a 
BQ-algebra. 

Proof. We prove that if B  is a 3-dimensional commutative Banach algebra, 

then B  is algebraically isomorphic to some Q-algebra of the bidisc algebra ( ).2TA  

If 1=BM  and B  has two different 1st point derivations, then B  is 

algebraically isomorphic to some quotient algebra of ( ).2TA  In fact, by Proposition 

2.1 and Lemma 2.7, if { ( ) ( ) ( ) ( ) ( ) },00,00,00,0:, 2 ===∈= wz fffAwzfI T  

then ( ) IA 2T  is a BQ-algebra which is algebraically isomorphic to ,B  because 

( ) ( ) .022 IIwIz +=+=+  

If 1=BM  and B  has a 1st point derivation and a 2nd point derivation, then 

B  is algebraically isomorphic to some quotient algebra of the disc algebra ( ).TA  In 

fact, by Proposition 2.1 and Lemma 2.7, if { ( ) ( ) ( ) ( ) =′=∈= 00: ffAzfI T  

( ) },00 =′′f  then ( ) IA T  is a BQ-algebra which is algebraically isomorphic to ,B  

because ( ) .03 IIz +=+  Let ( ) { ( ) ( ) ( )}.,:, 22 TT AwzfwzwfwA ∈=  Then 

( ) ( ( ))22 TT wAIA +  is also a BQ-algebra which is algebraically isomorphic to .B  

If ,2=BM  then B  is algebraically isomorphic to some quotient algebra of ( ).TA  

In fact, by Proposition 2.2 and Lemma 2.7, if { ( ) ( ) ( ) ( ) =′=∈= 00: ffAzfI T  



THREE DIMENSIONAL Q-ALGEBRAS 131 

( ) }0=af  for nonzero point a in the open unit disc, then ( ) IA T  is a BQ-algebra 

which is algebraically isomorphic to ,B  because ( ) ( ) =+−+ IazIaz 22222  

( )( ) ( ) ( )( ) .0222 IIazzIazIazz +=+−+=+−  Then ( ) ( ( ))22 TT wAIA +  is 

also a BQ-algebra which is algebraically isomorphic to .B  

If ,3=BM  then B  is algebraically isomorphic to some quotient algebra of 

( ).TA  In fact, by Proposition 2.3 and Lemma 2.7, if { ( ) ( ) ( ) =∈= 0: fAzfI T  

( ) ( ) }0== bfaf  for nonzero distinct points a, b in the open unit disc, then 

( ) IA T  is a BQ-algebra which is algebraically isomorphic to ,B  because 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) −+−−=+−−−+−− 22 IbaabzzIabbazzIabbazz  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) .0 IIbaabzzIabbazzIbaabzz +=+−−+−−=+−−  

Then ( ) ( ( ))22 TT wAIA +  is also a BQ-algebra which is algebraically isomorphic 

to .B  ~ 

Remark A. Let B  be a commutative Banach algebra. Let .BM∈φ  Let 1D  be 

a nontrivial 1st point derivation at φ and let 2D  be a nontrivial 2nd point derivation 

at φ. Let α, β be complex numbers satisfying .0≠α  Let 11
0 DD α=  and let 

.1222
0 DDD β+α=  Then 1

0D  is a nontrivial 1st point derivation at φ, and 2
0D  is a 

nontrivial 2nd point derivation at φ. 

Proof. Let ., Agf ∈  Since 1D  is a 1st point derivation at φ, it follows that 

 ( ) ( )fgDfgD 11
0 α=  

{ ( ) ( ) ( ) ( )}gDfgfD 11 φ+φα=  

( ) ( ) ( ) ( )gDfgfD 11 αφ+φα=  

( ) ( ) ( ) ( ).1
0

1
0 gDfgfD φ+φ=  

Hence 1
0D  is a nontrivial 1st point derivation at φ. Since 2D  is a nontrivial 2nd 

point derivation at φ, it follows that 
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( )fgD2
0  

( ) ( )fgDfgD 122 β+α=  

{ ( ) ( ) ( ) ( ) ( ) ( )} { ( ) ( ) ( ) ( )}gDfgfDgDfgDfDgfD 1121122 2 φ+φβ+φ++φα=  

{ ( ) ( )} ( ) ( ) ( ) ( ){ ( ) ( )}gDgDfgDfDgfDfD 122112122 2 β+αφ+α+φβ+α=  

( ) ( ) ( ) ( ) ( ) ( ).2 2
0

1
0

1
0

2
0 gDfgDfDgfD φ++φ=  

Hence 2
0D  is a nontrivial 2nd point derivation at φ. ~ 

3. BQ-subalgebras of ( )3CB  

In this section, we solve Problem 2. In the following corollaries, 3-dimensional 

BQ-subalgebras of ( )3CB  with identity are represented in 33 ×  matrix algebras. In 

Sections 4, 5 and 6, we will consider 3-dimensional 33 ×  matrix algebras with 
respect to 3-dimensional CQ-algebras and Q-algebras. We will consider Problems 2 
and 3. The results in this section follow immediately from the results in Section 2. 
Since all commuting matrices are simultaneously triangularizable by a unitary 
matrix, the following Corollary 3.1 (resp. Corollaries 3.2, 3.3) follows from 
Proposition 2.1 (resp. Corollaries 2.2, 2.3). The matrix in Corollary 3.3 is similar to 
one of McCullough and Paulsen [8, Proposition 2.2]. 

Corollary 3.1. Let B be a 3-dimensional commutative 33 ×  matrix algebra 

with identity. Suppose ,1=BM  that is, { }φ=BM  for some φ. Then (a) or (b) 

below holds. The equality means the unitary equivalence: 

(a) There exist two nontrivial 1st point derivations 1
1D  and 1

2D  at φ such that 

for all f in ,B  

( ) ( ) ( ) ,

00

00

000

00

00

000

100

010

001

1
2

1
1

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

φ=

z

wfD

y

xfDff  

where .0≠− ywxz  
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(b) There exists a nontrivial 1st point derivation 1D  and a nontrivial 2nd point 

derivation 2D  at φ such that for all f in ,B  

( ) ( ) ( ) ,
00
000
000

2
0
00
000

100
010
001

2
1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
φ=

xy

fD

yz
xfDff  

where .0≠xy  

Corollary 3.2. Let B  be a 3-dimensional commutative 33 ×  matrix algebra 
with identity. Suppose ,2=BM  that is, { }θφ= ,BM  for some φ and θ. Then there 

exists a nontrivial 1st point derivation 1D  at φ or at θ. 

If there exists a nontrivial 1st point derivation 1D  at φ, then for all f in ,B  

( ) ( ) ( ) ,
1
000
000

00
00
000

0
010
001

212

1

21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
θ+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

φ=

yy
f

xy
xfD

yy
ff  

where .0≠x  The equality means the unitary equivalence. 

Corollary 3.3. Let B  be a 3-dimensional commutative 33 ×  matrix algebra 
with identity. Suppose ,3=BM  that is, { }321 ,, φφφ=BM  for some .,, 321 φφφ  

Then for all f in ,B  

( ) ( ) ( ) ,

1

000

000

00

01

000

00

00

001

321
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−

φ+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

−φ+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

φ=

zyxz

f

xz

xf

y

xff  

where x, y and z are any complex numbers. The equality means the unitary 
equivalence. 

4. CQ-subalgebras of ( )3CB  

Let A be a uniform algebra on a compact Hausdorff space X. If I is a closed 
ideal of A, then the quotient algebra IA  becomes a commutative Banach algebra 

with identity. For a probability measure μ on X, we define the abstract Hardy space 
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( ),2 μH  the orthogonal projection P and the contractive operator μ
fS  as Definition 

1.2 in Introduction. First, we consider the case when .1=IAM  Lemma 4.1 and 

Lemma 4.2 are special cases of Corollary 3.1. By Theorem 4.3, if ,1=IAM  

then  the set of all CQ-algebras { }AfS f ∈μ :  is a proper subset of the set of all                    

BQ-subalgebras of ( )3CB  in Corollary 3.1. 

Lemma 4.1. Let A be a uniform algebra on a compact Hausdorff space X. Let φ 

be an element of .AM  Let { ( ) ( ) ( ) },0: 1
2

1
1 ===φ∈= fDfDfAfI  where 1

1D  

and 1
2D  are 1st point derivations at φ. Let μ be a probability measure on X such that 

( ) .3dim 2 =μ ⊥IH ∩  Let 321 ,, kkk  be reproducing kernels in ( ) ⊥μ IH ∩2  

satisfying 

( ) ( ) ( ) ( ).,,,,,, 3
1
22

1
11 AfkffDkffDkff ∈===φ  

Let { }321 ,, ψψψ  be an orthonormal basis of ( ) ⊥μ IH ∩2  which is made from 

{ }321 ,, kkk  by the Gram-Schmidt method. Then for this basis, 

( ) ( ) ( ) ,
00
000
000

00
00
000

100
010
001

1
2

1
1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
φ=μ

z
fD

y
xfDfS f  

where 

,
,,

,,
, 2

23
2

13
2

3

32
2

12
2

2

1

ψ−ψ−

ψ−
=

ψ−
=

kkk

xky
kk

kx  

.
,, 2

23
2

13
2

3

1

ψ−ψ−
=

kkk

kz  

Lemma 4.2. Let A be a uniform algebra on a compact Hausdorff space X. Let φ 

be an element of .AM  Let { ( ) ( ) ( ) },0: 21 ===φ∈= fDfDfAfI  where 1D  is 

the 1st point derivation, and 2D  is the 2nd point derivation at φ. Let μ be a 

probability measure on X such that ( ) .3dim 2 =μ ⊥IH ∩  Let 321 ,, kkk  be 

reproducing kernels in ( ) ⊥μ IH ∩2dim  satisfying 
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( ) ( ) ( ) ( ).,,,,,, 3
2

2
1

1 AfkffDkffDkff ∈===φ  

Let { }321 ,, ψψψ  be an orthonormal basis of ( ) ⊥μ IH ∩2  which is made from 

{ }321 ,, kkk  by the Gram-Schmidt method. Then for this basis, 

( ) ( ) ( ) ,
00
000
000

2
0
00
000

100
010
001

2
1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
φ=μ

xy

fD

yz
xfDfS f  

where 

,
,,

,2,
, 2

23
2

13
2

3

2
12

2
2

2
12

2
2

1

ψ−ψ−

ψ−
=

ψ−
=

kkk

kky
kk

kx  

.
,,

,,2
2

23
2

13
2

3

3221

ψ−ψ−

ψ−ψ
=

kkk

xkkz  

Theorem 4.3. Let A be a uniform algebra on a compact Hausdorff space X. Let 
I be an ideal of A such that 3dim =IA  and .1=IAM  Let μ be a probability 

measure on X. Then the set of all 3-dimensional CQ-algebras { }AfS f ∈μ :  is a 

proper subset of the set of all BQ-subalgebras of ( )3CB  in Corollary 3.1. 

Proof. By Corollary 3.1, if ,1=IAM  then (a) or (b) of Corollary 3.1 holds. 

Suppose (a) holds. Then there exist two 1st point derivations 1
1D  and 1

2D  at φ such 

that 

( ) ( ) ( ) ( ),

00

00

000

00

00

000

100

010

001
1
2

1
1 B∈

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

φ= f

z

wfD

y

xfDff  

where x, y, z, w are arbitrary complex numbers. On the other hand, by Lemma 4.1, if 

this is a matrix of some ,μfS  then .0=w  

Suppose (b) of Corollary 3.1 holds. Then there exist a nontrivial 1st point 

derivation 1D  and a nontrivial 2nd point derivation 2D  at φ such that 
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( ) ( ) ( ) ( ),

00

000

000

2
0

00

000

100

010

001
2

1 B∈
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

φ= f

xy

fD

yz

xfDff  

where x, y, z are arbitrary complex numbers. On the other hand, by Lemma 4.2, if 

this is a matrix of some ,μfS  then 0>x  and .0≥y  ~ 

Second, we consider the case when .2=IAM  Lemma 4.4 corresponds to 

Corollary 3.2. By Theorem 4.5, if ,2=IAM  then the set of all CQ-algebras 

{ }AfS f ∈μ :  is a proper subset of the set of all BQ-subalgebras of ( )3CB  in 

Corollary 3.2. 

Lemma 4.4. Let A be a uniform algebra on a compact Hausdorff space X. Let φ, 

θ be distinct elements of .AM  Let { ( ) ( ) ( ) },0: 1 =θ==φ∈= ffDfAfI  where 

1D  is the 1st point derivation at φ. Let μ be a probability measure on X such that 

( ) .3dim 2 =μ ⊥IH ∩  Let 321 ,, kkk  be reproducing kernels in ( ) ⊥μ IH ∩2  

satisfying 

( ) ( ) ( ) ( ).,,,,, 32
1

1 AfkffkffDkff ∈=θ==φ  

Let { }321 ,, ψψψ  be an orthonormal basis of ( ) ⊥μ IH ∩2  which is made from 

{ }321 ,, kkk  by the Gram-Schmidt method. Then for this basis, 

( ) ( ) ( ) ,
1
000
000

00
00
000

0
010
001

212

1

21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
θ+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

φ=μ

yy
f

xy
xfD

yy
fS f  

where 

,
, 2

12
2

2

1

ψ−
=

kk

kx  

( ).2,1
,,

,
2

23
2

13
2

3

3 =
ψ−ψ−

ψ
= j

kkk

k
y j

j  



THREE DIMENSIONAL Q-ALGEBRAS 137 

Theorem 4.5. Let A be a uniform algebra on a compact Hausdorff space X. Let 
I be an ideal of A such that 3dim =IA  and .2=IAM  Let μ be a probability 

measure on X. Then the set of all 3-dimensional CQ-algebras { }AfS f ∈μ :  is a 

proper subset of the set of all BQ-subalgebras of ( )3CB  in Corollary 3.2. 

Proof. By Corollary 3.2, there exists a 1st point derivation 1D  at φ such that 

( ) ( ) ( ) ,
1
000
000

00
00
000

0
010
001

212

1

21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
θ+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

φ=

yy
f

xy
xfD

yy
ff  

where the equality means the unitary equivalence, and 21,, yyx  are arbitrary 

complex numbers. On the other hand, by Lemma 4.4, if this is a matrix of some ,μfS  

then .0>x  ~ 

Third, we consider the case when 3=IAM  (cf. [11, Proposition 2.3]). 

Remark B. Let A be a uniform algebra on a compact Hausdorff space X. Let 

321 ,, φφφ  be distinct elements of .AM  Let { ( ) ( ) ( )fffAfI 321: φ=φ=φ∈=  

}.0=  Let μ be a probability measure on X such that ( ) .3dim 2 =μ ⊥IH ∩  Let 

321 ,, kkk  be reproducing kernels in ( ) ⊥μ IH ∩2  satisfying 

( ) ( ) ( ) ( ).,,,,,, 332211 Afkffkffkff ∈=φ=φ=φ  

Let { }321 ,, ψψψ  be an orthonormal basis of ( ) ⊥μ IH ∩2  which is made from 

{ }321 ,, kkk  by the Gram-Schmidt method. Then for this basis, 

( ) ( ) ( ) ,
1
000
000

0
01
000

00
00
001

321
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

φ+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−φ+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
φ=μ

zyxz
f

zxz
xf

y
xfS f  

where 

,
,,

,,,
,

,
2

23
2

13
2

3

3231
2

21
2

2
2

1

21

ψ−ψ−

ψ−ψ−
=

−

−
=

kkk

xkky
kkkk

kkx  

.
,,

,
2

23
2

13
2

3

32

ψ−ψ−

ψ−
=

kkk

kz  
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5. CQ-algebras of the Disc Algebra 

Let B  be a 3-dimensional commutative Banach algebra with identity. By 

Theorem 2.8, B  is always a BQ-algebra of the bidisc algebra ( ).2TA  In Section 4, 

we considered CQ-algebras for a uniform algebra. Unfortunately, those were very 
complicated. By the proof of Theorem 2.8, if there do not exist elements B∈hg,  

such that { }hgspan ,,1=B  and ,022 === ghhg  then B  is a BQ-algebra of the 

disc algebra ( ).TA  Then we can give the simple examples of a CQ-algebra for 

( ).TA  In this section, for πθ=μ 2dd  or ,πθ=μ rdrdd  we define ( ),2 μH  the 

orthogonal projection P and the operator μ
fS  as Definition 1.2 in Introduction. We 

will describe a 3-dimensional CQ-algebra { ( )}.: TAfS f ∈μ  By Sarason’s theorem 

(cf. [3, p. 125], [12]), if ,2πθ=μ dd  then ( ) ( ( ) )⊥μ μ→ IHBIAS ∩2: T  is 

isometric, and hence { ( )}TAfS f ∈μ :  is a Q-algebra of ( ).TA  

Let D∈a  and let ( )TAM∈φ  satisfy ( ) ( ) ( )( )., TAfaff ∈=φ  Let 1D  be a 

1st point derivation at φ and let 2D  be a 2nd point derivation at φ. Then the 
following facts can be proved using induction: 

(1) ( ) ( ) ( ) ( )( ).11 TAfzDaffD ∈′=  Hence, ( )fD1  is a scalar multiple of 

( )af ′  (cf. [2, p. 87]). 

(2) ( ) ( ) ( ) ( ){ ( )} ( )( ).2122 TAfzDafzDaffD ∈′′+′=  

First, we consider the case when ( ) .1=IAM T  By the above statement (1), 

( )fD1  is a scalar multiple of ( ).af ′  Hence, if ( ),TAA =  then there is not an 

example of Lemma 4.1. There is an example of Lemma 4.2 as the following. 

Example A. Let ( )TAA =  and let .2πθ=μ dd  Let D∈a  and let =I  

( ) ( ) ( ) ( ){ }.0: =′′=′=∈ afafafAf T  By Sarason’s theorem (cf. [3, p. 125], 

[12]), .IfS f +=μ  Hence { ( )}TAfS f ∈μ :  is a Q-algebra. Let ( ),111 zak −=  

( )22 1 zazk −=  and ( ) .12 32
3 zazk −=  Then ( ) ( ) ,,,, 21 kfafkfaf =′=  
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( ) ., 3kfaf =′′  By Lemma 4.2, 

,,1,1
21
31

21
322

21 ab
b

b
bab −==−=  

and for the orthonormal basis { },,, 321 ψψψ  

( ) ( ) ( ) .
00
000
000

2
0
00
000

100
010
001

32213231

21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
′′

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
′+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=μ

bb

af

bb
bafafS f  

Example B. Let ( )TAA =  and let .πθ=μ rdrdd  Let D∈a  and let 

( ) ( ) ( ) ( ){ }.0: =′′=′=∈= afafafAfI T  Then .IfS f +≤μ  Hence 

{ ( )}TAfS f ∈μ :  is a CQ-algebra. Let ( ) ,11 2
1 zak −=  ( )32 12 zazk −=  and 

( ) .16 42
3 zazk −=  Then ( ) ,, 1kfaf =  ( ) ,, 2kfaf =′  ( ) ., 3kfaf =′′  By 

Lemma 4.2, 

,
3
2,

3
2,

2
1

21
31

21
32

2

21 ab
b

b
bab −==

−
=  

and for the orthonormal basis { },,, 321 ψψψ  

( ) ( ) ( ) .
00
000
000

2
0
00
000

100
010
001

32213231

21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
′′

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
′+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=μ

bb

af

bb
bafafS f  

Corollary 5.1. Let ( )TAA =  and let .πθ=μ rdrdd  Then there is an ideal                                      

I of A such that ,3dim =IA  ,1=IAM  and an isomorphism →μ IAS :  

( ( ) )⊥μ IHB ∩2  is not isometric and ( ) .μμ =+ fSIfS  

Proof. By Examples A and B, if ( ) ,azzf −=  then ,2πθπθ ≠ d
f

rdrd
f SS  

because ( ) ( ) 0=′′= afaf  and ( ) .1=′ af  By Sarason’s theorem (cf. [3, p. 125], 

[12]), .2 IfS d
f +=πθ  Hence ,IfS rdrd

f +≠πθ  and hence πθμ = rdrdSS  

is not isometric. ~ 
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Example C. Let ( )TAA =  and let ( ) ( ) ( ) ( ){ }.0000: =′′=′=∈= fffAfI T  

Let ( )rν  be a probability measure on the interval [ ]1,0  and let μ be a probability 

measure on the closed unit disc D  such that ( ) .2πθν=μ drdd  Then ≤μ
fS  

.If +  Hence { ( )}TAfS f ∈μ :  is a CQ-algebra. Let ( )∫ ν==
1

0
2

21 ,1 rdrzkk  

and ( )∫ ν=
1

0
42

3 .2 rdrzk  Then ( ) ( ) ( ) .,0,,0,,0 321 kffkffkff =′′=′=  

Since μ is a radial measure, it follows that ,1k  ,2k  3k  are mutually orthogonal. 

Hence 

( ) ( )

.,,1 211

0
4

2
3211

0
2

21

⎭
⎬
⎫

⎩
⎨
⎧

ν

=ψ

⎭
⎬
⎫

⎩
⎨
⎧

ν

=ψ=ψ

∫∫ rdr

z

rdr

z  

By Lemma 4.2, for the orthonormal basis { },,, 321 ψψψ  

( ) ( ) ( ) ,
00
000
000

2
0

00
00
000

0
100
010
001

0

322132

21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
′′

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
′+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=μ

bb

f

b
bffS f  

where 

( )

( )
( ) ,1

211

0
2

2

1
21 2

2
≤

⎭
⎬
⎫

⎩
⎨
⎧

ν== ∫μ

μ rdrk
k

b
H

H  

( )

( )

( )

( )
.1

2
1

0
2

211

0
4

321

2

21
32

2

2
≥

ν

⎭
⎬
⎫

⎩
⎨
⎧

ν
==

∫
∫

μ

μ

rdr

rdr

kb
k

b
b

H

H  

Hence { } ,1,max 213232 ≤== μ
zSbbb  and hence ,13221 ≤≤ bb  where 

.
00
00
000

32

21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=μ

b
bSz  

Second, we consider the case when ( ) .2=IAM T  Since the proof of Example D is 

similar to one of Example A, the proof is omitted. 
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Example D. Let ( )TAA =  and let .2πθ=μ dd  Let a, b be distinct points in 

D  and let ( ) ( ) ( ) ( ){ }.0: ==′=∈= bfafafAfI T  By Sarason’s theorem (cf. [3, 

p. 125], [12]), .IfS f +=μ  Hence { ( )}TAfS f ∈μ :  is a Q-algebra. Let =1k  

( ),11 za−  ( )22 1 zazk −=  and ( ).113 zbk −=  Then ( ) ,, 1kfaf =  ( ) =′ af  

,, 2kf  ( ) ., 3kfbf =  By Lemma 4.4, for some constant γ such that ,1=γ  

,11
1,11

1,1
1 22

3

2

2

2

1 ⎟
⎠
⎞⎜

⎝
⎛

−
−

−
−

γ=ψ
−
−⋅

−
−

=ψ
−
−

=ψ za
az

zb
b

za
az

za
a

za
a  

,1,1
111,1

1
2

222
1

2
ba
ab

y
y

ba
ba

ba
bayax

−
−=

−
−−

−
−=−=  

and for the orthonormal basis { },,, 321 ψψψ  

( ) ( ) ( ) .
1
000
000

00
00
000

0
010
001

21221
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

′+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

=μ

yy
bf

xy
xaf

yy
afS f  

Example E. Let ( )TAA =  and let .πθ=μ rdrdd  Let a, b be distinct points in 

D  and let ( ) ( ) ( ) ( ){ }.0: ==′=∈= bfafafAfI T  Then .IfS f +≤μ  

Hence { ( )}TAfS f ∈μ :  is a CQ-algebra. Let ( ) ,11 2
1 zak −=  ( )32 12 zazk −=  

and ( ) .11 2
3 zbk −=  Then ( ) ( ) ( ) .,,,,, 321 kfbfkfafkfaf ==′=  By 

Lemma 4.4, 

,12,
2

1
1
2

2

ba
ab

y
yax

−
−=

−
=  

( ) ( )

( ) ( )
,

113

111
1
1

2222

22

1
baba

ba
ba

ba
ba
bay

−+−−

−
⋅

−

−−
⋅

−
−=  

and for the orthonormal basis { },,, 321 ψψψ  

( ) ( ) ( ) .
1
000
000

00
00
000

0
010
001

21221
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

′+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

=μ

yy
bf

xy
xaf

yy
afS f  
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Corollary 5.2. Let ( )TAA =  and let .πθ=μ rdrdd  Then there is an ideal I            

in A such that ,3dim =IA  ,2=IAM  and an isomorphism →μ IAS :  

( ( ) )⊥μ IHB ∩2   is not isometric, where ( ),fgPgS f =μ  ( ( ) )⊥μ∈ IHg ∩2  and 

( ) .μμ =+ fSIfS  

Proof. By Examples D and E, if ( ) ,azzf −=  then ,2πθπθ ≠ d
f

rdrd
f SS  

because ( ) ( ) 0=′′= afaf  and ( ) .1=′ af  By Sarason’s theorem (cf. [3, p. 125], 

[12]), .2 IfS d
f +=πθ  Hence ,IfS rdrd

f +≠πθ  and hence πθμ = rdrdSS  

is not isometric. ~ 

Third, we consider the case when ( ) 3=IAM T  (cf. [11, Proposition 2.3]). 

Example F. Let ( )TAA =  and let .2πθ=μ dd  Let a, b, c be distinct points in 

D  and let ( ) ( ) ( ) ( ){ }.0: ===∈= cfbfafAfI T  By Sarason’s theorem (cf. [3, 

p. 125], [12]), .IfS f +=μ  Hence { ( )}TAfS f ∈μ :  is a Q-algebra. Let 

( ) ( )zbkzak −=−= 11,11 21  and ( ).113 zck −=  Then ( ) ,, 1kfaf =  ( ) =bf  

,, 2kf  ( ) ., 3kfcf =  For some constant jγ  such that ,1=γ j  

( ) ( ) ,
1
1

1,1
1 2

22

2

1 zb
b

za
azzza

az
−
−

⋅
−
−γ=ψ

−
−

=ψ  

( ) .1
1

11

2

33 zc
c

zb
bz

za
azz

−
−

−
−⋅

−
−γ=ψ  

By Remark B, for the orthonormal basis { },,, 321 ψψψ  

( ) ( ) ( ) ,
1
000
000

0
01
000

00
00
001

321
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

φ+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−φ+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
φ=μ

zyxz
f

zxz
xf

y
xfS f  

where 

ca
ca

ba
bayba

bax
−

−−
−
−γ=

−
−−

γ=
22

5

22

4
111,11  
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and 

.11 22

6 cb
cbz

−
−−

γ=  

Then 

.11,1
1

1
2

2
22

2
cb
bczac

ca
ab
bay

−
−=+

−
−=

−
−+  

Example G. Let 2D  be the Dirichlet space with the norm 

( )∫ πθ′+= θ

D
.222

22 rdrdrefff i
HD

 

Then there is not a probability measure μ satisfying .
21

1
2

2 ⎟
⎠
⎞⎜

⎝
⎛ μ= ∫ ≤z

dff D  

Hence 2D  is not an abstract Hardy space ( ).2 μH  Let ( )TAA =  and let =I  

( ) ( ) ( ){ }.000: =′=∈ ffAf T  Then { } .1:inf =∈+=+ IffzIz  Let =1H  

( ) ,22 ⊥πθ IdH ∩  ( ) ⊥πθ= IrdrdH ∩2
2H  and .2

3
⊥= I∩DH  Then we 

consider restriction of the shift operators j
zSH  on ( ).3,2,1=jjH  With respect to 

the orthonormal basis { } { }22 3,2,1,,,1 zzzz  and { },3,2,1 2zz  

,
0320
0021
000

,
010
001
000

212

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
== πθπθ HH

z
rdrd
zz

d
z SSSS  

.
0230
002
000

3

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=H

zS  

Since 11 =H
zS  (or by the Sarason’s theorem (cf. [3, p. 125], [12])), it follows 

that ,1 IzSz +=H  and { ( )}TAfS f ∈:1H  is a Q-algebra. This is a special case 

of Example A. Since ,322 =H
zS  it follows that ,2 IzSz +≤H  and 

{ ( )}TAfS f ∈:2H  is a CQ-algebra. This is a special case of Example B. Since 



TAKAHIKO NAKAZI and TAKANORI YAMAMOTO 144 

,23 =H
zS  it follows that ,3 IfSz +>H  and { ( )}TAfS f ∈:3H  is a        

BQ-algebra which is not a CQ-algebra of ( ).TA  

6. CQ-algebras of the Bidisc Algebra 

Let ( )2TA  be the bidisc algebra. Then we can give the simple examples of a            

CQ-algebra for ( ).2TA  In this section, for ,221 πθθ=μ ddd  we define ( ),2 μH  

the orthogonal projection P and the contractive operator μ
fS  as Definition 1.2 in 

Introduction. We describe a 3-dimensional CQ-algebra { }.: AfS f ∈μ  We consider 

the case when IAM  contains just 1 element. The proofs of Examples H and I are 

similar to one of Example A. 

Example H. Let ( )2TAA =  and let ( ) .2 2
21 πθθ=μ ddd  Let ( ) 2, D∈ba  and 

let { ( ) ( ) ( ) ( ) }.0,,,:2 ===∈= bafbafbafAfI wzT  Let 

( ) ( )
.

11
1,

1
1

1
,

1
1

1
1

23221
wb

w
zak

wbza
zk

wbzak
−

⋅
−

=
−

⋅
−

=
−

⋅
−

=  

Then ( ) ( ) ( ) .,,,,,,,, 321 kfbafkfbafkfbaf wz ===  By Lemma 4.1, 

,
1
1

1
1

1,
1
1

1
1 22

2

22

1 wb
b

za
a

za
az

zb
b

za
a

−
−

⋅
−
−

⋅
−
−=ψ

−
−

⋅
−
−

=ψ  

,
1
1

11
1 22

3 wb
b

wb
bw

za
a

−
−

⋅
−
−⋅

−
−

=ψ  

,1,0,1 22 bzyax −==−=  

and for the orthonormal basis { },,, 321 ψψψ  

( ) ( ) ( ) .
00
000
000

,
00
00
000

,
100
010
001

,
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=μ

z
baf

y
xbafbafS wzf  

Example I. Let ( )2TAA =  and let ( ) .2 2
21 πθθ=μ ddd  Let ( ) 2, D∈ba  and 

let { ( ) ( ) ( ) ( ) }.0,,,:2 ===∈= bafbafbafAfI zzzT  Let 
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( ) ( )
.

1
1

1
2,

1
1

1
,

1
1

1
1

3

2
3221 wbza

zk
wbza

zk
wbzak

−
⋅

−
=

−
⋅

−
=

−
⋅

−
=  

Then ( ) ( ) ( ) .,,,,,,,, 321 kfbafkfbafkfbaf zzz ===  By Lemma 4.2, 

,
1
1

1
1

1,
1
1

1
1 22

2

22

1 wb
b

za
a

za
az

zb
b

za
a

−
−

⋅
−
−

⋅
−
−=ψ

−
−

⋅
−
−

=ψ  

,
1
1

1
1

1

222
3 wb

b
za

a
wb
bw

−
−

⋅
−
−

⋅⎟
⎠
⎞⎜

⎝
⎛

−
−=ψ  

,,1,1
21
31

21
322

21 ab
b

b
baxb −==−==  

and for the orthonormal basis { },,, 321 ψψψ  

( ) ( ) ( ) .
00
000
000

2
,

0
00
000

,
100
010
001

,

32213231

21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=μ

bb

baf

bb
bbafbafS zz

zf  

Corollary 6.1. Let ( )221 2πθθ=μ ddd  and let ( ) ., 2D∈ba  Let { ( )2TAfI ∈=  

( ) ( ) ( ) }.0,,,: === bafbafbaf zzz  Then ( ) ( ( ) )⊥μ μ→ IHBIAS ∩22: T  is 

isometric. 

Proof. By Examples A and I, 

( ) ( ) ( )
( )
μ
−

μ
−

μμ ++= 22
,,, 1 az

zz
azzf SbafSbafSbafS  

( ) ( ) ( )
( )

πθ
−

πθ
−

πθ ++= 222
1 22

,,, d
az

zzd
azz

d SbafSbafSbaf  

,2πθ= d
gS  

where 

( ) ( ) ( ) ( ) ( ) ( ) .2
,,, 2azbafazbafbafzg zz

z −+−+=  

By Sarason’s theorem (cf. [3, p. 125], [12]), ,0
2 IgS d

g +=πθ  where =0I  

( ) ( ) ( ) ( ){ }0: =′′=′=∈ afafafAf T  and ( ) ( ( )πθ→πθ 2: 2
0

2 dHBIAS d T  

)⊥
0I∩  is isometric. Hence .0IgS f +=μ  By the calculation, it follows that 
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.0IgIg +=+  Since ( ) ( ) ,, Izgwzf ∈−  it follows that IgS f +=μ  

.If +=  This implies that μS  is isometric. ~ 

Corollary 6.2. Let ( )2TAA =  and let ( ) .2 2
21 πθθ=μ ddd  Then there is an 

ideal I of A such that 3dim =IA  and ( ( ) )⊥μ μ→ IHBIAS ∩2:  is not 
isometric. 

Proof. If the following condition (1) implies (2) for any distinct points 

An M∈ττ ...,,1  and complex numbers ,...,,1 nww  then we say that A and 

∩n
j jI

1
ker

=
τ=  satisfy the Pick property. In general, it is proved by the calculation 

that (2) implies (1). 

(1) [( ) ] ,01 1, ≥− =
n

jijiji kww  where ,, μ= jiij kkk  and ( ) ,, μ=τ jj kff  

( ).Af ∈  

(2) There exists Af ∈  such that ( ) ( )njwf jj ≤≤=τ 1  and .1≤+ If  

Then it is known that ( ( ) )⊥μ μ→ IHBIAS ∩2:  is isometric if and only if A and 

∩3
1
ker

=
τ=

j jI  satisfy the Pick property (cf. [11, Proposition 4.6.]). By the 

definition of the Pick property, if A and ∩3
1
ker

=
τ=

j jI  satisfy the Pick property, 

then A and ∩2
1
ker

=
τ=

j jJ  satisfy the Pick property, because if [( ) ]2 1,1 =− jijiji kww  

0≥  and ,03 =w  then [( ) ] .01 3
1, ≥− =jijiji kww  Hence, if ( ( )μ→μ 2: HBIAS  

)⊥I∩  is isometric, then ( ( ) )⊥μ μ→ IHBJAS ∩2:  is isometric. On the other 

hand, by the following Proposition 6.3, ( ( ) )⊥μ μ→ IHBJAS ∩2:  is not 

isometric. This is a contradiction. Hence ( ( ) )⊥μ μ→ IHBIAS ∩2:  is not 
isometric. ~ 

Proposition 6.3. Let ( )2TAA =  and let ( ) .2 2
21 πθθ=μ ddd  Let =J  

( ) ( ){ },0,,: ==∈ dcfbafAf  where ( ) ( )dcba ,,,  are distinct points in .2D  

Then J is an ideal of A such that .2dim =JA  Let ( ) ( ( )μ∈=μ 2HgfgPgS f  

).⊥J∩  Then an isomorphism ( ( ) )⊥μ μ→ JHBJAS ∩2:  is not isometric. 
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Proof. Let ( ) ( ) ( )wbzawzk −−= 111,1  and ( ) ( ) ( ).111,2 wdzcwzk −−=  

Let 

( )∫ =μψψ=ψψ= μ

D
,2,1,, jidfSa ijijfij  

where { }21, ψψ  is an orthonormal basis of ( ) ⊥μ JH ∩2  which is made from 

{ }21, kk  by the Gram-Schmidt method. By [10, Lemma 3], 

( ) ( ) ( ) ,11,
1

00
,

0

01
, 2 −

σ
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= C

C
dcf

C
bafaij  

where 

( ) ( )( ) ( ) ( ){ }1,0,:,sup,,, ≤==σ=σ fbafdcfdcba  

⎟
⎠
⎞⎜

⎝
⎛

−
−

−
−=

db
db

ca
ca

1
,1max  

because 

2
21

2
2

2
1

2
212

,
,

kkkk
kkC
−

=  

( ) ( ) ( ) ( )

,

11
1

1111
1

11
1

222222

22

dbcadcba

dbca

−−
−

−−−−

−−
=  

and hence, for 

,
1

,1

22

db
dbyca

cax
−
−=

−
−=  

( ) ( )
( ) ( ) ( ) .111,max

1
111

11
2

2 −
σ

=−<
−−−

−−
= yxyx

yxC  

By [10, Lemma 3], an isomorphism μS  is not isometric. ~ 
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