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Abstract

We describe the structure of a 3-dimensional commutative Banach algebra
B with identity by the classification of B through the number of the
elements of the maximal ideal space Mg. It is proved that B is
isomorphic to a Q-algebra of a bidisc algebra. As an application, we study
BQ-algebras and CQ-algebras which are generalizations of Q-algebras. A
BQ-algebra (resp. CQ-algebra) is defined to be a commutative Banach
algebra B with identity such that there exists a bounded (resp.
contractive) isomorphism from a Q-algebra to B.

1. Introduction

Let A be a uniform algebra on a compact Hausdorff space X. If | is a closed
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ideal of A, then the quotient algebra A/l is a commutative Banach algebra. If there
exists an isometric isomorphism from A/l to B, then B is called a Q-algebra of A.

If B is a Q-algebra of A for some A, then B is called a Q-algebra. Bonsall and
Duncan called Q-algebra B as an 1Q-algebra (cf. [2, p. 270]). Given a Hilbert space
H, we denote by B(H) the set of all bounded linear operators on H. Cole (cf. [1, p.

216], [2, p- 272], [3, p. 98], [4, p. 31]) proved that there exists a Hilbert space H and
a closed subalgebra B of B(H) such that A/l is isometrically isomorphic to B.

Which commutative operator subalgebra B of B(H) with identity is a Q-algebra?
Drury [5] and Nakazi [9, Corollary 2] proved that a 2-dimensional commutative
operator subalgebra of B((Cz) with identity is a Q-algebra. By the example of
Holbrook [7], it follows that a 4-dimensional commutative operator subalgebra of

B((C“) with identity is not necessarily a Q-algebra. Suppose 5 is a 3-dimensional

commutative operator subalgebra of B(<C3) with identity. Is B a Q-algebra? This is

an important question. But it is too difficult for us to solve it. We consider
BQ-algebras and CQ-algebras as the following. If there exists a bounded (resp.
contractive) isomorphism from A/l to B, then B is called a BQ-algebra (resp.

CQ-algebra) of A. Since we consider a finite dimensional algebra in this paper,
every such isomorphism is bounded. If B is a BQ-algebra (resp. CQ-algebra) of A

for some A, then B is called a BQ-algebra (resp. CQ-algebra). Hence Q-algebra =
CQ-algebra = BQ-algebra. Nakazi [9, Proposition 1] proved that a 2-dimensional
commutative Banach algebra B with identity is a BQ-algebra. He proved that 5 is

spanned by 1 and g, where 92 =0 or 92 = ¢g. We denote by T and D the unit
circle and the open unit disc in the complex plane, respectively. Then 5 is a
BQ-algebra of the disc algebra A(T). To see this, take A= A(T) and | =

{f e AT): f(0)=f'(0)=0} or | ={f € A(T): f(a) = f(b) =0} for distinct
pointsa and b in .

Problem 1. Suppose B is a 3-dimensional commutative Banach algebra with
identity. Prove that 55 is a BQ-algebra.

Definition 1.1. We denote by Mg the spectrum of 5, the space of all
multiplicative linear functionals on 3, and denote by #Mpg, the number of the

elements of M.
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In Section 2, we will solve Problem 1. We will describe the structure of B by
the classification of B through Mg, and prove that a 3-dimensional commutative

Banach algebra with identity is a BQ-algebra of A(T?).
Problem 2. Describe all 3-dimensional BQ-subalgebras of B(C?).

In Section 3, we will solve Problem 2. Is a BQ-algebra always a CQ-algebra?
This is an important question. But it is too difficult for us to solve it. We consider an

operator S% and a CQ-algebra {S} : f € A} as the following (cf. [3, p. 98]).

Definition 1.2. Let u be a probability measure on a compact Hausdorff space X

and let A be a uniform algebra on X. Let H?(u1) be the closure of A in L?(u) and let
H2(w) N 1+ be the annihilator of 1 in H?(u). Let P be the orthogonal projection

from H2(u) onto H?(u)N I+, Forany f e A we define Sk as the operator on

H2(uw) N 1+ such that Sty = P(fy), (y € HZ (W) N 17).

Then Sk, =S¥ forkinland | S¥|[<|f+1]. S*:A/1 >BH*WNI*)
is a contractive isomorphism which sends f +1 — S'f1 for each f in A. Hence
{Sk : f e A} is a CQ-algebra. The kernel of S* contains I. If | S§ |[=| f + 1],

(f € A), then kerS* =1, and {Sk : f e A} isa Q-algebra.

Problem 3. Suppose B is a 3-dimensional BQ-subalgebra of B((C3). Prove

that B is not necessarily a CQ-algebra {S*f1 : f e A} for some uniform algebra A.

In Section 4, we will solve Problem 3 in the case when fMg =1 or 2. It is too
difficult for us to prove it when $Mg =3. We will study the structure of a

CQ-algebra {S% : f e A}. By Theorems 4.3 and 4.5, if tM a1 =1, 2, then aset of
all 3-dimensional CQ-algebras {S*f1 : f e A} is a proper subset of a set of all
3-dimensional BQ-subalgebras of B((C3). If M /) =3, then we have Remark B,
but we do not know whether a set of all 3-dimensional CQ-algebras {S% : f e A} is

a proper subset of a set of all 3-dimensional BQ-subalgebras of B((C3).
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As an application of the results in Sections 2, 3 and 4, we will give some
examples in Sections 5 and 6. If S" is isometric, then {Sk : f € A} is a Q-algebra.
Hence we will consider whether S* is isometric for a concrete CQ-algebra
{Sk : f e A} in Sections 5 and 6. In Section 5, for the disc algebra A(T), and for
du = do/2x or du = rdrdd/n, we will describe a 3-dimensional CQ-algebra
{S?l : f e A(T)}. By Sarason’s theorem (cf. [3, p. 125], [12]), if du = d6/2x, then
SHLA(T)/I > B(H?(u)N1+) is an isometric isomorphism, and hence
{Sk : f e A(T)} isaQ-algebra of A(T). In Section 6, for the bidisc algebra A(T?)
and for du =d6,d6,/(2n)?, we will describe a 3-dimensional CQ-algebra

{SH: f e AT?)).

—T

2. Banach Algebras and BQ-algebras

In this section, we solve Problem 1. Let B be a 3-dimensional commutative
Banach algebra. We classify all B by the number §Mz =1, 2, 3 of elements in

Mz and establish the structure of B by the following Propositions 2.1, 2.2 and 2.3.
These give the solution of Problem 1 as Theorem 2.8. Let ¢ be in Mg. Then

o(fa) = o(f)d(g), (f, g € B). A Lst point derivation at ¢ is a linear functional D*

on B which satisfies
D'(fg) = D'(f)(g) + o(f)D(9), (¥, g B).
A 2nd point derivation at ¢ is a linear functional D? on B which satisfies

D?(fg) = D(f)d(g) + 2D*(F)D'(g) + ¢(f)D*(g), (f, g < B).

Proposition 2.1. Let B be a 3-dimensional commutative Banach algebra with
identity. Then the following conditions (1) and (2) are equivalent:

(1) fMg =1, thatis, Mg = {¢} for some ¢.

(2) (@) or (b) below holds:
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(a) B = span{l, g, h} for some g, h satisfying g2 = h? = 0.
(b) B = span{l, g, g°} for some g satisfying g° = 0.

If (a) holds, then gh = 0 and there exist two nontrivial 1st point derivations Dll and

D3 at ¢ such that for all fin 13,
f =¢(f)+Di(f)g+ D3(f)h.

If (b) holds, then there exists a nontrivial 1st point derivation D! and a nontrivial

2nd point derivation D? at ¢ such that for all f in 5,

f—(f)+DY(f)g+ '322(”92 (f <B).

Proposition 2.2. Let B be a 3-dimensional commutative Banach algebra with
identity. Then the following conditions are equivalent:

(1) tMpz = 2, thatis, Mg = {¢, 8} for some ¢ and 6.

(2) tMg =2, that is, Mg = {¢, 6} for some ¢ and 6, and there exists a
nontrivial 1st point derivation D at dorato.

(3) There exist g, h in B such that B = spanf{l, g, h}, where g2 -g-=
h? = gh = 0.

If there exists a nontrivial 1st point derivation D! at ¢, then for all fin B,

f =¢(f)(L-g)+6(f)g+ DY(f)h.

Proposition 2.3. Let B be a 3-dimensional commutative Banach algebra with
identity. Then the following conditions are equivalent:

(1) tMpg =3, thatis, Mg = {1, b2, b3} for some ¢y, 2, d3.

(2) There exist g, h in B such that B = span{l, g, h}, where g — g = h? —h
=gh=0.
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Under these conditions, for all f in B,
f=01(F)g +d2(f)h + d3(f)L-g —h).
Definition 2.4. If ¢ is an element of Mz, then we denote by B, the maximal

ideal which is the kernel of ¢.

Lemma 2.5. Let 5 be a commutative Banach algebra with identity. Suppose g
and h arein B, g=0 and gh =0. Then there exists a ¢ in My such that

o(h) = 0.

Proof. It is sufficient to prove that if hisin 5 and 0 € o(h), then there exists a
¢ in Mg such that ¢(h) = 0. Since h is not invertible, hB3 is a proper ideal. Hence
there exists a ¢ in Mg such that B, contains hB. Since 1 € B, h € By, O

Lemma 2.6. Let B = span{l, g, h} be a 3-dimensional commutative Banach

algebra. If 92 =h? =0, then gh =0.

Proof. Since gh = c;g + cyh for some ¢, ¢, € C, g%h = clg2 +c,gh and
gh? = ¢ygh + c,h?. Hence if g2 = h? =0, then cygh = c,gh = 0. This implies
gh = 0. O

Proof of Proposition 2.1. (2) = (1) Suppose (a) holds. For every ¢ in My,

o(g) = ¢(h) =0, because 0= d(g?)=d(g)*> and 0= h(h?) = ¢(h)>. Hence
Mg = 1.

Suppose (b) holds. For every ¢ in Mg, ¢(g) = ¢(gz) =0. Hence tMg =1.

(1) = (2) Since dimB,, = 2, B, = span{g, h} for some g and h.

First, we prove that if g2 #0 or h? #0, then (2)(b) holds. Since (2)(a) is a
symmetric condition with respect to g and h, it is sufficient to prove that if 92 # 0,
then (2)(b) holds. Since 92 e B, 92 = C30 + c4h for some c3, ¢4 € C. Suppose
cq =0. Then g(c3—g)=0. By Lemma 2.5, c3 =0, and hence g% =0. This

4

contradiction implies that c¢* = 0. Therefore h e span{g, gz}. By Lemma 2.5,
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dim span{l, g, gz} =3 and g3 = 0. We have proved the equivalence of (1) and
(2). Next, we prove the latter half. If (a) holds, then for any f e I3, there exist
uniquely complex numbers fqy, fi, f, such that f = fy + fig + foh, (f € B).
Hence ¢(f) = fy. If we define ¢; and ¢, by ¢(f)= f; and c,(f)= f,, then
¢, Cp € B*, where B denotes the set of all bounded linear functionals on B.

Then it is sufficient to prove that ¢; = Dll, Cy = D%. By Lemma 2.6, gh =0.
Hence, for F = Fy + g + F;h and G = Gy + Gig + Gyh,

¢(FG) = RGy + FyGy = ¢1(F)d(G) + ¢(F)cy(G),
¢2(FG) = F,Gg + FyGy = ¢o(F)¢(G) + ¢(F ) e (G).
Thus ¢; = Dll and ¢, = D%.

If (b) holds, then for any f e B, there exist uniquely complex numbers

fg. f1, f, such that
f=1fy+ fi0+ f,0° (f eB).
Hence ¢(f) = fy. If we define 8; and &, by 8;(f) = f; and 8,(f)=2f,, then
81, 8, € B*. It is sufficient to show that & = D! and Oy = D?. For F = Fo
+ Fg+ F292 and G = Gy + G109 + ngz,
81(FG) = FGp + FoGy = 81(F)4(G) + ¢(F)81(G),
8,(FG) = 2(F,Gy + FG; + RyGy)
= 82(F)(G) + 251(F)51(G) + ¢(F)5,(G).
Thus &, = D! and Sy = D2, O
Proof of Proposition 2.2. (2) = (1) Trivial.

(1) = (3) First, we prove that there exists a nontrivial 1st point derivation D! at
¢ or at 0. Since By 1By is 1-dimensional, there exists a nonzero h in By (1 By

such that h? = ah, for some a e C. Hence h(o. — h) = 0. By Lemma 2.5, o = 0.
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Hence h? = 0. Since dim By =2, By =span{g, h} for some g. Since h? =0,
(Bq,)2 = span{g?, gh}. If gh = 0, then (lS’q,)2 = span{g?}, and hence (lS’q,)2 # By.
Therefore if gh = 0, then there exists a nontrivial 1st point derivation D! at ¢ (cf.
[6, p. 22]). Suppose gh = 0. Since his in B, N By, ghis in By M Bgy. Since
gh = 0. there exists a nonzero y e C such that gh = yh. Hence h(y — g) = 0. By

Lemma 2.5, ¢(y —g) =0 or 6(y — g) = 0. Since ¢(g) =0 and y = O, this implies
that 6(y — g)=0. Since 1, g, h are linearly independent, y — g, h are linearly

independent, and hence By = span{y — g, h}. Since h? = h(y - g) =0, (By)? =
span{(y — g)?}. Hence (ZS’G)2 # Bg. Therefore, if gh = 0, then there exists a

nontrivial 1st point derivation D! ato (cf. [6, p. 22]).

Next, we prove that there exist g and h in 5 such that 92 -g= h? = gh =0.
Suppose Mp = {¢, 8} and B* = span{o, 6, D}, where D! is the 1st point
derivation at ¢. There exist g and h in B such that D(1) = 0, (¢(g), 6(g), D}(g))

= (0,1, 0), (¢(h), 6(h), D*(h)) = (0, 0, 2).

since (¢(9*). 0(9*). D'(g%)) = (0,1, 0), o(g® - g) = 6(g” - g) = D*(g* - 9)
=0, and so g? = g. Since ¢(h?) = 0(h?) = D'(h?) =0, h? = 0. Since ¢(gh) =
0(gh) = DY(gh) = 0, gh = 0.

(3) = (2) Suppose B =span{l, g, h}, where g?—-g=h?=gh=0. If
itMg =1, that is, Mg ={¢}, then ¢(g)=0 or ¢(g) =1 because g2 =g If
¢(g) =0, then (1-g)B = span{l — g, h} is a maximal ideal, and hence (1- g)B
= B,, because Mp ={¢}. Hence 1-¢(g) = ¢(1- g)=0. This contradicts that
#(g) = 0. If ¢(g) =1, then gB = span{g} ¢ B,. This contradicts that Mz = {¢}.
Thus Mg 2 2. If tMg =3, then h = 0 and it contradicts that dim B = 3. Thus
Mg ={¢, 0}. It is easy to see that there exists &e B* such that B* =

span{¢, 0, 3}, where (8(1), 5(g), 8(h)) = (0, 0, 1). Since h? =0, it follows that
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¢(h) = 8(h) = 0. We may assume that ¢(g) = 0 or 6(g) = 0. For, if ¢(g) = 0 and
0(g) = 0, then ¢(g) = 6(g) =1. This contradicts that g = 1. If ¢(g) =0, then
0(g) = 1, because 8(g) = 0. We will show that & is the 1st point derivation at ¢ or
at0. If Fand G are in B, then F =a+pg+yh and G = a + bg + ch for some
complex numbers o, B, v, a, b, c. Then FG = aa + (ab + Ba + Bb)g + (ac + ya)h.
If $(9)=1-0(g)=0, then (4(1). 6(1), 5(1)) = (1. 1, 0), (4(9). 6(9). 8(9)) = (0. 1, 0),
(¢(h), 6(h), 8(h)) = (0, 0, 1). Hence 8(FG) = ac +va = ¢(F)8(G) + 8(F)d(G). This
implies that & is the 1st point derivation at ¢. If 1-¢(g)=0(g)=0, then
(4(2), 6Q2), 8(1)) = (L, 1, 0), (¢(9). 6(9). 5(g)) = (L, 0, 0), (¢(h), 6(h), 3(h)) = (0, 0, 1).
Hence 8(FG) = ac +ya = 0(F)3(G) + 8(F)0(G). This implies that & is the 1st
point derivation at 6, and hence (2) follows.

Therefore (1), (2) and (3) are equivalent. Under these conditions, suppose D is a
nontrivial 1st point derivation at ¢. Since span{l, g, h} = span{l— g, g, h}, forall f

in B, there exist complex numbers cq(f), c;(f), co(f) uniquely such that
f=co(f)Q-g)+c(f)g+co(f)h. Hence o(f)=rco(f), O(f)=ci(f) Let
3(f)=cy(f). Then e B  and f = ¢(f)(1—-g)+3(f)h+6(f)g. O

Proof of Proposition 2.3. (1) = (2) If Mg = {¢1, 02, 3}, then there exist g
and hin B such that

d1(9) =1 ¢2(9) =d3(9) =0, da(h)=1  d1(h) = ¢3(h) = 0.

Then g2 = g, h? =h and gh =0, and so B = span{l, g, h}.

(2 = (1) If B=span{l, g, h}, where g>-g=h?>—h=gh=0, then
span{g, h}, span{l — g, h} and span{g, 1 h} are three distinct maximal ideals of
B. O

Lemma 2.7. Let B; and B, be two 3-dimensional commutative Banach
algebras with identity. If B; and B, satisfy one of the conditions (1) ~ (4), then B,
and B, are algebraically isomorphic:

(1) tMp, =iMp, =1 and both B; and B, have two different nontrivial 1st

point derivations.
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(2) ﬁMBl = ﬁMBZ =1 and both B; and B, have a nontrivial 1st point
derivation and a nontrivial 2nd point derivation.

(3) ﬁMBl = ﬁMBZ =2 and both B; and B, have a nontrivial 1st point
derivation.

(4) tMp, = tM g, =3.

Proof. We prove only (1) because other cases are similar. Suppose B; and B,
satisfy (1). By Proposition 2.1, Bj =span{l, gj, h;}, where gj2 = hJ2 =0
(j =1, 2). Now, it is clear to define an algebraic isomorphism from B; to B,. [

Theorem 2.8. A 3-dimensional commutative Banach algebra with identity is a
BQ-algebra.

Proof. We prove that if B is a 3-dimensional commutative Banach algebra,
then B is algebraically isomorphic to some Q-algebra of the bidisc algebra A(’JI‘Z).

If Mz =1 and B has two different 1st point derivations, then B is
algebraically isomorphic to some quotient algebra of A(’]l‘z). In fact, by Proposition
2.1 and Lemma 2.7, if | = {f(z, w) e A(T?): £(0, 0) = f,(0, 0) = ,,(0, 0) = 0},
then A(TZ)/I is a BQ-algebra which is algebraically isomorphic to B, because
Z+1P2 =(w+1)2%=0+1.

If tMz =1 and B has a 1st point derivation and a 2nd point derivation, then
B is algebraically isomorphic to some quotient algebra of the disc algebra A(T). In
fact, by Proposition 2.1 and Lemma 2.7, if | ={f(z)e A(T): f(0) = f'(0) =
f"(0) = 0}, then A(T)/I is a BQ-algebra which is algebraically isomorphic to B,
because (z+1)2=0+1. Let WA(T?)={wf(z, w): f(z, w) e A(T?)}. Then
A(T?)/(1 + wA(T?)) is also a BQ-algebra which is algebraically isomorphic to 3.

If tMpz =2, then B is algebraically isomorphic to some quotient algebra of A(T).
In fact, by Proposition 2.2 and Lemma 2.7, if | = {f(z) e A(T): f(0) = f'(0) =
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f(a) = 0} for nonzero point a in the open unit disc, then A(T)/I is a BQ-algebra
which is algebraically isomorphic to B, because (22/a2 +1)? —(22/a2 +1)=
(2(z-a)+1)? = (z2/a% + 1)(z2(z—a)+ 1) = 0+ I. Then A(T?)/(1 + wA(T?)) is
also a BQ-algebra which is algebraically isomorphic to 5.

If Mg =3, then B is algebraically isomorphic to some quotient algebra of
A(T). In fact, by Proposition 2.3 and Lemma 2.7, if | = {f(z) e A(T): f(0) =
f(a) = f(b) =0} for nonzero distinct points a, b in the open unit disc, then

A(T)/1 is a BQ-algebra which is algebraically isomorphic to B, because

(z(z-a)/bb —a)+ 1) = (z(z —a)/b(b —a) + 1) = (z(z - b)/a(a — b) + 1)? —
(z(z-b)/a(@a-b)+1)=(z(z—a)/b(b—a)+ 1)(z(z-b)/a(@a-b)+1)=0+1.

Then A(Tz)/(l + WA(TZ)) is also a BQ-algebra which is algebraically isomorphic
to B. O

Remark A. Let B be a commutative Banach algebra. Let ¢ € M. Let D! be

a nontrivial 1st point derivation at ¢ and let D? be a nontrivial 2nd point derivation

at ¢. Let o, B be complex numbers satisfying o = 0. Let Dé =oD! and let
Dg = a?D? + pD!. Then Dé is a nontrivial 1st point derivation at ¢, and Dg is a

nontrivial 2nd point derivation at ¢.

Proof. Let f, g e A Since D is a 1st point derivation at ¢, it follows that
D5(fg) = aD'(fg)
= a{D'(f)4(9) + ¢(f)DY(g)}
= aDY(f)d(g) + ¢(f)aD*(9)

= D§()o(g) + o(f)Dj(g).

Hence Dé is a nontrivial 1st point derivation at ¢. Since D? is a nontrivial 2nd

point derivation at ¢, it follows that
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D§(fg)

a’D?(fg) + pD'(fg)

a?{D?(f)¢(g) + 2D'(f)DY(g) + &(f)D?(g)} + B{D'(F)d(g) + o( ) D*(9)}

{0?D?(f) + BDY()}¢(g) + 20.°D*(F) D (g) + o( f ) {a’D?(g) + BDY(g)}
= D§(f)d(g) +2Dg(f)Dj(g) + ¢(f)DF(9).

Hence DS is a nontrivial 2nd point derivation at ¢. O

3. BQ-subalgebras of B(C?)

In this section, we solve Problem 2. In the following corollaries, 3-dimensional
BQ-subalgebras of B((CS) with identity are represented in 3 x 3 matrix algebras. In

Sections 4, 5 and 6, we will consider 3-dimensional 3x 3 matrix algebras with
respect to 3-dimensional CQ-algebras and Q-algebras. We will consider Problems 2
and 3. The results in this section follow immediately from the results in Section 2.
Since all commuting matrices are simultaneously triangularizable by a unitary
matrix, the following Corollary 3.1 (resp. Corollaries 3.2, 3.3) follows from
Proposition 2.1 (resp. Corollaries 2.2, 2.3). The matrix in Corollary 3.3 is similar to
one of McCullough and Paulsen [8, Proposition 2.2].

Corollary 3.1. Let B be a 3-dimensional commutative 3 x 3 matrix algebra
with identity. Suppose fMpg =1, that is, Mz = {¢} for some ¢. Then (a) or (b)

below holds. The equality means the unitary equivalence:

(@) There exist two nontrivial 1st point derivations Dll and D% at ¢ such that
for all fin B,

1 0 0 0 0 0 0 0 0
f=¢(f)J0 1 0|+Dif)x 0 o|+Di(f)lw 0 o0
0 0 1 y 0 0 z 0 0

where xz — yw = 0.
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(b) There exists a nontrivial 1st point derivation D! and a nontrivial 2nd point

derivation D2 at ¢ such that for all fin B,

1 0 O 0 0 O 0 0 O
1 D*(f)
f=¢(f)]0 1 0O|+D(f)]x O O+ 5 0 0 0}
0 0 1 z y O xy 0 0

where xy = 0.

Corollary 3.2. Let 5 be a 3-dimensional commutative 3 x 3 matrix algebra
with identity. Suppose Mz = 2, thatis, Mz = {¢, 6} for some ¢ and 6. Then there

exists a nontrivial 1st point derivation D! at ¢ or at 6.

If there exists a nontrivial 1st point derivation D! at ¢, then for all fin 5,

1 0 0 0 0 0 0 0 0
f=¢(f)| 0 1 0|+DXf)] x 0o o|+6(f))o 0 0
-y1 Y2 O -xy, 0 0 Y. Y2

where x = 0. The equality means the unitary equivalence.

Corollary 3.3. Let 5 be a 3-dimensional commutative 3 x 3 matrix algebra
with identity. Suppose Mg = 3, thatis, Mg = {1, ¢o, d3} for some ¢y, ¢, 03

Then for all fin B,

1 0 O 0 0 O 0 0 O
f=0(f)]x 0 O|+do(f)]—x 1 0f+¢3(f)| O 0 0}
y 0 0 -xz 0 O xz-y -z 1

where X, y and z are any complex numbers. The equality means the unitary
equivalence.

4. CQ-subalgebras of B(C?)

Let A be a uniform algebra on a compact Hausdorff space X. If I is a closed
ideal of A, then the quotient algebra A/l becomes a commutative Banach algebra

with identity. For a probability measure p on X, we define the abstract Hardy space
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H Z(M), the orthogonal projection P and the contractive operator S*fl as Definition
1.2 in Introduction. First, we consider the case when M, =1. Lemma 4.1 and
Lemma 4.2 are special cases of Corollary 3.1. By Theorem 4.3, if {M A =1,
then the set of all CQ-algebras {S*f1 : f € A} is a proper subset of the set of all
BQ-subalgebras of B(C®) in Corollary 3.1.

Lemma 4.1. Let A be a uniform algebra on a compact Hausdorff space X. Let ¢
be an element of M. Let | = {f e A:¢(f)=D}(f)=D3(f)=0}, where DI
and D% are 1st point derivations at ¢. Let u be a probability measure on X such that
dimH2(u) N1+ =3. Let ky, ky, kg be reproducing kernels in H2(u)N 1+
satisfying

§(F)= (. k) DHT)=(f. k) D3(F)=(f,ks) (1 < A).

Let {y;, ¥, w3} be an orthonormal basis of HZ2(u)N 1+ which is made from
{kq, ko, k3} by the Gram-Schmidt method. Then for this basis,

1 0 O 0 0 O 0 0 O
s =¢(f)]0 1 O[+D(f){x 0 oOf+D3(f)[0 0 0,
0 0 1 y 0 O z
where
= [k |l _ —~(y2, k3)x
\/|| ko |7 = ko, wa) |2 \/|| ks I =1 (kg wi) [* = | (ka, wo) |?
Ik |

7= .
ks P = ks, wa) 2 =] (ka, wo)[?

Lemma 4.2. Let A be a uniform algebra on a compact Hausdorff space X. Let ¢
be an element of M 5. Let | = {f € A:¢(f)= DY(f)=D?(f) =0}, where D! is
the 1st point derivation, and D? is the 2nd point derivation at ¢. Let u be a
probability measure on X such that dimH?(u)( 1+ =3. Let ky, ky, kg be

reproducing kernels in dim H?(u) N I+ satisfying
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o(F) =(f, k), DY(f)=(f, ko) D2(f)=(f, ks), (feA).

Let {y1, w2, w3} be an orthonormal basis of H2(u) N 1+ which is made from
{kq, ko, ka} by the Gram-Schmidt method. Then for this basis,

1 0 O 0 0 O 0
M 1 D%(f)
sf=o(f)[0 1 of+D{f)x 0 0of+=|0 ,
0 0 1 z y O Xy
where
2 2
Ik 2k P | (ke )]
2 2 2 2 2
Wk [2 =1 kz. i) Vs 2 = [(ka, wi) P | (k. w2) |

_ 2y, ko) — (. k3) X _
VIka 7 =1 (ke wi) P = (kg wa) P

Theorem 4.3. Let A be a uniform algebra on a compact Hausdorff space X. Let
| be an ideal of A such that dim A/l =3 and £M A/ =1. Let u be a probability

z

measure on X. Then the set of all 3-dimensional CQ-algebras {S% : f € A} is a
proper subset of the set of all BQ-subalgebras of B((C3) in Corollary 3.1.
Proof. By Corollary 3.1, if §tM Al =1 then (a) or (b) of Corollary 3.1 holds.

Suppose (a) holds. Then there exist two 1st point derivations Dll and D% at ¢ such
that

1 0 0 0 0 0 0 0 0
f=¢(f)|0 1 0|+Dif)x 0 o0|+Di(f)lw 0 0| (feB)
0 0 1 y 0 0 z 0 0

where X, y, z, w are arbitrary complex numbers. On the other hand, by Lemma 4.1, if

this is a matrix of some S, then w = 0.

Suppose (b) of Corollary 3.1 holds. Then there exist a nontrivial 1st point

derivation D! and a nontrivial 2nd point derivation D? at ¢ such that
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1 0 O 0 0 O 0 0 O
1 D*(f)
f=¢(f)]0 1 O|+D(f)[x O O+TO 0 0| (feB),
0 0 1 z y O xy 0 O

where X, y, z are arbitrary complex numbers. On the other hand, by Lemma 4.2, if

this is a matrix of some S‘f*, then x >0 and y > 0. O

Second, we consider the case when #M Al = 2. Lemma 4.4 corresponds to
Corollary 3.2. By Theorem 4.5, if M/ =2, then the set of all CQ-algebras
{S% : f e A} is a proper subset of the set of all BQ-subalgebras of B(C%) in
Corollary 3.2.

Lemma 4.4. Let A be a uniform algebra on a compact Hausdorff space X. Let ¢,

0 be distinct elements of M . Let | = {f € A: ¢(f)=D'(f)=0(f)=0}, where

D! is the 1st point derivation at ¢. Let p be a probability measure on X such that
dimH2(u) N1+ =3. Let kg, ky, kg be reproducing kernels in H2(u) N1+
satisfying

O(f)=(f, k), DY(f)=(f ky) O(f)=(f kg) (feA)

Let {y;, v, w3} be an orthonormal basis of H2(u)N 1+ which is made from

{ky, ko, k3} by the Gram-Schmidt method. Then for this basis,

1 0 0 0 0 O 0 0 0
st=¢(f)) 0 1 o[+DYf)] x 0 o|+6(f))0 0 0]

-y1 -y2 O -xy, 0 0 i Y2

where
‘= : I Ka |l ~,
Vo 12 = [ (k. v) |
Wak3 .
Yj Wy k) (1=12).

ke 1P (ke ) P~ (ks o) P
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Theorem 4.5. Let A be a uniform algebra on a compact Hausdorff space X. Let
| be an ideal of A such that dim A/I =3 and §M A/l = 2. Let u be a probability

measure on X. Then the set of all 3-dimensional CQ-algebras {S} : f € A} is a

proper subset of the set of all BQ-subalgebras of B((C3) in Corollary 3.2.

Proof. By Corollary 3.2, there exists a 1st point derivation D! at ¢ such that

1 0 0 0 0 0 0 0 0
f=¢(f) 0 1 o|+DYf)] x 0 o|+6(f)l0 0 0
-y1 Y2 O -xy2 0 0 yioy2 1

where the equality means the unitary equivalence, and X, y;, y, are arbitrary
complex numbers. On the other hand, by Lemma 4.4, if this is a matrix of some S‘f*,
then x > 0. O

Third, we consider the case when M Al = 3 (cf. [11, Proposition 2.3]).

Remark B. Let A be a uniform algebra on a compact Hausdorff space X. Let
O, d2, 03 be distinct elements of M. Let | ={f € A:di(f)=da(f)=¢3(f)

=0}. Let u be a probability measure on X such that dimH?(u)N 1+ = 3. Let

ki, ko, k3 be reproducing kernels in Hz(u) N1+ satisfying
dr(F)=(f. k) 0a(f) =(F, ko), d3(f)=(F. kg), (f €A).

Let {wq, wy, w3} be an orthonormal basis of H2(u) N 1+ which is made from
{ky, kp, k3} by the Gram-Schmidt method. Then for this basis,

1 0 O 0 0 O 0 0 O
SE=d(f)[x 0 O]+¢p(f)]-x 1 0|+9¢3(f)] O 0 0}
y 0 0 -xz z O x2-y -z 1
where
. = —(ky, ko) _ ~(w1, k) — (w2, k3) X
Ik Plke I = 1, ko) 2 Vlka 2 = (ks wi) 2 = | (k. w2) P
—(v2, k)

" ksl — (ke v P | v2) B
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5. CQ-algebras of the Disc Algebra

Let B be a 3-dimensional commutative Banach algebra with identity. By

Theorem 2.8, B is always a BQ-algebra of the bidisc algebra A(T?). In Section 4,

we considered CQ-algebras for a uniform algebra. Unfortunately, those were very
complicated. By the proof of Theorem 2.8, if there do not exist elements g, h € B

such that B = span{l, g, h} and g2 =h? = gh =0, then B is a BQ-algebra of the

disc algebra A(T). Then we can give the simple examples of a CQ-algebra for
A(T). In this section, for du = d6/2r or du = rdrdd/=, we define H2(u), the
orthogonal projection P and the operator S*f1 as Definition 1.2 in Introduction. We

will describe a 3-dimensional CQ-algebra {S% : f € A(T)}. By Sarason’s theorem

(cf. [3, p. 125], [12]), if du = d6/2m, then SH: A(T)/I — B(Hz(u)ﬂ 1) s

isometric, and hence {Sk : f e A(T)} is a Q-algebra of A(T).

Let acD and let ¢ e Mp) satisfy o(f) = f(a), (f € AT)). Let D" be a

1st point derivation at ¢ and let D2 be a 2nd point derivation at ¢. Then the
following facts can be proved using induction:

(1) DY(f)= f'(a)Dz) (f e A(T)). Hence, DY(f) is a scalar multiple of
f'(a) (cf. [2, p. 87]).

(2) D*(f) = f'(a)D?(2) + f"(a){D'(2)}* (f e A(T)).

First, we consider the case when #M Amy =1 By the above statement (1),

DY(f) is a scalar multiple of f'(a). Hence, if A= A(T), then there is not an

example of Lemma 4.1. There is an example of Lemma 4.2 as the following.

Example A. Let A= A(T) and let du=d6/2n. Let aeD and let | =
{f e AT): f(a)= f'(a)= f"(a) =0}. By Sarason’s theorem (cf. [3, p. 125],
[12]), | S% | =| f + 1. Hence {Sk : f e A(T)} is a Q-algebra. Let k; =1/(1-az),

k, = z/(1-az)? and k3 = 22%/(1—az)®. Then f(a)= (f, ky), f'(@) =(f, kp),
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f'(a) = (f, k3). By Lemma 4.2,

b21:]__|a|2, b3_2—]_, h—_g

by by
and for the orthonormal basis {wq, v, w3},
1 0 O 0 0 0 0 0 0
st =f@)|0 1 0|+f(a)by 0 0 +fT@) 0 0 0l

Example B. Let A= A(T) and let du=rdrdd/n. Let aeD and let
| ={f e AT): f(a)=f'(a)= f"(a)=0}. Then | Sk |<|f+1] Hence
(St : f e AT)} is a CQ-algebra. Let k =1/(L-az)%, k, =2z/(1-az)® and
ks = 62%/(1—az)*. Then f(a)=(f, k), f'@@)=(f,ky), f"(a)=(f, ks). By

Lemma 4.2,

by =22l P 2 by 2,
V2o by VBT by B

and for the orthonormal basis {w, v, w3},

1 0 0 0 0 0
st =f(@o 1 0|+f(a)by 0 0 +f2(a) o 0 of

Corollary 5.1. Let A= A(T) and let du = rdrdd/=. Then there is an ideal
| of A such that dimA/l =3, §Mu, =1 and an isomorphism S : A/l —

B(H?(w) N 1) is not isometric and SH(f + 1) = S¥.

Proof. By Examples A and B, if f(z)=z—a, then || S;drde/” I S‘fje/z“ I
because f(a)= f"(a)=0 and f'(a)=1. By Sarason’s theorem (cf. [3, p. 125],
[12]), | S92 | =|| £ + 1. Hence | ST/ | % | f + 1 |, and hence S* = 5%/

is not isometric. O
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Example C. Let A= A(T) and let | ={f € A(T): f(0)= f'(0) = f"(0) = 0}.
Let v(r) be a probability measure on the interval [0, 1] and let u be a probability

measure on the closed unit disc D such that dp = dv(r)d6/2m. Then | SY | <
1
| f+1]. Hence {Sk : f € A(T)} is a CQ-algebra. Let k; =1, k, = z/jorzdv(r)

and kg = 222/j;r4dv(r). Then f(0) = (f, ky), f'(0) = (f, ky), £"(0) = (f, k).

Since p is a radial measure, it follows that k;, k,, k3 are mutually orthogonal.
Hence

z 22

T gz V3T
{Ilrzdv(r)} {Ilr4dv(r)}
0 0

By Lemma 4.2, for the orthonormal basis {y1, y2, y3},

yi=1 y;=

100 0 o 00
SH=f(0)0 1 0|+ f(0)by 0 O +T() 0 o0 0]
001 0 by O bybs, O 0

where

k 1 y2
b M—{j rzdv(r)} <1

2 Tk Tz Jo

g y2
by kel _{Lf V“)} .
b1 barllkgllyzy (L2 -
d
Ior v(r)

Hence bsy = max{bsy, by} = S§ || <1 and hence by; < bsy <1, where

0 0 0
St=lby 0 0
0 by O

Second, we consider the case when 4M at)/; = 2. Since the proof of Example D is

similar to one of Example A, the proof is omitted.
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Example D. Let A= A(T) and let du = d6/2x. Let a, b be distinct points in
Dandlet | ={f € A(T): f(a) = f'(a) = f(b) = 0}. By Sarason’s theorem (cf. [3,
p. 125], [12]), || S¥ || =| f + I |. Hence {S% : f e A(T)} is a Q-algebra. Let k =

11 -az), k, =z/(1-az)® and kg =1/(1-bz). Then f(a)=(f, k), f'(a)=
(f, ko), f(b)=(f, ks). By Lemma 4.4, for some constant y such that | y| =1,

Vi-lal? Vi-laf®

3 3 z-a a \/1—|b|2(z—a)2
Vi="Ta Ve T 1oa 1-ar VBT 1-bz \1-2az)’
= 2 2
=1 [af, y, |13 2. 1-]a| J_1-|b| Y2 _b-a

' a-b 1-ab "yy l-ab’

and for the orthonormal basis {y, v, w3},

1 0 0 0 0 O 0 0 0
st=f@ 0 1 o|+f@ x o0 o/+fb|0o 0o of
-1 Y2 O -Xy 0 O i Y2

Example E. Let A= A(T) and let du = rdrd6/r. Let a, b be distinct points in
D and let | ={f e AT): f(a)=f'(a)= f(b)=0}. Then | Sk |<|f+1].
Hence {S} : f € A(T)} is a CQ-algebra. Let k; = ]/(1—52)2, k, =2z/(1- az)®

and ks :1/(1—52)2. Then f(a)= (f, kl), f'(a) = (f, k2), f(b) = (f, k3). By
Lemma 4.4,

1-]af® v b-a
w-i=lal” va _ sb-a
V2 Y1 1-ab
y = Lmab (A-[af)a-|b[) |1-ab]|
1-ab  ja-bf? V31-[a?)a-|b]?)+|a-b

and for the orthonormal basis {y, v, w3},
1 0 0 0 0 O 0 0 O
st =f()] 0 1 0+ f'(a)] x 0 0|+f(b))O O O]
-1 Y2 O -xy; 0 0 i Y2
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Corollary 5.2. Let A= A(T) and let du = rdrd6/x. Then there is an ideal |
in A such that dimA/l =3, My =2, and an isomorphism S*: A/l —
B(H?(w)N 1+) s not isometric, where Stg =P(fg), (ge H2(u)N 1) and

SH(f +1)=s}.

Proof. By Examples D and E, if f(z) =z —a, then || S/ | | s9%/2% |,
because f(a)= f"(a)=0 and f'(a) =1. By Sarason’s theorem (cf. [3, p. 125],
[12]), | S92 | = || f + 1. Hence | ST/ | % f + 1], and hence S* = §"rd%/
is not isometric. O

Third, we consider the case when M AT)/I = 3 (cf. [11, Proposition 2.3]).

Example F. Let A = A(T) and let du = d6/2x. Let a, b, ¢ be distinct points in
D andlet I ={f € A(T): f(a)= f(b) = f(c) = 0}. By Sarason’s theorem (cf. [3,
p. 125], [12]), || Sk ||=| f +1]. Hence {Sk : f e A(T)} is a Q-algebra. Let
ki =1/(1-az), k, =1/(L-bz) and k3 =1/(1-Cz). Then f(a)=(f, k), f(b)=
(f, kp), f(c)=(f,ks). Forsome constant y; suchthat |v; | =1,

Vi-|af? z-a y1-|bJ> |

\lfl(z):ﬁ: yo(z) = V2177 1-bz
va(2) = z-a z-b \/1—|c|
3 31-3az 1-pz 1-¢cz
By Remark B, for the orthonormal basis {y1, w1, w3},
1 0 O 0 0 0 0 0 0
S =0i(f)x 0 O|+dp(f)]—x 1 O|+¢s(f)] O 0 0f
y 0 0 -xz z O xzx-y -z 1
where
LY ST J1zab|J1-[al*1-|cP
|a-b]| a-b la-c]
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and
2 2
sy V= [b P[]
° LECI .
Then
2 = 2 12
2l a-b | |1-ac 2 |1-cb
14]y| 1—5a‘ _‘C_a 14z _‘b_c

Example G. Let D? e the Dirichlet space with the norm

2 _11fIP "(rai® |2
[£p =111, + [ | 170e) P v/

12
Then there is not a probability measure p satisfying | f |2 = (J“ , ‘<1| f |2dpj

Hence D? is not an abstract Hardy space H?(n). Let A= A(T) and let | =
{f e A(T): f(0)=f'(0)=0}. Then |z+ 1| =inf{z+f|:fel}=1 Let Hy =
H2(de/2n) N 1Y,  Hp = H2(rdrdo/x) N1+ and Hz =D?> N1+, Then we
consider restriction of the shift operators SZ{J' on H; (j =1 2, 3). With respect to

the orthonormal basis {1, z, z2}, {1, ¥2z, v3z?} and {1, 2/v2, 2243},

0 0 0 0 0 0
sf/m_si -1 0 o] sf¥r_s2_|yN2 0o 0|
0 1 0 0 V2/43 0
0 0 0
3313 =2 0 0]
0 32 0

Since || si | =1 (or by the Sarason’s theorem (cf. [3, p. 125], [12])), it follows
that || SJ4 | =] z+1], and {S?11 : f e A(T)} is aQ-algebra. This is a special case
of Example A. Since | 52 | =~/2/4/3, it follows that | S;'2 | <[z + 1], and

{S?fz : f € A(T)} is a CQ-algebra. This is a special case of Example B. Since



144 TAKAHIKO NAKAZI and TAKANORI YAMAMOTO

| ST | = V2, it follows that || SJ% ||> | f +1], and {S}®: f e A(T)} is a

BQ-algebra which is not a CQ-algebra of A(T).
6. CQ-algebras of the Bidisc Algebra

Let A(Tz) be the bidisc algebra. Then we can give the simple examples of a
CQ-algebra for A(T?). In this section, for du = d6, do,/2r, we define H2(p),

the orthogonal projection P and the contractive operator S? as Definition 1.2 in

Introduction. We describe a 3-dimensional CQ-algebra {Sk : f e A}. We consider
the case when M ai contains just 1 element. The proofs of Examples H and | are

similar to one of Example A.
Example H. Let A = A(T?) and let du = deldez/(Zn)z. Let (a, b) € D? and
let 1 ={f e AT?): f(a, b) = f,(a b) = f,(a b)=0}. Let

1 1 K, — z 1 K = 1 w
1-az 1-bw 2 (1-az? 1-bw’ 3T 1-az 1—-bw?

ki =

Then f(a, b) = (f, ki), f,(a, b) =(f, ky), fyu(a, b)=(f, k3). By Lemma 4.1,

S Y TGS T W Yt S i

l-az 1-bz l-az l1-az 1-—bw

x=1-|af®>, y=0, z=1-|bJ?

and for the orthonormal basis {y1, v, w3},

1 0 O 0 0 O 0 0 O
st =f(b)o0 1 O0|+f(ab)lx 0 O0[+fu(ab)0 0 O0f
0 0 1 y 0 O z

Example I. Let A= A(T?) and let du = deldez/(Zn)z. Let (a, b) € D? and
let | ={f e AT?): f(a, b) = f,(a b) = f,(a, b)=0}. Let
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1 1 z 1 27° 1

S S ks = —
1-az 1-bw 2 (1-az)®? 1-bw 3 1-az)® 1-bw

Then f(a, b) = (f, ki), f,(a, b) =(f, ky), f(a b)=(f, k3). By Lemma 4.2,

2 2 2 2
v dizlal® JA-jpP o 2-a y1-[af’ 1-|b]
YY" 1-a 1-bz 0 P 1-az 1-az  1-pbw |

Wa:(w_b)zﬁ—mﬁ L-[bp

1-bw 1-az 1-bw

b3_2:1 bﬂ__g

b1 b1

by = x=1-]af,

and for the orthonormal basis {y1, v, w3},

100 o 0 o 0 0
SH=f(ab)0 1 0]+ f,(ab)by 0 ol+ 2@D) 5 o

Corollary 6.1. Let dp = d6;d0, /(2)? and let (a, b) e D?. Let | = {f e A(T?)
. f(a, b) = f,(a, b) = f,,(a b)=0} Then S*:A(T?)/I - B(H?()NIY) is
isometric.

Proof. By Examples A and I,

f,,(a, b)
Isk 1= H f(a, b)S{' + f,(a b)Si_, +HTS(i—a)Z

f;;(a b) SdO/Zn
2 (z-a)?

_ H (@, )SY2 4 f,(a, b)SIY2T 4
=| 8§ |,
where

0(2) = f(a,b)+ fy(a, b) (- a) + 22 D) g a2

By Sarason’s theorem (cf. [3, p. 125], [12]), || Sge/zn [=]g+1g], where Ig=
{f e AT): f(a)= f'(a)= f"(a) =0} and S%2%: A(T)/1, — B(H?(d6/2n)

Nlg) is isometric. Hence || S¥ | =] g+ 1q|. By the calculation, it follows that
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[g+1]=]g+1lg] Since f(z, w)—g(z)e I, it follows that || Sk | =] g+ 1|

=| f + 1 |. This implies that S* is isometric. O

Corollary 6.2. Let A= A(T?) and let du = d6,d6,/(2n)?. Then there is an

ideal | of A such that dimA/I =3 and S": A/l > B(H?(w)N 1+) is not
isometric.

Proof. If the following condition (1) implies (2) for any distinct points
T, v Tn € M and complex numbers w, ..., w,, then we say that A and

I = ﬂ'}zl ker t; satisfy the Pick property. In general, it is proved by the calculation
that (2) implies (1).

(1) [(1— WIW_J)kJI]In, j=1 >0, where k” = <ki' kj)H’ and ’C](f) = <f, kj>P~'
(f € A).

(2) There exists f e A suchthat t;(f)=w; 1< j<n)and| f+1]<L

Then it is known that S* : A/l — B(H2(uw)N 1Y) is isometric if and only if A and
I:ﬂgjzlkerrj satisfy the Pick property (cf. [11, Proposition 4.6.]). By the
definition of the Pick property, if A and | :ﬂizlkerrj satisfy the Pick property,
then Aand J =ﬂ?=1kerrj satisfy the Pick property, because if [(1 - wiw_j)kji]ﬁ j=1
>0 and wg =0, then [(1—WiW_j)kji]i°’,j=1 > 0. Hence, if S* : A/l - B(H?(n)
N 11) is isometric, then S* : A/J — B(H2(u) N 11) is isometric. On the other
hand, by the following Proposition 6.3, S" : A/J — B(Hz(u)ﬂ I+) is not

isometric. This is a contradiction. Hence S": A/l — B(H2(u)N 1Y) is not
isometric. d

Proposition 6.3. Let A= A(T?) and let du:deldez/(Zn)Z. Let J =
{f e A: f(a, b)= f(c,d) =0}, where (a, b), (c,d) are distinct points in D?.
Then J is an ideal of A such that dimA/J = 2. Let Skg = P(fg)(ge H2(n)

N J+). Then an isomorphism S* : A/J — B(H2(u) N J*) is not isometric.
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Proof. Let ky(z, w) =1/(1—az)(1-bw) and kp(z, w) = /(1 -€z)(1 - dw).
Let

ajj = (Skwj, vi) = ID fyjwide (G, j =1, 2),

where {1, vo} is an orthonormal basis of H2(u) NI+ which is made from
{kq, ko } by the Gram-Schmidt method. By [10, Lemma 3],

1 0 0 0 1
(aij):f(&b)(c Oj+f(c,d)(_c J, Ic|< /?_1,

where
c=o((ab) (c,d))=sup{ f(c,d)|: f(a,b)=0,| f [ <1}
—max( a-c||b-d )
B 1-ac||1-bd
because
2
|C|2 _ | ke, ko) |
2 2 2
ke 71k 1 =1 (k. k) |
1
~ |1-ac|?1-bd |?
B 1 1 '

a-laP)a-1bP)a-|cP)a-|d ) |1-ac|’|1-bd |

and hence, for

w_|a=c 2 | b-d 2
“limael YT ishd |
2__(=x)(0-y) 1 -1
e ya-y) ey Tt
By [10, Lemma 3], an isomorphism S* is not isometric. O
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