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Abstract 

Solving linear systems fHx =  with minimizing the error vector ( ) =xv  

fHx −  by an optimized stochastic method is considered. This solution 

can be significantly obtained even when the coefficient matrix H is 
singular.  

0. Introduction 

One of the most suitable methods to obtain the solution of linear systems is the 
least squares method, especially when the coefficient matrix is not invertible. This 
method considers an algebraic equation system ,fHx =  and gives the ( ) =xvmin  

( ),∗xv  where fHx L=∗  and ( ) .1 TTL HHHH −=  The desired results can be 

estimated using Monte Carlo methods. The Monte Carlo method gives statistical 
estimates of the elements of inverse of the matrix or for components of the solution 
vector of a linear system by performing random sampling of a certain random 
variable whose mathematical expectation is the desired solution. 
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In this paper, we first obtain the elements of [ ] [( ) ]ij
T

ij HHC 1−=  by Monte 

Carlo methods. Then for finding the minimization solution ,∗x  we employ .fCH T  

We consider solving the given linear systems by using the principle of least 
squares. Assume that 

,fHx =  (1) 

where 1, ×× ∈∈ nnm RxRH  and .1×∈ mRf  Define 

( ) ,fHxxv −=  (2) 

where 1×∈ nRx . The vector ( )xr  is called the residual vector. Thus, ( )xv  is the 

error when we have x as an approximate solution of the system (1). The least squares 

solution x will have the property of minimizing of ( ) .2xv  Since 

( ) ( )fHxfHxxv −−= ,2
2  

( ) ( )fHxfHx T −−=  

fffHxHxHx TTTTT +−= 2  

is a scalar, we have 

( ) .2 fffHxHxHxx TTTTT +−=λ  

Let 1×∈ nRh  and .0≠h  Then 

( ) ( ) fHhHhHxHxHhHhHhxhx TTTTTTTT 2−++=λ−+λ  

.22 fHhHxHhHhHh TTTTTt −+=  

Since HhHx TT  is a scalar quantity and 

( ) HxHhHhHxHhHx TTTTTTT == , 

we have 

( ) ( ) ( ).22
2 fHHxHhHhxhx TTT −+=λ−+λ  (3) 
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From the definition of a relative minimum (maximum), it follows that if ( ) =λ x  

( ) 2
2xv  has a minimum (maximum), then ( ) ( )xhx λ−+λ  must be of the same 

sign for all small values of the vector h. However, in (3), the sign of ( ) ( )xhx λ−+λ  

depends on the term ( ) .0≠− fHHxHh TTT  Hence, for ( )xλ  to have an extremum, 

it is necessary that .0=− fHHxH TT  Moreover, if this condition is satisfied for 
∗= xx  (say), then ( )xλ  has minimum at ,∗= xx  because 

( ) ( ) 02
2 ≥=λ−+λ ∗∗ Hhxhx  

for small value the system values of h. This establishes that the least squares solution 

of (1) is given by the solution of normal equations .fHHxH TT =  

1. Stochastic Computation and Parameters 

It is well known that classical methods can solve (1) by least square procedures. 
But, we are looking for extending this computation by Monte Carlo methods, since 
Monte Carlo methods have more quality for large systems [3, 4]. In this part, we 
explain the Monte Carlo can be employed in least square computations, also. This 
way, we will open a new application of Monte Carlo methods. 

The Monte Carlo method, with generation of random numbers, randomly selects 

the elements of matrix ,HHT T=  for computation of inverse and 1−= TC . Then 

we obtain ∗x  as we said about in the last Section. It is trivial that the results of 
minimization error will be different, if we employ different Monte Carlo method, 
such as with absorption or with absorption and different probabilistic structure, also. 
In this situation, we can compare the results, and select the best one. It is well known 
that any different Monte Carlo method can have only one best solution which makes 

fHx −  the least. 

As in [3], we consider the linear system 

,fHx =  (4) 

where H is a given nonsingular matrix, ( )Tnffff ...,,, 21=  is a known vector and 

( )tnxxxx ...,,, 21=  is the solution vector that we are looking for finding it. If we 
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consider matrix nnM ×  such that ,, cMfTIMH =−=  then the linear system (4) 

is converted to 

( ) ( ) ,1 cTxx kk +=+  (5) 

where nnT ×  is a given nonsingular matrix. It is well known that provided, 

( ) ,1<≤ρ TT  (6) 

where ( )Tρ  is the spectral radius of matrix T and ∑
=

≤≤∞ =
n

j
ijni TT

1
1 ,max  the 

( )kx  tends to the exact solution ( ) cTIx 1−−=  [1]. The inner product of x and 

( ) n
n Rtttt ∈= ...,,, 21  is defined by ., 2211 nnxtxtxtxt +++=  This inner 

product when ( )0...,,0,1,0...,,0,0
i

t =  is produced ,jx  i.e., jxxt =,  which is 

the ith element of the solution vector. With Markov chain kiii →→→ 10  of 

the sample state { }nS ...,,2,1=  which it will select the rows of columns indices      

of the matrix A, with initial distribution Ppi =0  (Makov  chain starts at ),0 Si ∈        

and for { },1...,,2,1 −∈ nm  one step transition probability function is =ijp  

( )iijiP mm =|=+1  [2]. For solving the linear system (4) by Monte Carlo method, 

we consider transition probability matrix [ ] .1,
n

jiijpP ==  Under the following 

conditions: 
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We define 
mm

mm

iiiiii

iiiiii
m ppp

TTT
W

11110

12110

−

−=  and ,
1

1
1

mm

mm

ii

ii
mm p

T
WW

−

−
−=  ,10 =W  

( ) ∑
=

=η
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m
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i

i
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h
t

0
.

0

0  It has been proved that ( )[ ] ==η ∑
=

k

m

m
k cThtE

0
,  

( )1, +kxh  [3]. Since ( )tkη  is an unbiased estimator of ( ) ,, 1+kxh  we can 

introduce the Monte Carlo estimator based on 

( ) ( ) ( ) ( ) ....,,2,1,210 Nsiiii s
k

sss =→→→→  

We have ( ) ( )( ) ( )∑
=

+≈η=Θ
N

s

ks
kk xhhNh

1

1,1 , where for ,...,,2,1 Ns =  ( )( ) =η hs
k  

( )
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=
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−=  ( ) 10 =sW  and ( ) =Θ hk  

( )( )∑
=
η

N

s

s
k hN 1

1  [3]. ( )[ ] ( )[ ] ( ) .,,limlim 1 xhxhhEhE k
kkk

==η=η +
∞→∞→∞  ( ) =Θ jk e  

( )( ) ( )∑
=

+ ≈≈η
N

s
j

k
jj

s
k xxeN

1

1 .1  

For obtaining the element jx  of solution vector x, we simulate N random paths 

( ) ( ) ( ) ....,,2,121 Nsiiij s
k

ss =→→→→  

Then we have ( )( ) ( ) ( )∑
=

=η
k

m

s
i

s
mj

s
k m

fWe
0

 with ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
,

1211

1211

s
m

s
m

sss

s
m

s
m

sss

iiiiji

iiiijis
m ppp

TTT
W

−

−=  

( ) .10 =sW  The above Monte Carlo method is called standard (or basic) Monte Carlo 

method. 

2. Optimized Monte Carlo Method 

It has been discussed in [3] that how we can reduce the nN random paths to N 
paths.  

We just have a quick review this concept. 
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Definition 1. For a Markov chain with sample state { },...,,2,1 nS =  the 

random path ( ) ( ) ( )s
R

ss iii →→→ 10  is called covering if each state ,Sj ∈  can be 

visited at least once. 

Definition 2. Let Sj ∈  be an arbitrary state of a Markov chain. Then the first 

time that Markov chain visit j, i.e., { },:min jitR ttj ==  is called the hitting time 

to state j. In this way, for ,...,,2,1 nj =  we can reach to the all unbiased estimators 

( ).jk eη  We first consider the covering path: →→→→→→ RR iiii j10  

,kRi +→  where { } { }jitMinMaxRMaxR t
nj

j
nj

===
≤≤≤≤

:
11

 and k is an integer 

number. For every ,...,,2,1 nj =  we consider a sub path with length k as →jRi  

,1 kRR jj ii ++ →→  now we set ( ) ∑
+

=
=η

kR

Rm
imjk

j

j
mbWe ,~  where 

.1,
1211

1211
==

−+++

−+++

j
mmjRjRjRjR

mmjRjRjRjR
R

iiiiii

iiiiii
m Wppp

TTT
W  

Theorem 1. Under the above conditions, [ ( )] ( )1~ +=η k
jjk xeE  [3].                           

Theorem 2. [ ( )] [ ( )],~
jkjk eVareVar Θ=Θ  where ( ) ( )( )∑

=
η=Θ

N

s
j

s
kjk eNe

1

1  and 

( ) ( )( )∑
=
η=Θ

N

s
j

s
kjk eNe

1

~1~  for nj ...,,2,1=  [3]. 

3. Increasing the Efficiency of the Method 

In this section, we compare the efficiency of two methods where they discussed 
here based on [3, 4]. For simplicity of this comparison and bringing them to our 
analysis here, the method of the Monte Carlo without covering property (usual 
Monte Carlo method) is considered as method (1) and the Monte Carlo method 
based on covering property is considered as method (2). We remember that method 

(1) has ( ) ( )( )∑
=
η=Θ

N

s
j

s
kjk eNe

1
,1  as the Monte Carlo estimator and method (2) has 
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( ) [( ( )( )) ( )∑
=

η=Θ
N

s
jj

s
kjk eeENe

1

2~1~  as the Monte Carlo estimator for jx  of the 

solution vector x. 

Definition 3. Let ( )jk eΘ  and ( )jk eΘ
~  be two Monte Carlo estimators for the 

parameter θ. Then the efficiency of ( )jk eΘ
~  respect to ( )jk eΘ  is defined by 

[ ( )]
[ ( )]jk

jk

eMSEt
eMSEt

Θ

Θ
=ε ~~ , where ,t  t~  are the necessary lengths of Markov chains to 

reach the estimation for .jx  We recall that for any estimator Y of θ, we have 

[ ] [ ] [ ] [ ][ ] .22 θ−+=θ−= YEYVarYEYMSE  

Definition 4. For two unbiased estimators ( )jk eΘ  and ( )jk eΘ
~  of ,jx  the 

efficiency of ( )jk eΘ
~  with respect to ( )jk eΘ  is defined by 

( ( ))
( ( ))jk

jk

et
et

Θ

Θ
=ε ~var~

var
, 

where t and t~  are the necessary lengths of Markov chains to reach the Monte Carlo 
estimation for jx  using methods (1) and (2), respectively. 

Without loss of generality, we consider .1=N  Then by Theorem 1, 

( ( )) ( ( )),~
jkjk eVareVar Θ=Θ  and therefore .~t

t=ε  In this case, in method (1), we 

use n paths with length k. Then the total lengths used in these paths are equal to nk. 
But, in method (2), we use only one path with length ( { }) kR j

nj
+

≤≤1
max  with average 

[ { }] .max
1

kRE j
nj

+
≤≤

 For ,1>n  we prove that the inequality [ { }] kREnk j
nj

+>
≤≤1

max         

is valid. To prove this inequality, we obtain [ { }]j
nj

REknk
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>−
1
max  or >k  

[ { }] .1max
1

−
≤≤

nRE j
nj

 It proves that whenever k is larger than [ { }] ,1max
1

−
≤≤

nRE j
nj

 

method (2) is more efficient than method (1). 

Selecting a suitable starting point of the Markov chain using method (2), we can 
reduce the cost of computation. In needs, just we select the starting point of chain 

li =0  such that [ { } ] [ { } ].0
1

0
1 0

liRMaxEMinliRMaxER j
ni

j
nj

=|==|=
≤≤≤≤
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0
0 li
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pi  Thus we prove the following theorem: 
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Theorem 3. In a covering Markov chain (as discussed above), if >k  
[ { }] ,1max
1

−
≤≤

nRE j
nj

 then the covering method is more efficient than the standard 

Monte Carlo method. 

4. Parameter Estimation and Method 

The estimator ∗Θ  for the solution vector is computed. The sum for ∗Θ  must be 
dropped when ,δ<iW  where δ is any given small number. Note that 

δ<=
αααααα

αααα

−

−

ii

ii
PPP

TT
Wi

12110

110
...,,

...,,
 

and the length of Markov chain can be ( ) .log
log

T
fiL δ

≤=  Moreover, according 

to the central limit theorem for the given error ε, 
( )2

2

2

2

1
6745.0

T
fN

−ε
≥  [3]. 

Uniform transition probability with stopping rule δ<ii fW  has been implemented.  

Algorithm: Finding Monte Carlo :1−H  

1.  Input initial data: Input matrix H, the parameters γ and ε. 

2.  Pre-processing: 

2.1 Split ( ) ,HDDH −−=  where D is a diagonally dominant matrix. 

2.2 Set 1BBD −=  where B is a diagonal matrix ....,,2,1, nidb iiii ==  

2.3 Compute the matrix .1
1BBT −=  

2.4 Compute ,T  the Number of Markov chain =N  

.1
16745.0 2

⎟
⎠
⎞

⎜
⎝
⎛

−
⋅

γ T  

3.  For 1=j  to n; 

3.1 For 1=i  to N; 

Markov Chain Monte Carlo computation: 

3.1.1 Set 0=kt  (stopping rule); ,10 =W  

[ ] 0=iSUM  and ;ipoint =  
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3.1.2 Generate a uniformly distributed random number nextpoint. 

3.1.3 If [ ][ ] .0!nextpointpoint =T  

LOOP 

3.1.3.1 Compute 

[ ][ ]
[ ][ ] .Nextpointpoint

nextpointpoint
1 p

TWW nn −=  

3.1.3.2 Set Point=next point and [ ] [ ] .jWiSUMiSUM +=  

3.1.3.3 If jW  

3.1.3.4 .1, +=γ≥| kk tt  

3.1.3.5 If ,ntk ≥  end of LOOP. 

3.1.4 End If. 

3.1.5 Else go to step 3.1.2. 

3.2. End of Loop j. 

3.3. Compute the average of results. 

4. End of Loop i. 

5. Obtain the matrix ( ) .1−−= TIV  

6. Therefore .11 −− = VBD  

7. Compute the MC inversion ( ) .11 −− −= TIBD  

8. Set 1
0

−= DD  (approximate inversion) and .00 DDIR −=  

9. Use filter procedure ( ),11 −− += iii RIDD  ,...,,2,1 mi =  where .km ≤  

10. Consider accurate inversion of D by step 9 given by .0 kDD =  

11. Compute HDS −=  where S can be any matrix with all non zero 
elements in diagonal and all of its off-diagonal elements are zero. 
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12. Main function for obtaining the inversion of H based on 1−D  step 9: 

12.1 Compute the matrices ...,,2,1, =iSi  

k, where each iS  has just one element 

of matrix S. 

12.2 Set 00 DH =  and .SHH +=k  

12.3 For ,0,1...,,2,1 −−= kki  apply 

( )
.

1 1
1
1

1
11

1
11

1
1

+
−
+

−
++

−
+−

+
−

−
+=

ii

iii
ii

SHtrace
HSHHH  

13. Print the inversion of matrix H. 

14. End of algorithm. 

5. Experimental Results 

Here, we run and compare the algorithm based on usual Monte Carlo method 
and optimized Monte Carlo method. 

Table 1. Least squares solution based on Monte Carlo methods 

n Usual Monte Carlo Optimized Monte Carlo 

\ Time Error Time Error 

100 5.12 0.0005 1.29 0.0005 

300 68.23 0.0005 13.91 0.0005 

500 431.54 0.0005 91.57 0.0005 

1000 24522.64 0.0005 691.22 0.0005 

2000 24544.96 0.0005 3237.0592 0.0005 

3000 81604.54 0.0005 10481.96 0.0005 

4000 126429.41 0.0005 13653.54 0.0005 
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6. Conclusion 

Usual and optimized Monte Carlo methods can be employed for least square 
problems. The performances of presented algorithms show that the optimized Monte 
Carlo method is up to 10 times faster than usual Monte Carlo method, with a 
predefined error 0.0005. 
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