
 

Far East Journal of Dynamical Systems 
Volume 15, Number 1, 2011, Pages 53-66 
Published Online: June 4, 2011 
This paper is available online at http://pphmj.com/journals/fjds.htm
© 2011 Pushpa Publishing House 

 

 :tionClassificaject Sub sMathematic 2010 34H10.
 Keywords and phrases: fast excitation, van der Pol-Mathieu-Duffing oscillator, time delay, 

Melnikov chaos. 

Received November 8, 2010 

HORSESHOES CHAOS IN A DELAYED VAN DER 
POL-MATHIEU-DUFFING OSCILLATOR WITH FAST 

HARMONIC EXCITATION 

C. A. KITIO KWUIMY and M. BELHAQ 

African Institute for Mathematical Sciences (AIMS) 
6 Melrose Road, Muizenberg 7945 
South Africa 

Laboratory of Mechanics 
University Hassan II-Casablanca 
Morocco 

Abstract 

Horseshoes chaos in a delayed van der Pol-Mathieu-Duffing oscillator 
under a fast harmonic excitation is examined in this paper using the 
Melnikov method. A delay feedback control scheme is considered to 
switch the system from chaos to order and vice-versa. Delayed terms are 
derived from a delayed Duffing potential and a delayed damping. The 
stability of the delayed system is presented in terms of a theorem. The 
influence of delay and fast excitation on the threshold for chaos is 
analyzed. 

1. Introduction 

Horseshoes chaos appears in nonlinear systems when transverse intersections 
between stable and unstable manifolds in the Poincaré section occur. The method 
generally used to study such intersections, due to Melnikov [1], is one of the few 
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analytical methods available to determine the existence of chaotic motion in systems 
subjected to dissipative time dependant perturbation. The main idea of the method is 
to find a function measuring the distance between the stable and unstable manifolds 
for a saddle or two saddle of the perturbed system. That is, if the function associated 
to the Melnikov method, the so-called Melnikov function, vanishes for certain values 
of the bifurcation parameter, then the stable and unstable manifolds will intersect 
each other away from the saddle point in the Poincaré section [2]. If the stable and 
unstable manifolds cross each other once, then they will intersect an infinite number 
of times, thus forming a type of Smale horseshoes mapping leading to chaos. From 
Smale-Birhoff theorem [3], the existence of such intersections results in chaotic 
dynamics. Although the chaos does not manifest itself in the form of permanent 
chaos, it does in terms of the fractal basin boundaries. 

Many contributions have been made to investigate analytically chaos in 
dynamical systems using Melnikov criteria. One of the early works is due to Holmes 
[2] for a Duffing oscillator. Wiggins [3] proposed a generalized form of the method 
and a radon version was proposed by Frey and Simiu [4]. Recently, Zhang et al. used 
the extended version of the Melnikov criteria to study the multi-pulse global 
bifurcation and chaos of a cantilever beam [5]. Applications of the method can be 
found in epidemiology [6], finance [7], biology [8], and in engineering problems    
[9, 10]. In this later application, having an analytical expression for the prediction of 
chaos, it is helpful to turn a system from chaos to order or vice-versa. This is done 
using one of the various control schemes. Amongst them, active control method has 
received a great attention in last two decades, and it has been applied to various 
branches of engineering, see [11-13] for details. The most recent control scheme is 
the one involving delay feedback of the state variables, and is now widely used    
[14-18]. Ji and Leung [17] considered a Duffing system under parametric excitation 
and used a delay feedback coupling to control various bifurcations in the system. 
Sun et al. [18] considered a double well Duffing oscillator with only a positive 
position and velocity delay feedback coupling, and investigated the effects of time 
delay on the chaotic behavior of the system. They concluded that a good choice of 
time delay can affect radically the behavior of the system. 

Guided by these previous works, we consider in this paper, the following 
delayed van der Pol-Mathieu-Duffing (vdPMD) oscillator with a high-frequency 
excitation (HFE) and investigate the effects of delay and delay gain parameters on 
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the appearance of horseshoes chaos 
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xd β+ωγ++α−ε− tcos  
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Equation (1) is the mathematical model for various phenomena in physics. As in 
Manoj et al. [19], the meaning of the various terms of the equation for the case of an 
optically actuated radio frequency MEMS determined as follows: 

● The van der Pol term ( )21 xdt
dx α−ε−  models the self oscillation of a disc 

resonator for a sufficient DC laser power. 

● The Mathieu term ( )tcos ωγx  models the periodic parametric excitation 

introduced by modulating the laser using a piezodrive. 

● The 4Φ  Duffing potential 42
4
1

2
1 xx β+  is used to show a soft nonlinear 

behavior. The parameter β is chosen to be negative in order to be more 
realistic. In fact, this corresponds to a catastrophic single well potential. 
That is, for large value of x, the system can escape over the potential barrier 
and dramatically suffers an unbounded motion. This configuration of the 
potential possesses three equilibrium points, one stable point =0S  






 == 0;0 dt
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● The fast harmonic excitation is added to modify the nonlinear characteristic 
spring behavior of the system from softening to hardening and to create 
entrainment or frequency-locking [20]. 

● The system is controlled via a delayed Duffing potential ( ) +τ−tx2
2
1  

( )τ−β tx4
4
1  and a delayed momentum ( ) .~

dt
tdx τ−ε  The gain parameters 

β
~  and ε~  have the same sign as β and ε. 
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● The remaining term is the acceleration of the system. 

According to this definition, α is the amplitude of the self oscillation, γ is the 
magnitude of the parametric force, ω the corresponding frequency, β the Duffing 

nonlinear term, 2Ωa  the magnitude of the fast harmonic excitation and Ω the 

corresponding frequency. 

The rest of the paper is arranged as follows: Section 2 considers the linear 
stability of the system with time delay feedback coupling. Lyapunov analysis and 
Forde and Nelson [22] theorem are used to determine the condition of stability. 
Section 3 concerns the Melnikov criteria for chaos; focus is made on the effect of 
time delay and delay gain parameter on the appearance of chaos. Section 4 is for 
conclusion. 

2. Linear Stability 

The Lyapunov concept is used to study the stability of equation (1). In this line, 
the following characteristic equation in λ is obtained from the linear form of 
equation (1): 

( ) ( ) ,021 =λ+λ λτ− PeP  (2) 

with 

( ) ( ) ( ) .~~31and311 2
02

2
0

2
0

2
1 ελ−β−−=λβ++−αλε+λ=λ xPxxP  (3) 

Due to the presence of the exponential term in the characteristic equation (1), it 
is quite difficult to calculate explicitly its roots. The stability condition can be 
derived using a theorem due to Forde and Nelson [22] which states that, if one has 
an idea of the roots of equation (1) for the undelayed case, then it is possible to study 
the evolution of these roots as the delay grows through positive values. This theorem 
was recently used by Ghosh et al. [14] while studying the stability of a vdPD 
equation with position feedback coupling. 

For ,0=τ  equation (1) becomes 

[ ( )] ( ) .0~31~ 2
0

2
0

2 =β−β+−αε+ε−λ+λ xx  (4) 

Routh-Hurwitz criterion dictates that, if ( )2
01~ xα−ε<ε  and ,~

β>β  then all 

roots of this equation have negative real part. Setting R∈µµ=λ ,i  and using 
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Lemma 2 in Forde and Nelson [22], one obtains the following algebraic equation in 

terms of 2µ=ν  for the stability of the system: 

,02 =+ν+ν BA  (5) 

with 

( ) ( ) 22
0

22
0

2 ~3121 ε−β+−−αε= xxA  

and ( ) ( ) .~3131 22
0

22
0 xxB β+−β+=  Since the leading coefficient in equation (4) is 

positive, its has a positive real root in two circumstances: the first case is 0<B  and 
the second case is 0>B  with .0<A  Thus, we can conclude with the following 
theorem for the stability of equation (1). 

Theorem. A steady state with characteristic equation given by equation (1) is 
stable in the absence of delay, and becomes unstable with increasing delay if and 
only if  

1. ( )2
01~ xα−ε<ε  and ,~

β>β  

2. either ( ) ( )22
0

22
0

~3131 xx β+<β+  or ( ) ( )22
0

22
0

~3131 xx β+>β+  and >ε 2~  

( ) ( ) ,1312 22
0

22
0 xx α−ε+β+−  

as the delay is increasing from zero to infinity. For a steady state near one of the two 
stable equilibrium points of equation (1), 

1. ε<ε~  and ,~
β>β  

2. .2~ 22 ε+−>ε   

3. Delay Parameters and Chaos 

3.1. Melnikov’s criterion 

A key point with unstable and chaotic engineering system is to derive a 
mathematical condition overlapping the parameters of the system and leading to such 
phenomenon. The Hamiltonian system from which equation (1) is deduced can be 
written as 
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ydt
dx =  

and 

.3xxdt
dy β−−=  (6) 

The corresponding Hamiltonian function possesses an heteroclinic orbit 
connecting the two unstable points of the potential. The orbit is given by 
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2
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The Melnikov function [12] is defined by 
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The new coefficient is defined as 0tt +=η  and 0t  is a phase angle. If ( )0tM  

0=  and ( ) 00 ≠dt
tdM  for some 0t  and some set of parameters, then a horseshoes 

exists, and chaos occurs [2]. Carrying out integration of (7), one finds 

( ) ( ) ( ) ( ),2~~
6

2
754321 00 Ωtcostsin IaIIIIIItM Ω+β+ε++ωγ+α−ε=  (11) 

with 
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Using the Melnikov criterion, it is found that chaos appears when one of the 
following conditions is satisfied [2]: 

[( ( ) ) ].~~1with, 2
3

22
754212

6
4

222 IIIIII
I

aaa cc γ−β+ε++α−ε
Ω

=≥  (13) 

Conditions (12) overlap the parameters of the system including time delay such 
that the system can turn form chaos to order and vice-versa by acting on the 
parameters. 

3.2. Numerical analysis and discussions 

Figure 1 shows the shape of the 3I  as a function of the frequency ω of the 

parametric excitation and 54, II  and 6I  as functions of the time delay τ. It can be 

observed that, 3I  increases until a maxima for small values of ω and decreases for 

large values of ω. The maxima is obtained for 
π

=ω 2915.1  as .20
7

max3 β
=I  The 

quantities 54, II  and 6I  decrease for small values of the time delay τ and increase 

for large values of τ. On the other hand, 4I  is negative and 5I  is positive for all τ 

while 6I  is negative for large value of τ. 
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(a) 

 
(b) 

 
(c) 

Figure 1. (a) Shape of 3I  as a function of ω. (b) Shape of delay linear terms 4I  and 

5I  as functions of time delay τ. (c) Shape of delay nonlinear term 6I  as a function 

of time delay τ. The figures are plotted for .101=β  
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(a) 

 
(b) 

Figure 2. Effects of the amplitude of the parametric excitation on the critical 
amplitude of the HFE: (a) Case .52.1 β>=α  (b) Case .52.0 β<=α  The 

curve with line and cross is plotted for the delayed case while the case without delay 
is plotted with line. 

Figure 2 shows the variation of ca  as a function of γ for ,10,1 =Ω=ω  

1.0~,8.0,11.0 =β=ε=β  and .82.0~ =ε  The curve in line corresponds to the case 

without delay while the delayed case is plotted with line and crosses. The case 
β>=α 52.1  is plotted in Figure 2(a) and the case β<=α 52.0  is plotted in 

Figure 2(b). The curves show how the presence of time delay increases the critical 
value of γ from cγ  to .1cγ  In each case, the region above the curve corresponds to 

the region of appearance of fractal basin boundary. 
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The effects of the frequencies on the critical amplitude are shown in Figure 3 
with the values of Figure 2 and .2=γ  The influence of Ω on a is an almost periodic 

function with extremal values (Figure 3(a)). The curve with line and crosses delimits 
the domain of chaos in the case with delay while a curve with line delimits the 
region of chaos in the case without delay. This indicates that, as in the previous case, 
the delay reduces the domain of chaos. The same observation is made considering 
the frequency of the parametric excitation ω (Figure 3(b)). In this case, the critical 
amplitude ca  decreases with small values of ω and increases for large values of ω. 

This is a consequence of the result of Figure 1(a), since 3I  has a negative effect of 

ca  according to equation (13). 

 
(a) 

 
(b) 

Figure 3. Effects of the frequencies on the critical amplitude of the HFE: (a) Effects 
of the HFE frequency. (b) Effects of the parametric frequency. The curve with line 
and cross is plotted for the delayed case while the case without delay is plotted with 
line. 
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The following proposition resumes the turn off behaviors of the system: 

Proposition. For the system without delay: 

• If the amplitude of the parametric excitation γ verifies 

,5121
240,0

β
α+ε=γγ<γ< cc with  (14) 

then a nonzero critical amplitude of the HFE may exist. This amplitude ca  

is given as 

( ( ) ) 2
3

22
75421

6
2

~~1 IIIIII
I

ac γ−β+ε++α−ε
Ω

=  (15) 

and for ,caa >  the system has a fractal basin and horseshoe chaos exists. 

• If the amplitude of the parametric excitation γ is defined as 

,0>γ>γ c  (16) 

then a nonzero critical amplitude of the HFE may not exist and the system 
is always chaotic for all physically meaningful value of a. 

For the system with delay: 

• If the amplitude of the parametric excitation γ is defined as 

,0 cγ<γ<  (17) 

then the nonzero critical amplitude is increased by time delay if and only if 
the following conditions hold: 

1. ( ) ,0021 >>α− termsdelayofsomeandII  

2. ( ) ,0021 <<α− termsdelayofsomeandII  

otherwise, time delay reduces the nonzero critical amplitude .ca  

• If the amplitude of the parametric excitation γ is defined as 

,0>γ>γ c  (18) 
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then a nonzero critical amplitude may exist if 

,51~~
7

20, 75411 



 







β
α+ε+β+ε+β=γγ<γ<γ IIIwith ccc  (19) 

otherwise, the nonzero critical amplitude may not exist. 

Time delay increases the critical amplitude of the Mathieu excitation 1cγ  if and 

only if 

• ( ) ,0021 >>α− termsdelayofsomeandII  

• ( ) .0021 <<α− termsdelayofsomeandII  

4. Conclusion 

A van der Pol-Mathieu-Duffing equation with linear plus nonlinear delay 
feedback coupling was considered. Using the Forde and Nelson theorem, the 
stability of the system was investigated around the equilibrium and the Melnikov 
method was used to analyze the criterion for the appearance of horseshoes chaos in 
terms of delay parameters. It was shown that the delay parameters highly influenced 
the threshold condition for chaos and thus can be used to enhance or suppress 
chaotic dynamics of the considered oscillator. 

References 

 [1] V. K. Melnikov, On the stability of the center of some periodic perturbations, Trans. 
of the Moscow Mathematical Society 12 (1963), 1-57. 

 [2] P. Holmes, A nonlinear oscillator with a strange attractor, Philos. Trans. R. Soc. A 292 
(1979), 419-448. 

 [3] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 
Springer-Verlag, Berlin, 1990. 

 [4] M. Frey and E. Simiu, Noise induced chaos and phase flux, Physica D 63 (1993),  
321-340. 

 [5] W. Zhang, M. H. Yao and J. H. Zhang, Using the extended Melnikov method to study 
the multi-pulse global bifurcation and chaos of a cantilever beam, J. Sound Vibration 
319 (2009), 541-569. 



HORSESHOES CHAOS IN A DELAYED … 65 

 [6] D. Ouatemi and Y. Kone, Melnikov analysis of chaos in a general epidemiological 
model, Nonlinear Anal.: Real World Appl. 8 (2007), 20-26. 

 [7] C. L. Chian Abraham, Complex System Approach to Economic Dynamics, Springer, 
Berlin, Heidelberg, New York, 2007. 

 [8] Z. Zhang, J. Peng and J. Zhang, Melnikov method to a bacteria-immunity model with 
bacterial quorum sensing mechanism, Chaos Solitons Fractals 40 (2009), 414-420. 

 [9] J. S. Lee and K. S. Chang, Applications of chaos and fractals in process systems 
engineering, J. Process Control 6 (1996), 71-87. 

 [10] F. Abdel and F. Elhefnawy, Nonlinear electrohydrodynamic instability of two liquid 
layers, International J. Engineering Science 40 (2002), 319-332. 

 [11] N. L. Virgin, R. H. Plaut and C. C. Cheng, Prediction of escape from potential well 
harmonic excitation, International J. Nonlinear Mechanics 27 (1992), 357-365. 

 [12] C. R. Fuller, S. J. Eliot and P. A. Nelson, Active Control of Vibration, Academic 
Press, London, 1997. 

 [13] C. A. Kitio Kwuimy, B. R. Nana Nbendjo and P. Woafo, Optimization of 
electromechanical control of beam dynamics: Analytical method and finite difference 
simulation, J. Sound Vibration 298 (2006), 180-195. 

 [14] D. Ghosh, R. A. Chowdhury and P. Saha, On the various kinds of synchronization in 
delayed Duffing-van der Pol system, Communication in Nonlinear Science and 
Numerical Simulation 13 (2008), 790-803. 

 [15] L. Xinye, J. C. Ji, H. H. Colin and T. Chunxiao, The response of a Duffing-van der Pol 
oscillator under delayed feedback control, J. Sound Vibration 291 (2006),      644-655. 

 [16] J. Xu and K. W. Chung, Effects of time delayed position feedback on a van der Pol-
Duffing oscillator, Phys. D 180 (2003), 17-39. 

 [17] J. C. Ji and A. Y. T. Leung, Bifurcation control of a parametrical excited Duffing 
system, Nonlinear Dyn. 27 (2002), 411-417. 

 [18] Z. K. Sun, W. Xu, X. L. Yang and T. Fand, Effects of time delays on bifurcation and 
chaos in a non-autonomous system with multiple time delays, Chaos Solitons Fractals 
31 (2007), 39-53. 

 [19] P. Manoj, R. H. Rand and A. T. Zehnder, Frequency locking in a forced Mathieu-van 
der Pol-Duffing system, Nonlinear Dyn. 54 (2008), 3-12. 



C. A. KITIO KWUIMY and M. BELHAQ 66 

 [20] A. Fashi and M. Belhaq, Effect of fast harmonic excitation on frequencing-locking in a 
van der Pol-Duffing oscillator, Communication in Nonlinear Science and Numerical 
Simulation 14 (2009), 244-253. 

 [21] M. Belhaq and A. Fashi, 2:1 and 1:1 frequency-locking in fast excited van der-
Mathieu-Duffing oscillator, Nonlinear Dyn. 53 (2008), 139-152. 

 [22]  J. Forde and P. Nelson, Application of Sturm sequences to bifurcation analysis of 
delay differential equation models, J. Math. Anal. Appl. 300 (2004), 237-284. 


