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Abstract 

In this paper, the theoretical background for determining the minimal size 
of an experiment that should be analyzed by analysis of variance with at 
least one fixed factor about which a null hypothesis has to be tested, is 
given. Fixed and mixed models in cross, nested and mixed classifications 
are described. Corresponding R-programs are demonstrated by examples. 

1. Introduction 

The process of gaining knowledge in the empirical sciences can be considered 
as follows: 

  (i) Formulation of the problem, 

 (ii) Fixing the precision requirements, 

(iii) Selecting the statistical model for planning and analysis, 

(iv) Determining the (optimal) design of the experiment or survey, 

 (v) Performing the experiment or the survey, 

(vi) Statistical analysis of the observed results, 

 (vii) Interpretation of the results. 
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The first four steps belong to the pre-experimental statistics whereas the two last 
belong to the post-experimental statistics. 

The statistical planning of an experiment includes the construction of an 
optimum statistical experimental design and the determination of the minimum 
sample size, which is necessary to achieve, predetermined precision requirements, in 
the context of a chosen statistical model for the analysis of the results. 

In this paper, we consider only the problem of the determination of the minimum 
sample size of an experiment for the best estimators, the in expectation shortest 
confidence intervals and the uniformly best unbiased tests which in linear models are 
sometimes different from determining the sample size. 

Point estimation 

Choose the size of the experiment (random sample) so that the variance of the 
best estimator is below a given bound B. As an example, we consider the estimation 
of the expectation. At first, we have to choose the best unbiased estimator, which is 

the mean of the sample. Its variance is 
n

2σ  and from B
n

≤σ2
 it follows 

B
n

2σ≥  or 

the integer solution ,
2
⎥
⎥

⎤
⎢
⎢

⎡σ= Bn  where ⎡ ⎤x  is the smallest integer .x≥  

Interval estimation 

If the precision requirement states that the expected half-width of a confidence 
interval must be less than or equal to δ, then, for a given α, n has to be determined so 
that with the upper bound u and the lower bound l of the ( )α−1 -confidence interval 

( ) ( )[ ] .2
1 δ≤α−α luE  

Of course at first we have to find the ( )α−1 -confidence interval with the smallest 

expected length. 

As an example, we consider the confidence estimation of the expectation of a 
normal distribution (variance unknown). The shortest (in expectation) two-sided 
( )α−1 -confidence interval is given by 
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its half expected length is 
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( ) δ≤HE  leads to the equation for n: 
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where ⎡ ⎤x  is the smallest integer larger or equal to x. 

Hypothesis testing 

The problem of determining the size of an experiment we explain for the one-
sample problem for testing an expectation, and then the size of the experiment is 
again the sample size. 

A random sample 1
21 ...,,, nyyy  of size n will be drawn from a normally 

distributed population with mean μ and variance ,2σ  with the purpose of testing the 

null hypothesis: 

00 : μ=μH 0(μ  is a given constant) 

against the alternative hypothesis: 

0: μ≠μAH  (two-sided alternative). 

The test statistic of a uniformly most powerful unbiased test is 

n
s

y
t 0μ−=  

which is non-central t-distributed with 1−n  d.f. and non-centrality parameter 

.0 n
σ
μ−μ

=λ  

Under the null hypothesis, the distribution is central t. 
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If the Type I error probability is α, then 0H  will be rejected if: 

( ).21;1 α−−> ntt  

Our precision requirement is given by α and the risk of the second kind β if 
.0 δ=μ−μ  

From this, we have the requirement 

( ) ( ),;;121;1 βλ−=α−− ntnt  (1) 

where ( )βλ− ;;1nt  is the β-quantile of the non-central t-distribution with 1−n  d.f. 

and non-centrality parameter λ. 

Using the approximation ( ) ( ) λ+β−=βλ− ,1;;1 ntnt  leads to the approximate 

formula 
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Equation (1) is crucial for determining minimal sizes when testing location 
parameters, a generalization will be considered in the main part of the paper. 

2. Tests in the Analysis of Variance about the Effects of a Fixed Factor 

For all models in the analysis of variance (ANOVA), the linear model equation 
has the form 

( ) .eyy += E  

In this equation, the random variable y models the observed character. The 
observation y is the sum of the expectation (mean) ( )yE  of y and an error term e, 

containing observational errors with ( ) ,0=eE  ( ) .var 2σ=e  The variability in 

( )yE  between experimental units depends linearly on model parameters. The 

models for the analysis of variance differ in the number and the nature of these 
parameters. 

The observations in an analysis of variance are allocated to at least two classes, 
which are determined by the levels of the factors. 
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Each of the models of the analysis of variance contains the general mean μ, i.e., 
we write ( )yE  in the form 

( ) ( ),yy ECE +μ=  

where ( )yEC  is the mean deviation from μ within the corresponding class. In the 
case of p factors, the analysis of variance is called p-way. 

It follows that the total set of the y does not constitute a random sample because 
not all the y have the same expectation. Furthermore, in models with random factors, 
the y within the same class are not independent. 

For all the models, we assume that the variance 2σ  of the error terms in the 
equations is the same in all sub-classes and that all the random variables in the right 
hand side (r.h.s.) of the model equations are mutually independent and have 
expectation zero. 

We assume that y has a normal distribution and that we have equal sub-class 
numbers n. We then can test the following null hypothesis in all the models with a 
fixed factor A having effects ia  ( )....,,1 ai =  

:0H  “The factor A has no effect on the dependent variable y”. In other words: 

“All the ia  are equal”. If it is assumed that the sum of the ia  is zero, then this is the 

same as “All the ia  are equal to zero”. 

The alternative hypothesis is 

:AH  “At least two of the ia  are different”. 

The test statistic for this test is a variate F that (if the null hypothesis is true) 
follows a (central) F-distribution with 1f  and 2f  degrees of freedom. The ( )α−1 -

quantile of the distribution of ( )21; ffF  is denoted by ( ).1;; 21 α−ffF  

This test statistic is generally calculated by following the next 8 steps - here 
“generally” means that these steps should not only be used for all situations and 
models in this paper but also for any other ANOVA situation. 

1. Define the null hypothesis. 

2. Choose the appropriate model (I, II, or mixed). 

3. Find the ( )MSE  column in the ANOVA-table (if there are several such 

columns, then find the one that corresponds to your model). 
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4. In the same table, find the row for the factor that appears in your null 
hypothesis. 

5. Change the ( )MSE  in this row to what it would be if the null hypothesis 

were true. 

6. Search in the same table (in the same column) for the row, which now has the 
same ( )MSE  as you found in the 5th step. 

7. The F-value is now the value of the MS of the row you found in the fourth 
step divided by the value of the MS of the row you found in the 6th step. 

8. Note: in ANOVA with higher classifications, the 6th step may not be 
successful, in which case we can use the so-called Satterthwaite approximation. 

The minimum size of the experiment should be determined so that the precision 
requirements are fulfilled. The size of the experiment depends on the degrees of 
freedom (d.f.) of the nominator 1f  and the denominator 2f  of the F-statistic. 2f  

depends not always on the sub-class number n. If we sample factor levels of random 
factors, then the size of those samples also determines the size of the experiment. 

The minimal size is determined in dependence on a lower bound δ of the 
difference between the maximum and the minimum of the effects to be tested for 
equality by an F-test, further on, the risks α and β of the test and on a presumable 
value of the common residual variance. 

The problem of the determination of the size of an experiment for the analysis 
of variance has been investigated by, among others, Tang [15], Lehmer [9], Fox [5], 
Tiku [16, 17], Gupta [4], Bratcher et al. [3], Kastenbaum et al. [7, 8], Bowman [1], 
Bowman and Kastenbaum [2], Rasch et al. [10], Herrendörfer et al. [6] and Rasch 
[11]. 

The solution λ of the following equation plays a crucial role: 

( ) ( ),,,,1,0,, 2121 βλ=α− ffFffF  (2) 

where ( )α−1,0,, 21 ffF  is the ( )α−1 -quantile of the (central) F-distribution with 

degrees of freedom 1f  and 2f  and non-centrality parameter 0 and where 

( )βλ,,, 21 ffF  is the β-quantile of the F-distribution with degrees of freedom 1f  

and 2f  and non-centrality parameter λ. 



DETERMINING THE SIZE OF EXPERIMENTS … 91 

 

Figure 1. Demonstrating the relation of equation (2). 

Figure 1 shows the relation of equation (2), it is a generalization of equation (1). 

But contrary to the t-test, we have at least 3 expectations or effects in ANOVA 
models. 

For the null hypothesis about a fixed factor A having effects ia  ( )ai ...,,1=  the 

sample size depends not only on the difference between the extreme effects but also 
on the position of the other effects. 

Remark. The non-centrality parameter λ is proportional to ∑
=

a

i
ia

1

2  (when we 

assume that ∑ = )0ia  and from Figure 1 we see that as larger λ as smaller the 

minimal size needed. 

The most favorable case leads to the maximum λ and the smallest minimum 
sample size ...,,; minmin bn  the minimin size and the least favorable case leads to the 

biggest minimum sample size, the maximin size ....,; maxmax bn  

Lemma 1. Without loss of generality (w.l.o.g.), we assume: ∑
=

=
a

i
ia

1
,0  ≤1a  

,2 aaa ≤≤  
2min
δ−=a  and 

2max
δ=a  and further w.l.o.g. .σ=δ  We consider 

a Model I of ANOVA (all the factors are fixed) with a cross classification and equal 
sub-class numbers. 
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(a) Under the conditions above, the minimin size minn  (the most favorable case) 

occurs if we split the ia  into two groups of size Ia  and ,IIa  respectively, with 

III aaa +=  and 1≤− III aa  and the Ia  elements of the first group equal 

δ− a
aII  and the IIa  remaining equal .δ

a
aI  Thus, there are two solutions for odd a 

and for even a half of the effects are equal to 2
δ−  and half of them are equal to .

2
δ  

Then ( )∑
=

⋅δ=
a

i
IIIi aa

a
a

1

2
2  and is a maximum. 

(b) Under the conditions above, the maximin size maxn  (the least favorable 

case) occurs if ,21
δ−=a  and 

2
δ=aa  and all the other effects are zero. Then 

∑
=

δ=
a

i
ia

1

2
2

2
 and a minimum. 

(c) In the singular case (two-sample problem), 2=a  both sizes are identical. 

Proof. It is easy to see that the condition ∑
=

≤≤≤=
a

i
ai aaaa

1
21,0  is 

fulfilled as well in case (a) as also in case (b). 

(a) In this case with even a, the statement is evident. In general, we know that 
with III aaa +=  the product III aa  is maximum if Ia  and IIa  are as equal as 

possible. That makes 

∑
=

δ
⋅

=δ⋅=δ⋅+δ⋅=
a

i

III
III

I
II

II
Ii a

aaaa
a
a

a
aa

a
aaa

1

22
2

2
2

2
2

2

2
2  

a maximum if Ia  and IIa  differ at most by 1. In Table 1, some values of ∑
=δ

a

i
ia

1

2
2

1  

in the most favorable case are given. 

Table 1 

a 2 3 4 5 6 7 8 

∑
=δ

a

i
ia

1

2
2

1  0.5 0.667 1 1.2 1.5 1.714 2 
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In Table 1, values of ∑
=δ

a

i
ia

1

2
2

1  for the most favorable case in dependence on a. 

For even a, the result of case (b) follows from the theory of D-optimal designs 
in regression. For odd a, we obtain the result by equating the partial derivatives with 
respect to the effects and κ of zxw κ−=  to zero. Hereby are 

( )∑
=

− +δ+++==
a

i
ai aaaax

1

2
1

2
1

2
1

2  

and 

( )∑
=

− +δ+++==
a

i
ai aaaaz

1
111 .  

This completes the proof because w is a convex function. 

We already called the minimin size by minn  and the maximin size by .maxn  

The experimenter now has to choose the number of observations n per factor level 
(class) between the lower bound ln  and the upper bound :un  

.maxmin nnn ≤≤  

All that remains to be done is to calculate the bounds minn  and maxn  for 

different classifications and models. 

3. The One-way Analysis of Variance 

The model equation of the one-way analysis of variance with a fixed factor A is 
written in the form 

( ) ( )....,,1;...,,1 njaiaE ijiijijij ==++μ=+= eeyy  

The iα  are the main effects of the factor levels ;iA  they are real numbers, i.e., not 

random. The model is completed by the following constraints (sometimes called side 

conditions): the ije  are mutually independent with ( ) 0=ijE e  and ( )ijevar  2σ=  

and that the sum of the ia  is zero. The pair of hypotheses: 
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:0H  “All the ia  are equal to zero”. 

:AH  “At least two of the ia  are different”. 

is tested with help of the test statistics 

resMS
MSF =  

with the mean squares from the corresponding ANOVA-table with 1−a  and 
( )1−na  degrees of freedom. 

F is with these d.f. F distributed with the non-centrality parameter 

∑
=

−
=λ

a

i
ia

a
n

1

2
1

 

which in the most and least favorable case increases with n and decreases with a. 
This means that under otherwise equal conditions, the necessary sample sizes and 
thus, the size of the experiment increase with increasing number of factor levels. 

Examples and R-programs 

To calculate the minimum sample sizes minn  and ,maxn  we use the R-package 

OPDOE. 

We plan to perform an experiment with four levels of a fixed factor A and 
measure the yield of a crop in dt per ha. The four levels are four varieties of a cereal 
crop. 

The number n of plots per variety has to be determined to satisfy the following 
conditions: Type I error probability ,05.0=α  and Type II error probability 1.0≤β  

if .2minmax σ≥− aa  

>size_n.one_way_model_1(0.05, 0.1, 2, 4, “maximin”) 

[1]   9 

>size_n.one_way_model_1(0.05, 0.1, 2, 4, “minimin”) 

[1]   5 

This means that 5min =n  and .9max =n  
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4. The Two-way Analysis of Variance 

The model equation of the two-way analysis of variance with the factor A with a 
levels iA  and the factor B with the b levels jB  and equal number of observations in 

the sub-classes is 

( ) ( )nkbjaiabba ijkijjiijk ...,,1;...,,1;...,,1 ===++++μ= ey  

if both factors are fixed (Model I) and 

( ) ( )nkbjaia ijkijjiijk ...,,1;...,,1;...,,1 ===++++μ= eabby  

if factor A is fixed and factor B is random (mixed model). 

In model I, we assume in addition to the assumptions for the one-way ANOVA 
that the sums of the ( )ijab  (separately over each index) all equal zero. 

As in the one-way classification, we like to test the pair of hypotheses: 

:0H  “All the ia  are equal to zero”. 

:AH  “At least two of the ia  are different”. 

The test statistics is for Model I 

R
A

AF MS
MS

=  

which is F-distributed with 1−a  and ( )1−na  d.f. and non-centrality parameter 

∑
=

−
=λ

a

i
ia

a
bn

1

2.
1

 

For the mixed model, the test statistics is 

BA

A
A

×
=

MS
MSF  

which is F-distributed with 1−a  and ( ) ( )11 −− ba  d.f. and non-centrality 

parameter ∑
=−

=λ
a

i
ia

a
bn

1

2.
1
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This means that under otherwise equal conditions, the necessary sample sizes 
and thus, the size of the experiment increases with an increasing number of levels of 
the factor A but decreases with the number of levels of the factor B. 

For determining the minimin and the maximin size, we can use Lemma 1 in both 
the cases. 

In model I, we also can test a hypothesis about the interaction effects. 

:0H  “All ( )ijab  are zero”. 

The alternative hypothesis is: 

:AH  “At least two ( )ijab  differs from zero, respectively”. 

The test statistic is 

RBAAB MSMSF ×=  

and is under 0H  ( ) ( ) ( )( )1;11 −−− nabbaF  distributed. The non-centrality 

parameter is 

( ) ( ) ( )∑⋅−−
=λ

ji
ijab

ba
n

,

2 .
11

 

Before we give some examples, we have to show the least and the most favorable 
situation for the interaction effects. 

Lemma 2. We consider a model I of the balanced two-way ANOVA or an 
analogue balanced multi-way ANOVA with two fixed factors A and B under the 
condition that the sums of the interaction effects ( )ijab  of the two factors A and B 

(separately over each index) equal zero. 

Further, let ( ) ( ) σ=δ=⎦⎣−⎦⎣ ijij abab minmax  with 2σ  as the error variance 

of the model. 

(a) Then the minimum of ( )∑∑
= =

a

i

b

j
ijab

1 1

2  is w.l.o.g. obtained for 

( ) ( ) ( )
( ) ;1

1
11

11 δ−=δ
−

−−= a
a

ba
baab  
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( ) ( )
( ) ;...,,2;1

1
1

1 aiaba
bab i =δ−=δ
−
−−=  

( ) ( )
( ) ;...,,2;1

1
1 bjba

aab j =δ
−
−−=  

( ) ( ) ....,,2;...,,2;1
1 bjaibaab ij ==δ
−

=  

(b) If as well a as also b are even the maximum of ( )∑∑
= =

a

i

b

j
ijab

1 1

2  is given if half 

of the interaction effects equal δ−2
1  and the remaining equal .

2
1 δ  Then 

( )∑∑
= =

δ=
a

i

b

j
ij

abab
1 1

22 .4  

Proof. (a) We assume w.l.o.g. that .ba ≤  It is easy to see that ( )∑
=

a

i
ijab

1
 

( )∑
=

==
b

j
ijab

1
0  and ( ) ( ) ( ) ( ) δ=−=⎦⎣−⎦⎣ 111minmax iijij abababab  and all side 

conditions are fulfilled. We now consider 

( ) ( ) ( )
( ) ( ) ( )

( )∑∑
= = ⎩

⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

−
−−+⎥⎦

⎤
⎢⎣
⎡

−
−−δ=

a

i

b

j
ij ba
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baab

1 1

22
22

1
111

11  

( ) ( )
( ) ( ) ( ) ( ) ⎭

⎬
⎫

⎥⎦
⎤

⎢⎣
⎡

−
−−+⎥⎦
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−
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22

1
111

1
11
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ba
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ab  

( ) ( )
( )

( )
( ) .

1
1

1
11 222

22
δ≤δ

−
−=δ

−

−−
=

ba
ab

ba
baab  

The equality sign occurs if and only if .ba =  This expression depends besides 
δ only on a and b and is invariant against permutations of rows and/or columns 

which all are also solutions. The solution ( ) ( ) ;
211
δ== ababab  ( ) =1aab  

( ) 21
δ−=bab  and all other effects equal to zero fulfill the side conditions as well but 
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lead to a larger value of ( )∑∑
= =

a

i

b

j
ijab

1 1

2  if .ba <  This completes the proof. Thus, the 

least favorable case is known. We give in Table 2, the value of ( )∑∑
= =δ

a

i

b

j
ijab

1 1

2
2

1  for 

some values of a and b. 

Table 2. Values of ( )∑∑
= =δ

a

i

b

j
ijab

1 1

2
2

1  for the least favorable case and some values of 

a and b 
 b 

a 2 3 4 5 

2  0.75 0.667 0.625 

3  1 0.888 0.833 

4   1 0.938 

(b) Under the side condition above, no larger value of ( )∑∑
= =

a

i

b

j
ijab

1 1

2  is possible. 

For the most favorable case with at least one of the values a and b odd, we only 
have a conjecture. 

Conjecture 

We consider a model I of the balanced two-way ANOVA or an analogue 
balanced multi-way ANOVA with two fixed factors A and B under the condition that 
the sums of the interaction effects ( )ijab  of the two factors A and B (separately over 

each index) equal zero. 

Further, let ( ) ( ) σ=δ=⎦⎣−⎦⎣ ijij abab minmax  with 2σ  as the error variance 

of the model. 

Under the conditions above, the maximum of ( )∑∑
= =

a

i

b

j
ijab

1 1

2  is 

  (i) for a even, b odd, 

 (ii) for a odd, b even, 

(iii) a and b both odd 
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obtained as the value occurring if the odd number is reduced to the next smaller even 
number. 

The maximum of ( )∑∑
= =

a

i

b

j
ijab

1 1

2  is for 

  (i) by ( ) ( ),4
1

1 1

2∑∑
= =

−=
a

i

b

j
ij

baab  

 (ii) by ( ) ( ),4
1

1 1

2∑∑
= =

−=
a

i

b

j
ij

abab  

(iii) by ( ) ( ) ( )∑∑
= =

−−
=

a

i

b

j
ij

baab
1 1

2 .
4

11  

Some arguments supporting this conjecture are shown in Rasch et al. [12]. 

Examples and R-programs 

To calculate the minimum sample sizes minn  and ,maxn  we use the R-package 

OPDOE. 

Assume that six wheat varieties should be compared concerning their yield. For 
that the varieties will be cultivated at several farms. Four farms have been selected, 
for model I, the farms are randomly sampled from all farms in a country. The 
number n of plots per variety in model I and the number of farms sampled in model 
II have to be determined to satisfy the following conditions: Type I error probability 

,05.0=α  and Type II error probability 1.0≤β  if .2minmax σ≥− aa  

The OPDOE programs have the following structure: 

>size_x.two_way_cross.model_r_E(α,β,δ,a,b,q) with x = n or x = b (in this case, the 
b in the bracket is replaced by n); r = 1 or mixed, E = a or axb (when testing 
interaction effects) and q = “maximin” or “minimin”. 

Model I: Testing the main effects: 

>size_n.two_way_cross.model_1_a(0.05,0.1,2,6,4,“maximin”) 

[1]   9 

>size_n.two_way_cross.model_1_a(0.05,0.1,2,6,4,“minimin”) 

[1]   4 
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Model I: Testing the interaction effects: 

>size_n.two_way_cross.model_1_axb(0.05,0.1,2,6,4,“maximin”) 

[1]   48 

>size_n.two_way_cross.model_1_axb(0.05,0.1,2,6,4,“minimin”) 

[1]   5 

Mixed model: Testing the main effects: 

If we put ,1=n  then we obtain 

>size_b.two_way_cross.mixed_model_a(0.05,0.1,2,6,1,“maximin”) 

[1]   35 

>size_n.two_way_cross.model_1_a(0.05,0.1,2,6,4,1,“minimin”) 

[1]   13 

If we put ,2=n  then we obtain 

>size_b.two_way_cross.mixed_model_a(0.05,0.1,2,6,2,“maximin”) 

[1]   18 

>size_n.two_way_cross.model_1_a(0.05,0.1,2,6,4,2,“minimin”) 

[1]   7 

It is the product bn what is (up to integer rounding) constant. 

For the nested classification, an analogue procedure is applied. This and the 
different models and classification together with the R-programs can be found in 
[12, Chapter 3 of Rasch et al.]. 

5. The Three-way Analysis of Variance 

In the three-way analysis of variance, we have four classifications (cross, nested 
and two mixed) and several models with at least one fixed factor. For most of these 
cases, sample size formula using the two lemmas above and the conjecture could be 
derived. In two cases a special approach was needed because no exact F-test exists 
and an approximate F-test using the Satterthwaite approximation (Satterthwaite [14]) 
leads to problems with determining sample sizes, see Rasch et al. [13]. 
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Writing GF  or FG ≺  if factor G is nested within factor F and GxF if both 
factors are cross classified and printing factor symbols in bold if a factor is random, 
then we have the following cases: 

Classification Model equation 

CBA ××  ( ) ( ) ( ) ( ) ijkvijkjkikijkjiijkv abcbcacabcba ey ++++++++μ=  

C×× BA  ( ) ( ) ( ) ( ) ijkvijkjkikijkjiijkv abba eabcbcaccy ++++++++μ=  

CB ××A  ( ) ( ) ( ) ( ) ijkvijkjkikijkjiijkv a eabcbcacabcby ++++++++μ=  

CBA ××  ( ) ( ) ( ) ( ) ijkvijkjkikijkjiijkv eabcbcacabcbay ++++++++μ=  

CBA  ( ) ( ) ijkvijkijiijkv cba ey ++++μ=  

CBA  ( ) ( ) ijkvijkijiijkv cb eay ++++μ=  

CA B  ( ) ( ) ijkvijkijiijkv ca eby ++++μ=  

CBA  ( ) ( ) ijkvijkijiijkv ba ecy ++++μ=  

CBA  ( ) ( ) ijkvijkijiijkv c ebay ++++μ=  

CA B  ( ) ( ) ijkvijkijiijkv b ecay ++++μ=  

CBA  ( ) ( ) ijkvijkijiijkv a ecby ++++μ=  

CBA  ( ) ( ) ijkvijkijiijkv ecbay ++++μ=  

( ) CBA ×  ( ) ( ) ijkvijkijjiijkv cabba ey +++++μ=  

( ) CA B×  ( ) ( ) ijkvijkijjiijkv ca eabby +++++μ=  

( ) CBA ×  ( ) ( ) ijkvijkijjiijkv c eabbay +++++μ=  

( ) CBA ×  ( ) ( ) ijkvijkijjiijkv abba ecy +++++μ=  

( ) CB×A  ( ) ( ) ijkvijkijjiijkv a ecabby +++++μ=  

( ) CB×A  ( ) ( ) ijkvijkijjiijkv ecabbay +++++μ=  

( ) CBA ×  ( ) ( ) ( ) ( ) ijkvkijikkijiijkv bcaccba ey ++++++μ=  

( ) CB ×A  ( ) ( ) ( ) ( ) ijkvkijikkijiijkv bccb eacay ++++++μ=  
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( ) CA ×B  ( ) ( ) ( ) ( ) ijkvkijikkijiijkv acca ebcby ++++++μ=  

( ) C×BA  ( ) ( ) ( ) ( ) ijkvkijikkijiijkv c ebcacbay ++++++μ=  

( ) C×BA  ( ) ( ) ( ) ( ) ijkvkijikkijiijkv ba ebcaccy ++++++μ=  

( ) CA ×B  ( ) ( ) ( ) ( ) ijkvkijikkijiijkv b ebcaccay ++++++μ=  

( ) CB ×A  ( ) ( ) ( ) ( ) ijkvkijikkijiijkv a ebcaccby ++++++μ=  

( ) CBA ×  ( ) ( ) ( ) ( ) ijkvkijikkijiijkv ebcaccbay ++++++μ=  

We only show how to determine the size of the experiment for the case 
( ) .C×BA  

We test the null hypothesis that the factor A has no effect on the observed 
random variable. 

Let us consider the case of 6=a  levels of A and 5=b  levels of B with 
05.0=α  and 1.0=β  and .5.0 σ=δ  In OPDOE, we use the R-program 

> size_c.three_way_mixed_cxbina.model_5_a(0.05, 0.1, 0.5, 6, 5, 

+ 2, “maximin”) 

[1]   15 

> size_c.three_way_mixed_cxbina.model_5_a(0.05, 0.1, 0.5, 6, 5, 

+ 2, “minimin”) 

[1]   6. 

As a result, we found the minimin size 6 and the maximin size 15 for the 
number of levels of the random factor C. 

We also can derive the test statistic for testing 

( ) Aij HijbH ;,,0:0 ∀=  at least one ( ) .0≠ijb  

BxCinA

BinA
MS
MS

F =  is under 0H  ( ) ( ) ( )[ ]11;1 −−− cbabaF -distributed with 

( )1−ba  and ( ) ( )11 −− cba  degrees of freedom. 
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Let us again consider the case of 6=a  levels of A and 5=b  levels of B with 
05.0=α  and 1.0=β  and .5.0 σ=δ  In OPDOE, we use the R-program 

> size_c.three_way_mixed_cxbina.model_5_b(0.05, 0.1, 0.5, 6, 5, 

+ 2, “maximin”) 

[1]   113 

> size_c.three_way_mixed_cxbina.model_5_b(0.05, 0.1, 0.5, 6, 5, 

+ 2, “minimin”) 

[1]   9. 

As a result, we found the minimin size 9 and the maximin size 113 for the 
number of levels of the random factor C. 
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