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Abstract 

The inverse spectral problem of the Sturm-Liouville operator =qL  

( )xq
dx
d +− 2

2
 is considered, where ( )xq  is an integrable function on 

( ).1,0  Some analogies of the Hochstadt-Lieberman Theorem for Sturm-

Liouville operators are proved. 
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1. Introduction 

The inverse spectral problem for Sturm-Liouville equations is to determine the 
potential function ( ) ( )1,01Lxq ∈  from the spectral data of the boundary value 

problem 

 ( )( ) ,10,0 <<=−λ+′′ xyxqy  (1.1) 

( ) ( ) ,000 =−′ hyy  (1.2) 

( ) ( ) .011 =+′ Hyy  (1.3) 

It often arises from vibration of a string, quantum mechanics, geophysics and other 
branches of sciences. We can study the inverse spectral problem of (1.1)-(1.3) by 
several approaches: the transformation operator theory, the Weyl-Titchmarsh 
M -function, the boundary control method, the method of spectral mappings or 
some other methods; varieties of (1.1)-(1.3) were studied by several mathematicians, 
e.g., inverse spectral problems of Sturm-Liouville equations on graphs, of Sturm-
Liouville equations with interior discontinuities, of Sturm-Liouville equations with 
an eigenparameter on boundary conditions and inverse spectral problem for vectorial 
or matrix-valued Sturm-Liouville equations (see [1, 3, 4, 5-13, 18-22, 26-38]). 

In 1978, Hochstadt and Lieberman (see [23] for details) proved a uniqueness 
theorem for a Sturm-Liouville equation with mixed-data. The statement is as 
following: 

Theorem 1.1. Consider the equation (1.1) subject to boundary conditions (1.2) 
and (1.3), where ( ).1,01Lq∈  Then the spectrum ( )qHh ,,σ  and ( )1,21|q  determine 

( )xq  uniquely. 

The purpose of the paper is to prove some analogies of this theorem for Sturm- 
Liouville equations. In the second section, some preliminaries are reviewed. In 
Section 3, we prove analogies of the Hochstadt-Lieberman Theorem for Sturm-
Liouville equations with interior discontinuities, with eigenparameter on boundary 
conditions and the mixed problems. 

2. Preliminaries 

The main idea we use in this paper is the Weyl-Titchmarsh M -function. 
Roughly speaking, the M -function for a Sturm-Liouville equation (1.1) is a 
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meromorphic function of the form 

 ( ) ( )
( ) ,,1

,1
λϕ′
λϕ=λM  (2.1) 

where ( )λϕ ,x  is a solution of (1.1) and satisfies the initial condition 

 ( ) ( ) ,,0,1,0 h=λϕ′=λϕ  (2.2) 

where h is scalar. It is well known that the M -function determined ( )xq  uniquely, 

or equivalently two spectra determine ( )xq  uniquely. 

In order to prove our main results, we need more specifically to focus on the 
properties of ( ).,1 λϕ  It is not difficult to derive the asymptotic behavior of ( )λϕ ,x  

(see Chapter 1 of [36]). 

Lemma 2.1. ( ) ( ).1,01Lxq ∈  Let 2ρ=λ  and .Imρ=τ  Then, for ,∞→λ   

 ( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ τ
ρ

+
ρ
ρ+ρ=λϕ xoxxHxx exp1sincos,  (2.3) 

and 

 ( ) ( ) ( ) ( ) ( ),expcossin, xoxxHxx τ+ρ+ρρ−=λϕ′  (2.4) 

uniformly for [ ],1,0∈x  where ( ) ( )∫+=
x

dttqhxH
0

.2
1  

The following theorem is also necessary for our analysis. 

Theorem 2.2 ([15, Proposition B.6]). Let ( )zf  be an entire function that 

satisfies 

(1) ( ) ( )ρ= ≤ kRz RCCzfk 21 expsup  for some ,10 <ρ<  ,0, 21 >CC  and 

some sequence ∞→kR  as .∞→k  

(2) ( ) .0lim =∞→ ixfx  

Then .0≡f  

We can apply Theorem 2.2 to establish some Hochstadt-Lieberman type 
theorems (see [15] for details). We shall use this method to obtain some analogies. 
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Let ( )λϕ ,xh  and ( )λψ ,xH  be solutions of (1.1) with 

 ( ) ( ) ( ) ( ) .,1,,0,1,1,0 Hh HhHh −=λψ′=λϕ′=λψ=λϕ  (2.5) 

Then the characteristic function for Problems (1.1)-(1.3) is 

( ) ( )
( ) ( )

( ) ( )λϕ′λψ′

λϕλψ
=λΔ

,,

,,
,,

xx

xx
qHh

hH

hH
 

( ) ( )

( ) ( ) ∏
≥

⎟
⎠
⎞

⎜
⎝
⎛

λ
λ−=

λϕ′λψ′

λϕλψ
=

0

,1
,21,21

,21,21

n nhH

hH
C  (2.6) 

where { } 0≥λ nn  is the spectrum of Problems (1.1)-(1.3) and C is a constant depending 

only on the spectrum { } .0≥λ nn  We should remind the readers that all the zeros of 

that characteristic function ( ) ( )λΔ qHh ,,  is geometrically simple. By Lemma 2.1, 

 ( ) ( ) ( ) ,exp1cossin,, ⎟
⎠
⎞⎜

⎝
⎛ τ
ρ

+ρω+ρρ−=λΔ OqHh  (2.7) 

where ( )∫++=ω
1

0
.2

1 dttqHh  Also, note if we let { ,δ>π−ρ|∈ρ=δ kG C  

},Z∈k  where ,0 π<δ<  then ( )τ≥ρ δ expsin C  for ,δ∈ρ G  hence 

 ( ) ( ) ( )τρ≥λΔ exp,, 0CqHh   for δ∈ρ C  and .1ρ  (2.8) 

If we let 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )⎪

⎪
⎩

⎪⎪
⎨

⎧

−=
=

−=
=

xqxq
xqxq

xyxy
xyxy

1
,

,1
,

2

1

2

1

 (2.9) 

for ,210 ≤≤ x  then (1.1)-(1.3) can be transformed to 

 ( )( ) ,2,1,210,0 =<<=−λ+′′ ixyxqy iii  (2.10) 

( ) ( ) ,000 11 =−′ hyy  (2.11) 

( ) ( ) ,000 22 =−′ Hyy  (2.12) 
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( ) ( ),2121 21 yy =  (2.13) 

( ) ( ) ,02121 21 =′+′ yy  (2.14) 

or equivalently, 

 

( )( )

( ) ( )

( ) ( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

=+′

=−′

<<=−λ+′′

,02121

,000

,210,02

yy

yy

xyxQIy

BA

H  (2.15) 

where 

( )
( )
( )

,
2

1
⎥
⎦

⎤
⎢
⎣

⎡
=

xy

xy
xy  (2.16) 

( )
( )

( )
,

0

0

2

1
⎥
⎦

⎤
⎢
⎣

⎡
=

xq

xq
xQ  (2.17) 

 .
00
11

and
11
00

,
0

0
⎥⎦
⎤

⎢⎣
⎡ −

=⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡= BAH

H
h

 (2.18) 

Problem (2.15) is equivalent to Problems (1.1)-(1.3). 

For a matrix-valued Sturm-Liouville equation, we have 

Lemma 2.3. Assuming that ( )xQ  is an integrable 22×  matrix-valued function. 

Let ( )λ,xY  denote the solution of matrix-valued equation of 

 ( )( ) 210,02 <<=−λ+′′ xYxIY Q  (2.19) 

with ( ) ,0 2IY =  ( ) ,0 K=′Y  where 2I  is the 22 ×  identity matrix and K  is a 

complex-valued 22 ×  matrix. Then 

( ) ,1expsincos, 2 λ⎟
⎠
⎞

⎜
⎝
⎛

λ
τ

+
λ
λ+λ=λ forxOxIxY K  

where  

( ).Im λ=τ  
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Note if ( ) ( ) ( ) ( )( )xqxqdiagxQx 21 ,==Q  (see (2.17)) and HK =  (see (2.18)), 

then 

 
 

where hiy ,  denotes the solution of 

( )( ) 0=−λ+′′ yxqy i  

on 210 << x  and satisfies the initial conditions 

( ) ( ) .0,10 hyy =′=  

The characteristic function of (2.15) is 

( ) ( ) ( ) ( )( )λ+λ′=λΔ ,21,21det, YYH BAQ  

( ) ( )

( ) ( )λ′λ′

λ−λ
=

,21,21

,21,21

,2,1

,2,1

Hh

Hh

yy

yy
 

( ) ( ) ( ) ( )λψ′λϕ−λψλϕ′= ,21,21,21,21 HhHh  

( ) ( ).,, λΔ= qHh  (2.20) 

All the eigenvalues of (2.15) consist of the zeros of ( ) ( )λΔ Q,H  and are 

algebraically simple. This viewpoint will enable us to avoid some complicated 
computation while studying inverse spectral problems of Sturm-Liouville equations 
with interior discontinuities, inverse spectral problems of Sturm-Liouville equations 
with an eigenparameter in boundary conditions or the mixed problems of the last two 
types of problems. 

3. Inverse Spectral Problems of Sturm-Liouville Equations with Interior 
Discontinuities or Eigenparameter on Boundary Conditions 

In this section, we prove some Hochstadt-Lieberman type theorems. The first 
case we want to treat is the Sturm-Liouville equation with interior discontinuities. 
This problem arises from several physical models, for example, the oscillation of 
the  Earth (see [2, 24]). The Hochstadt-Lieberman Theorem for Sturm-Liouville 
equations with interior discontinuities have been studied by some mathematicians 

( )
( )

( ) ,
,0

0,
,

,2

,1
⎥
⎦

⎤
⎢
⎣

⎡
λ

λ
=λ

xy
xy

xY
H

h
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(see [22, 35, 33] and references therein). Here we provide an alternative proof for 
the following theorem: 

Theorem 3.1 ([33, Theorem 2]). ( ) ( ) ( ) 4
21211 ,,,,1,0 R∈∈ aahhLxq  and 

.01 ≠a  Let ( )qHhaa ,,,, 21σ  denote the spectrum of 

 

( )( )

( ) ( )

( ) ( )

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=+′

=−′

<<=−λ+′′

−−
−

+

−+

.
2
1

2
1

2
1

,
2
1

2
1

,011

,000

,10,0

2
1

1

1

2

1

yayay

yay

yhy

yhy

xyxqy

 (3.1) 

Then ( )qhhaa ,,,, 2121σ  and ( )
⎟
⎠
⎞⎜

⎝
⎛| 1,2

1xq  determine ( )xq  uniquely. 

Proof. Using the transformation in (2.9), Problem (3.1) can be transformed to 
the problem 

 ( )( ) ,210,02 <<=−λ+′′ xyxQIy  (3.2) 

with boundary conditions 

 
( ) ( )

( ) ( )⎩
⎨
⎧

=+′

=−′

,02121

,000

11 yy

yy

BA

H
 (3.3) 

where ( )
( )

( )
,

0
0

2

1
⎥⎦
⎤

⎢⎣
⎡=

xq
xq

xQ  ( ),, 21 hhdiag=H  ,
1
00

1
1

1 ⎥⎦
⎤

⎢⎣
⎡= −a

A  ⎥⎦
⎤

⎢⎣
⎡ −

=
2

1
1 0

1
a

a
B  

and 

( ) ( )
( ) ( )⎩

⎨
⎧

<<
−=

=
.210for

1
,

2

1 x
xqxq

xqxq
 

Let ( )λϕ ,xi  denote the solution of 

( )( ) ,210,0 <<=−λ+′′ xyxqy i  



CHUNG-TSUN SHIEH, S. A. BUTERIN and MIKHAIL IGNATIEV 138 

with ( ) 1,0 =λϕi  and ( ) ii h=λϕ′ ,0  for ,2,1=i  and 

 ( )
( )

( )
.

,0

0,
,

2

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

λϕ

λϕ
=λ

x

x
xY  (3.4) 

Then the characteristic function ( ) ( )λΔ Q,,, 11 BAH  for (3.2) is 

( ) ( )λΔ Q,,, 11 BAH  

( ) ( ){ }λ+λ′= ,21,21det 11 YY BA  

( ) ( )

( ) ( ) ( )λϕ′+λϕλϕ′

λϕ−λϕ
=

− ,21,21,21

,21,21

2221
1

1

211

aa

a
 

( ) [ ( ) ( )] ( ) ( )λϕλϕ′+λϕ′+λϕλϕ= − ,21,21,21,21,21 21
1

1212211 aaaa  

( )( ) .1for,exp λτρ= O  (3.5) 

Suppose that there are two potential functions ( )xq  and ( )xq~  which satisfy 

( ) ( )qhhaaqhhaa ~,,,,,,,, 21212121 σ=σ   and  ( ) ( ) .~
1,2

11,2
1

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ |=| xqxq  

Then we have the corresponding potential matrix ( ) ( ) ( )( )xqxqdiagxQ 21 ,=  and 

( ) ( ( ) ( )) ( ( ) ( ))xqxqdiagxqxqdiagxQ 2121 ,~~,~~
==  so that 

( ) ( ).~,,,,,, 1111 QQ BAHBAH σ=σ  

The readers should note that all eigenvalues of (3.1) are algebraically simple. 
Denote 

( )
( )

( )⎥⎦
⎤

⎢
⎣

⎡
λϕ

λϕ
=λ

,0
0,

,,
2

1

x
x

QxY  

and 

( )
( )

( )
( )

( )⎥⎦
⎤

⎢
⎣

⎡
λϕ

λϕ
=⎥

⎦

⎤
⎢
⎣

⎡
λϕ

λϕ
=λ

,0
0,~

,~0
0,~~,,

2

1

2

1

x
x

x
x

QxY  
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the fundamental matrices of (3.2) corresponding to potential matrix ( )xQ  and ( ),~ xQ  

respectively. Since ( ) ( ),~,,,,,, 1111 QQ BAHBAH σ=σ  we have ( )Q,,, 11 BAHΔ  

( ),~,,, 11 QBAHΔ=  and this leads to 

( ) ( )

( ) ( )

( ) ( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡

λϕ

λϕ′+λϕ
⎥
⎦

⎤
⎢
⎣

⎡

λϕ′λϕ

λϕ′λϕ
− ,21

,21,21

,21~,21~
,21,21

2
1

1

21221

11

11

a

aaa
 

( ) ( )

( ) ( )
.

,,,

,,,

11

11
⎥
⎦

⎤
⎢
⎣

⎡

λΔ

λΔ
=

Q

Q

BAH

BAH
 (3.6) 

Denote 

( ) ( ) ( ) ( ) ( )
( ) ( ) .,,,

,21,21~,21~,21
11

1111
1 λΔ

λϕ′λϕ−λϕ′λϕ
=λ QF

BAH
 

Since 
( ) ( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡

λϕ

λϕ′+λϕ
− ,21

,21,21

2
1

1

21221

a

aaa
 never vanishes, 

( ) ( ) ( ) ( ) 0,21,21~,21~,21 1111 =λϕ′λϕ−λϕ′λϕ  

for ( ).,,,, 2121 qhhaaσ∈λ  Hence, ( )λ1F  is an entire function and satisfies all 

assumptions in Theorem 2.2. Applying Theorem 2.2, we have ( ) .01 =λF  This leads 

to 

( )
( )

( )
( ) .,21~

,21~

,21
,21

1
11

λϕ′
λϕ

=
λϕ′
λϕ  

Hence, ( ) ( ).~
21 xqxq =  This completes the proof. 
 

The readers shall see in Theorem 3.5 that the number and positions of 
discontinuities are not important. 

Next, we are going to study the Sturm-Liouville equations with eigenparameter 
in boundary conditions. Binding et al. have done a lot work on this topic (see [5-10] 
and the references therein for details). Here we shall prove the Hochstadt-Lieberman 
Theorem for this type of Sturm-Liouville problems. From now on, we denote 

( ) ( ) .0,0,,,,, 4 >−≠∈
+λ
+λ=λ bcadcdcbadc

baf R  
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Theorem 3.2. Assuming that ( ) ( )1,01Lxq ∈  and .R∈h  The spectrum 

( )( )qfh ,, λσ  of 

 

( )( )

( ) ( )

( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

=λ+′

=−′

<<=−λ+′′

011

,000

,10,0

yfy

hyy

xyxqy

 (3.7) 

and ( )
⎟
⎠
⎞⎜

⎝
⎛| 1,2

1xq  determine ( )xq  uniquely. 

Proof. Using the transformation in (2.9), (3.7) can be transformed to the 
problem 

 

( )( )

( ) ( )

( ) ( )⎪
⎩

⎪
⎨

⎧

=+′

=−′

<<=−λ+′′

λ

,02121

,000

,210,02

yy

yy

xyxQIy

BA

H  (3.8) 

where ( )( ),, λ=λ fhdiagH  ,
11
00
⎥⎦
⎤

⎢⎣
⎡=A  ⎥⎦

⎤
⎢⎣
⎡ −

=
00
11

B  and ( )xQ  is as that in the 

proof of Theorem 3.1. Let ( )λϕ ,1 x  be as that in Theorem 3.1 and ( )fx ;,2 λϕ  be 

the solution of 

( )( ) ,210,02 <<=−λ+′′ xyxqy  

with ( ) 1;,02 =λϕ f  and ( ) ( ).;,02 λ=λϕ′ ff  Then the characteristic function of 

(3.8) is 
 ( ) ( ) ( ( ) ( )),;,21;,21det,,, fYfYQ λ+λ′=λΔ λ BABAH  (3.9) 

where ( ) ( ) ( )( ).;,,;;, 21 fxxdiagfxY λϕλϕ=λ  Note that ( ) ( )λΔ λ Q,,, BAH   

is a meromorphic function with a simple pole .d
c−=λ∗  Hence, the function 

( ) ( )λΔ λ Q,,,1 BAH  defined by 

( ) ( )λΔ λ Q,,,1 BAH  

( ) ( ) ( )λΔ+λ= λ Qdc ,,, BAH  

( ) ( ) ( ) ( ) ( ) ( )fdcfdc ;,21,21;,21,21 2121 λϕ+λλϕ′+λϕ′+λλϕ=  

( )τρ= exp2O  

is analytic, where ,λ=ρ  ( ).Im ρ=τ  The zeros of ( ) ( )λΔ λ Q,,,1 BAH  are also 
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algebraically simple (see [6, Theorem 2.1]). The remaining of the proof is the same 
as that of Theorem 3.1. Suppose there exists a ( ) ( )1,0~

1Lxq ∈  so that ( ) ( )xqxq ~=  

for ( )1,21∈x  and ( )( ) ( )( ).~,,,, qfhqfh λσ=λσ  Then we shall obtain a 

corresponding ( )
( )

( )⎥⎦
⎤

⎢
⎣

⎡
=

xq

xq
xQ

2

1

0

0~~  such that 

( ) ( ).~,,,,,, QQ BAHBAH λλ σ=σ  

This implies 

( ) ( ) ( ) ( ).~,,,,,, 11 λΔ=λΔ λλ QQ BAHBAH  

Hence, we have 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

.
,,,

,,,

,21

,21

,21~,21~
,21,21

1

1

2

2

11

11
⎥
⎦

⎤
⎢
⎣

⎡

λΔ

λΔ
=⎥

⎦

⎤
⎢
⎣

⎡

λϕ+λ

λϕ′+λ
⎥
⎦

⎤
⎢
⎣

⎡

λϕ′λϕ

λϕ′λϕ

λ

λ

Q

Q

dc

dc

BAH

BAH
 (3.10) 

Denote ( ) ( ) ( ) ( ) ( )
( ) ,,,,

,21,21~,21~,21
1

1111
2 QF

BAHλΔ
λϕ′λϕ−λϕ′λϕ

=λ  then ( )λ2F  is an entire 

function and satisfies all the assumptions of Theorem 2.2. Applying Theorem 2.2 
again, we have ( ) .02 =λF  This leads to 

( )
( )

( )
( ) .,21~

,21~

,21
,21

1
1

1
1

λϕ′
λϕ

=
λϕ′
λϕ  

Hence, ( ) ( ).~
11 xqxq =  This leads to the assertion. 
 

Combining the last two theorems, we have 

Theorem 3.3. Assuming ( ) ( ),1,01Lxq ∈  ( ) 3
211 ,, R∈aah  and .01 ≠a  The 

spectrum ( )qaaahh ,,,,, 22121σ  of 

 

( )( )

( ) ( )

( ) ( ) ( )

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=λ+′

=−′

<<=−λ+′′

−−
−

+

−+

2
1

2
1

2
1

,
2
1

2
1

,011

,000

,10,0

2
1

1

1

yayay

yay

yfy

hyy

xyxqy

 (3.11) 

and ( )
⎟
⎠
⎞⎜

⎝
⎛| 1,2

1xq  determine ( )xq  uniquely. 
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Proof. The proof is similar to the proof of Theorem 3.1 and Theorem 3.2. We 
omit the details. 
 

The readers might ask: “Does the Hochstadt-Lieberman Theorem hold for 
Sturm-Liouville Problems with arbitrarily finite number of interior discontinuities?” 
The answer is positive. Note that our arguments depend only on the fact: “the Weyl-
Titchmarsh M -function can determine the potential uniquely” and this is also true 
for Sturm-Liouville Problems with arbitrary number of interior discontinuities (see 
Sec. 4.4 in [14]). Hence, we can conclude that 

Theorem 3.4. Assuming that ( ) ( ),1,01Lxq ∈  ,10 1 <<< +ii xx  R∈ii aa 21,  

and 01 ≠ia  for ....,,3,2,1 ki =  The spectrum ( )kqhhaa ii ;,,,, 2121σ  of 
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 (3.12) 

and ( )
⎟
⎠
⎞⎜

⎝
⎛| 1,2

1xq  determine ( )xq  uniquely. 

Proof. If 21=x  is not a point of interior discontinuity, then we can label it as 

some jx  and the corresponding coefficients can be 11 =ja  and .02 =ja  Hence, we 

can always assume 21=lx  for some integer .1 kl <<  Suppose that ( )21,0∈ix  

for 1...,,3,2,1 −= li  and ( )1,21∈jx  for ....,,2,1 kllj ++=  Let ( )λϕ ;1 x  

and ( )λϕ ;2 x  be solutions of 

( )( ) ,10,0 <<=−λ+′′ xyxqy  

where ( )λϕ ;1 x  satisfies the initial condition ( ) ,1;01 =λϕ  ( ) 11 ;0 h=λϕ′  and the 

discontinuity condition at ix  for ;...,,2,1 li =  ( )λϕ ;2 x  satisfies the initial condition 

( ) ,1;12 =λϕ  ( ) 21 ;1 h−=λϕ′  and the discontinuity condition at jx  for ,1+= lj  

....,,2 nl +  The asymptotic behaviors of ( )λϕ ,xi  and ( )λϕ′ ,xi  can be obtained 
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(see Sec. 4.4 in [14]). Applying the same arguments as that in the proofs of Theorem 
3.1 and Theorem 3.2, we can uniquely determine the Weyl-Titchmarsh M -function 

( )
( )λϕ

λϕ′
,21
,21

1
1  for (3.12) on ( ).21,0  Since Weyl-Titchmarsh M -function for Sturm-

Liouville equation with interior discontinuities can uniquely determine potential 

function (see Sec. 4.4 of [14]), we can conclude the assertion. 
 

Moreover, we have 

Theorem 3.5. Assuming that ( ) ( ),1,01Lxq ∈  ,10 1 <<< +ii xx  R∈ii aa 21,  

and 01 ≠ia  for ....,,3,2,1 ki =  The spectrum ( ( ) )kqfhaa ii ;,,,, 121 λσ  of 
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 (3.13) 

and ( )
⎟
⎠
⎞⎜

⎝
⎛| 1,2

1xq  determine ( )xq  uniquely. 

The readers may notice that some of our results are similar to the results in [35] 
and [22], but with the approach in this paper, we can simplify the proofs for some 
natural generalizations of Hochstadt-Lieberman theorem which is what we wanted to 
emphasize. 
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