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Abstract 

This paper considers ergodicity properties of certain adaptive Markov 
chain Monte Carlo (MCMC) algorithms for multidimensional target 
distributions. It was previously shown in [23] that Diminishing Adaptation 
and Containment imply ergodicity of adaptive MCMC. We derive various 
sufficient conditions to ensure Containment. 

1. Introduction 

Markov chain Monte Carlo (MCMC) algorithms are widely used for 
approximately sampling from complicated probability distributions. However, it is 
often necessary to tune the scaling and other parameters before the algorithm will 
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converge efficiently, and this can be very challenging especially in high dimensions. 
Adaptive MCMC algorithms attempt to overcome this challenge by learning from the 
past and modifying their transitions on the fly, in an effort to automatically tune the 
parameters and improve convergence. This approach was pioneered by the original 
adaptive Metropolis algorithm of Haario et al. [14], which can be viewed as a 
version of the Robbins-Monro stochastic control algorithm [3, 20]. Their paper was 
quickly followed by numerous other papers which generalised, modified, clarified, 
and proved theorems about various adaptive MCMC algorithms in various contexts 
and under various assumptions [1, 2, 4-8, 10, 11, 15, 23, 24, 30, 32, 33], as well as 
some general-purpose adaptive MCMC software [29, 31]. 

Despite this considerable progress, it remains true that verifying ergodicity of 
adaptive MCMC algorithms on unbounded state spaces remains non-trivial. Most of 
the ergodicity theorems assume a Diminishing Adaptation condition, whereby the 
amount of adapting done at iteration n converges to zero as ,∞→n  which is easily 
ensured by designing the algorithm appropriately. On a compact state space, this 
condition together with a simple continuity assumption suffices to ensure ergodicity 
of the algorithm (see, e.g., Theorem 5 of [23]). However, on an unbounded state 
space, some additional assumption (such as the Containment condition discussed 
below) is also required or ergodicity may fail. 

In this paper, we consider the Containment condition in more detail. In 
particular, we prove a number of results about sufficient (and occasionally 
necessary) conditions for Containment to hold. We hope that these results will allow 
users to verify Containment for adaptive algorithms more easily, and thus use 
adaptive MCMC more widely without fear of ergodicity problems. 

1.1. Preliminaries 

Consider a target distribution ( )⋅π  defined on a state space X  with respect to 

some σ-field ( )XB  ( ( )xπ  is also used to denote the density ).function  Let 

{ }Y∈γγ :P  be a family of transition kernels of time homogeneous Markov chains, 

each having the same stationary probability distribution π, i.e., π=π γP  for all 

.Y∈γ  

An adaptive MCMC algorithm ( ){ }0:,: ≥Γ= nX nnZ  can be regarded as 

lying in the sample path space ( ) .: ∞×=Ω YX  It proceeds as follows: We begin 
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with an initial state X∈= 00 : xX  and a kernel ,0ΓP  where .: 00 Y∈γ=Γ  At each 

iteration ,1+n  1+nX  is generated from ( ),, ⋅Γ nXP n  so that if ( ...,,, 10 XXn σ=G  

) ,...,,,, 10 nnX ΓΓΓ  then for all ( ),XB∈A  

 ( )( ) ( )( ) ( ),,,1,1, 0000 AXPXAXAX nnnnxnnx nΓ+γ+γ =Γ|∈=|∈ PP G  (1) 

where ( )00 , γxP  represents the probability induced by our adaptive scheme when 

starting at 00 xX =  and .00 γ=Γ  Concurrently, 1+Γn  is obtained from some 

function of 10 ...,, +nXX  and ,...,,0 nΓΓ  according to the specific adaption scheme 

being used. (Intuitively, the adaptive scheme is designed so that it hopefully learns 
as it goes, so that the values nΓ  hopefully get correspondingly better, in terms of 

improved convergence of ,nPΓ  as n increases.) 

In the paper, we study adaptive MCMC with the property equation (1). We say 
that the adaptive MCMC Z is ergodic if for any initial state X∈0x  and any kernel 

index ,0 Y∈γ  

( )( ) ( ) ,0lim TV, 00 =⋅π−⋅∈γ
∞→

nx
n

XP  

where 
( )

( )A
A

µ=µ
∈ XB
supTV  is the usual total-variation metric on measures. 

To study this ergodicity, we consider the properties of Diminishing Adaptation 
and Containment, following [23]. (There are several other closely related approaches 
to ergodicity of adaptive MCMC, see, e.g., [2, 6, 8, 30].) 

Diminishing Adaptation is the property that for any 00 xX =  and ,00 γ=Γ  

0lim =∞→ nn D  in probability ( ),00,γxP  where ( ) ( ) TV,,sup 1 ⋅−⋅= ΓΓ∈ +
xPxPD nnxn X  

represents the amount of adaptation performed between iterations n and .1+n  

Containment is the property that for any 00 xX =  and ,00 γ=Γ  for any ,0>ε  

the stochastic process ( ){ }0:, ≥Γε nXM nn  is bounded in probability ( ),00 , γxP       

i.e., for all ,0>δ  there is an N∈N  such that ( ) ( )( ) δ−≥≤Γεγ 1,00, NXM nnxP  

for all ,N∈n  where ( ) { ( ) ( ) }ε≤⋅π−⋅≥=γ γε TV,:1inf, xPnxM n  is the “ε-

convergence time”. 
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Theorem 1 ([23]). Ergodicity of an adaptive MCMC algorithm is implied by 
Diminishing Adaptation and Containment. 

Thus, to ensure ergodicity of adaptive MCMC, it suffices to have Diminishing 
Adaptation and Containment. When designing adaptive algorithms, it is usually     
not difficult to ensure directly that Diminishing Adaptation holds. However, 
Containment may be more challenging, and is the subject of this paper. 

Remark 1. Atchadé et al. [8] allowed for more general adaptive schemes, in 
which the different γP  can have different stationary distributions, but we do not 

pursue that here. 

1.2. Organisation of the paper 

Section 2 presents several examples to show that ergodicity can hold even if 
neither Containment nor Diminishing Adaptation holds, and that Diminishing 
Adaptation alone - even together with a weaker form of Containment - is not 
sufficient for ergodicity of adaptive MCMC. It also presents a simple summable 
adaptive condition which can be used to check ergodicity more easily. Finally, it 
discusses properties related to simultaneous geometric ergodicity which also imply 
ergodicity of adaptive algorithms. 

Section 3 then discusses the weaker property of simultaneous polynomial 
ergodicity, and shows that this property also implies ergodicity of adaptive 
algorithms under appropriate conditions. 

Section 4 specialises to adaptive algorithms based on families of Metropolis-
Hastings algorithms. It shows that for lighter-than-exponential target distributions, 
ergodicity holds under relatively weak assumptions. On the other hand, for targets 
with exponential or hyperbolic tails, additional assumptions are required. 

For ease of readability, all non-trivial proofs are deferred until Section 5. 

2. Some Simple Results about Containment 

We begin with a collection of relatively simple results about the Containment 
condition, before considering more substantial results in subsequent sections. 

2.1. On necessity of the conditions 

We begin with a very simple example to show that neither Diminishing 
Adaptation nor Containment is actually necessary for ergodicity of adaptive MCMC. 
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Example 1. Let the state space { },2,1=X  and let the available Markov 

transition kernels be: 







θ−θ
θθ−

=θ 1
1

P  

for fixed ( ).1,0∈θ  Obviously, for each ( ),1,0∈θ  the stationary distribution is 

( ),Unif X  the uniform distribution on .X  Assume the following very simple state-

independent adaptation scheme: at each time ,0≥n  we choose the transition kernel 

,nPθ  where nθ  is some specific function of n. 

Proposition 1. For the adaptation scheme of Example 1 with 
( )r

n
n 2

1
+

=θ  

for some fixed ,0>r  we have the following: 

  (i) For any ,0>r  Diminishing Adaptation holds but Containment does not. 

 (ii) If ,1>r  then ,100 µ→µ θθθ nPPP  where µ depends on ,0µ  and in 

particular, if ( ),Unif0 X≠µ  then ( ),Unif X≠µ  i.e., the adaptive scheme is not 

ergodic. 

(iii) If ,10 ≤< r  then for any probability measure 0µ  on ,X  we have 

( ) ,Unif100 X→µ θθθ nPPP  i.e., the adaptive scheme is ergodic in this case. 

See the proof in Subsection 5.1. 

Remark 2. The chain in Proposition 1 is simply a time inhomogeneous Markov 
chain, artificially fit into the framework of adaptive MCMC. Although very simple, 
this example indicates the complexity of adaptive MCMC ergodicity. In particular: 

1. For ,1>r  the limiting distribution of the chain is not uniform. So it shows 

that Diminishing Adaptation alone cannot ensure ergodicity. 

2. For ,10 ≤< r  the algorithm is ergodic to the uniform distribution, but 

Containment does not hold. That is, although the “ε convergence time” goes to 
infinity (see equation (29)), the distance between the chain and the target is still 
decreasing to zero. 
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Proposition 2. For the adaptation scheme of Example 1 with 21=θn  for n 

even, and nn 1=θ  for n odd, both Diminishing Adaptation and Containment do 

not hold, but the chain still converges to the target distribution ( ).Unif X  

See the proof in Subsection 5.1. 

Example 1 shows that Containment is not a strictly necessary condition for 
ergodicity to hold. In the following theorem, we prove that under certain additional 
conditions, Containment is in fact necessary for ergodicity of adaptive algorithms. 

Theorem 2. Suppose a family { } Y∈γγP  has the property that there exists an 

increasing sequence of sets XD ↑k  on the state space X  such that for any ,0>k  

 ( ) ( ) .0,suplim TV =⋅π−⋅γ
×∞→

xPn
n k YD

 (2) 

If an adaptive MCMC algorithm based on { } Y∈γγP  is ergodic, then Containment 

holds. 

Corollary 1. Suppose that the parameter space Y  is a metric space, and the 

adaptive scheme { }0: ≥Γ nn  is bounded in probability. Suppose that there exists an 

increasing sequence of sets ( ) YXYD ×↑kk ,  such that for any ,0>k  

( ) ( ) .0,suplim TV =⋅π−⋅γ
×∞→

xPn
n kk YD

 

If the adaptive MCMC algorithm is ergodic, then Containment holds. 

For proofs of Theorem 2 and Corollary 1, see Subsection 5.2. 

We now present a second, more complicated example. This example also fails to 
be ergodic, even though it satisfies Diminishing Adaptation, and also satisfies the 
“weak Containment” property that ( ) ∞<γε∈∈γ ,supsup xMCxY  for some small set 

C of positive stationary measure (indeed, that trivially holds for this example with C 
any compact interval within ,X  since Y  is finite). Thus, this example shows that to 

ensure ergodicity, the full Containment condition is not redundant, and in particular, 
it cannot simply be replaced by the “weak Containment” property. 

Example 2. Let the state space ( ),,0 ∞=X  and the kernel index set =Y  
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{ }.1,1−  Then the target density ( ) ( )
21
0

x
xx
+
>∝π I  is a half-Cauchy distribution on 

the positive part of .R  At each time n, run the Metropolis-Hastings algorithm, where 
the proposal value nY  is generated by 

 nnn ZXY nn += −− Γ
−

Γ 11
1  (3) 

with i.i.d standard normal distribution { },nZ  i.e., if ,11 =Γ −n  then ,1 nnn ZXY += −  

while if ,11 −=Γ −n  then ( ) .1
1
1 nn

n ZXY
+

=
−

 The adaptation is defined as 

 ,11 11 11 




 ≥Γ+





 <Γ−=Γ −− Γ

−
Γ

− nXnX nn nnnnn II  (4) 

i.e., we change Γ from 1 to –1 when ,1 nX <  and change Γ from –1 to 1 when 

,nX >  otherwise we do not change Γ. 

Proposition 3. The adaptive chain { }0: ≥nX n  defined in Example 2 is not 

ergodic, and Containment does not hold, although Diminishing Adaptation does 
hold. 

See the proof in Subsection 5.3. 

2.2. Summable adaptive condition 

In the following result, we use a simple coupling method to show that a certain 
summable adaptive condition implies ergodicity of adaptive MCMC. 

Proposition 4. Consider an adaptive MCMC { }0: ≥nX n  on the state space 

X  with the kernel index space .Y  Under the following conditions: 

  (i) Y  is finite. For any ,Y∈γ  γP  is ergodic with the stationary distribution 

π. 

 (ii) At each time n, nΓ  is a deterministic measurable function of ,...,,0 nXX  

....,, 10 −ΓΓ n  

(iii) For any initial state X∈0x  and any initial kernel index ,0 Y∈γ  
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 ( )∑
∞

=
− ∞<γ=Γ=|Γ≠Γ

1
00001 ,,

n
nn xXP  (5) 

the adaptive MCMC { }0: ≥nX n  is ergodic with the stationary distribution π. 

See the proof in Subsection 5.4. 

Remark 3. In Example 2, the transition kernel is changed when 1−ΓnnX  reaches 

below the bound .1 n  If instead this bound is re-defined as rn1  for some ,1>r  

then Proposition 4 can be used (by adopting the procedure in Lemma 2 to check 
equation (5)) to show that the adaptive algorithm is ergodic. 

2.3. Simultaneous geometric drift conditions revisited 

It was proven in [23] (see [2] for similar related results) that Containment is 
implied by simultaneous strongly aperiodic geometric ergodicity (S.S.A.G.E.). 
S.S.A.G.E. is the condition that there is ( ),XB∈C  a function [ ) ,,1: ∞→XV  

,0>δ  1<λ  and ∞<b  such that ( ) ,sup ∞<
∈

xV
Cx

 and 

 (i) for each ,γ  ∃  a probability measure ( )⋅νγ  on C with ( ) ( )⋅δν≥⋅ γγ ,xP  for 

all ,Cx ∈  and 

(ii) CbVVP I+λ≤γ  for all γ. 

The idea of utilizing S.S.A.G.E. to check Containment is that S.S.A.G.E. 

guarantees there is a uniform quantitative bound of ( ) ( ) TV, ⋅π−⋅γ xPn  for all 

.Y∈γ  However, S.S.A.G.E. can in fact be weakened to the simultaneously 

geometrically ergodic condition (S.G.E.) studied by [27]. We say that the family 
{ }Y∈γγ :P  is S.G.E. if there is ( ),XB∈C  some integer ,1≥m  a function 

[ ),,1: ∞→XV  ,0>δ  1<λ  and ∞<b  such that ( ) ,sup ∞<
∈

xV
Cx

 ( ) ,∞<π V  and: 

 (i) C is a uniform mν -small set, i.e., for each ∃γ,  a probability measure ( )⋅νγ  

on C with ( ) ( )⋅δν≥⋅ γγ ,xPm  for all ,Cx ∈  and 

(ii) CbVVP I+λ≤γ  for all γ. 
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Note that the difference between S.G.E. and S.S.A.G.E. is that a uniform 
minorization set C for all γP  is assumed in S.S.A.G.E., however, a uniform small set 

C is assumed in S.G.E. (see the definitions of minorization set and small set in [19, 
Chapter 5]). 

Theorem 3. S.G.E. implies Containment. 

See the proof in Subsection 5.5. 

Corollary 2. Consider the family { }Y∈γγ :P  of Markov chains on .dR⊂X  

Suppose that for any compact set ( ),XB∈C  there exist some integers ,0>m  

0>δ  and a measure ( )⋅νγ  on C for Y∈γ  such that ( ) ( )⋅δν≥⋅ γγ ,xPm  for all 

.Cx ∈  Suppose that there is a function ( )∞→ ,1: XV  such that for any compact 

set ( ),XB∈C  ( ) ,sup ∞<
∈

xV
Cx

 ( ) ,∞<π V  and 

 
( )
( ) .1supsuplim <γ

∈γ∞→ xV
xVP

x Y
 (6) 

Then, for any adaptive strategy using { },: Y∈γγP  Containment holds. 

See the proof in Subsection 5.5. 

3. Ergodicity via Simultaneous Polynomial Ergodicity 

The previous section considered simultaneous geometric drift conditions. We 
now consider the extent to which Containment is ensured by the weaker property of 
simultaneous polynomial drift conditions. 

3.1. Polynomial ergodicity 

There are many results available about polynomial ergodicity bounds for 
Markov chains [12, 13, 16, 17]. We begin by recalling in some detail a result by Fort 
and Moulines [13], giving a quantitative convergence bound for (non-adaptive) 
time-homogeneous Markov chains with polynomial (subgeometric) convergence 
rates. 

Theorem 4 ([13]). Suppose that the time-homogeneous transition kernel P 
satisfies the following conditions: 
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• P is π-irreducible for an invariant probability measure π; 

• There exist some sets ( )XB∈C  and ( ),XB∈D  ,DC ⊂  ( ) 0>π C  and an 

integer 1≥m  such that for any ( ) ,:, CDDCxx ××=∆∈′ ∪  ( ) ,XB∈A  

 ( ) ( ) ( ),,, , AAxPAxP xx
mm

′ρ≥′∧  (7) 

where xx ′ρ ,  is some measure on X  for ( ) ,, ∆∈′xx  and ( ) ( )Xxxxx ′∆∈′
− ρ=ε ,,inf:  

.0>  

• Let .1≥q  There exist some measurable functions { }0\: +→ RXkV  for 

{ },...,,1,0 qk ∈  and for { }1...,,1,0 −∈ qk  for some constants ,10 << ka  ∞<kb  

and 0>kc  such that 

( ) ( ) ( ) ( ) ( ) ,0inf,11 >≥+−≤
∈

++ kk
x

Ckkkk cxVxbxVxVxPV
X

I  

( ) ( ) ,, c
kkkk DxxVabxV ∈≥−  

.sup ∞<q
D

V  (8) 

• ( ) ∞<π β
qV  for some ( ].1,0∈β  

Then, for any ,, mnx ≥∈ X  

 ( ) ( ) ( )( )nxBxP lql
n ,min,

1TV
β

≤≤
⋅π−⋅  (9) 

with 

( )( ) ( ( ) ) ( )
( ) ( ) ( )( ( ) ( ) )

,
,1,11,

,,
1

1

∑ −+≥
ββ−−+β

β−β+
β

−+ε++−+

π⊗δ−ε
=

mnj
mnj

lxm
l jlSjlSmnlS

eWAInxB  

where ⋅⋅,  denotes the inner product in ,1+qR  { },le  ql ≤≤0  is the canonical 

basis on ,1+qR  I is the identity matrix; 

( ) ( ) ( ) ( ),,: ∫ ′′πδ=π⊗δ ββ yyWyddyW xx  
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where ( ) ( ( ) ( ))Tq xxWxxWxxW ′′=′ βββ ,...,,,:, 0  with ( ) 1:,0 =′xxW  and 

( ) ( ) ( ) ( )( ) ( ) ( )( )xVxVVmaxxxxxxW ll

l

k
kl c ′+












′+′=′ −

−−

=
∆∆ ∏ 1

0

11

0

,,, II  for ,1 ql ≤≤  

where ( ) ( ) ( ) ( ){ };inf: 00,0 xVxVVm cxx
′+=

∆∈′
 

( ) 1:,0 =kS  and ( ) ( )∑
=

≥−=
k

j

ijiSkiS
1

;1,,1:,  

( )

( )( )
( )( ) ( )( )

( )( ) ( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) ( ) ( ) ( )

,

011

0021

0001

0000

:



























−

−−

=

ββββ

βββ

ββ

β

β

mmmm

mmm

mm

m

m

AAqAqA

AqAqA

AA

A

A  

where 

( )( ) ( ) ( ) ( ( ))∑ = ′
β

∆∈′
β ρ−=

l

i xxxxm miSlA
0 ,, 1,sup: X  

( ) ( ) ( )∫ ′′′⋅ β
−′′ ,,,, ,, yyWydxRdyxR ilxxxx  

where the residual kernel 

( ) ( ( )) ( ( ) ( ));,1:, ,
1

,, dydyuPdyuR xx
m

xxxx ′γ
−

′′ ρ−ρ−= X  

and ( ) ( ).sup: ,, Xxxxx ′∆∈′
+ ρ=ε  

Remark 4. In the ( )( ),, nxBl
β  +ε  depends on the set ∆ and the measure ;, xx ′ρ  

the matrix ( ( ) ) 1−β− mAI  depends on the set ∆, the transition kernel P, xx ′ρ ,  and the 

test functions ;kV  ( )βπ⊗δ Wx  depends on the set ∆ and the test functions .kV  

Consider the special case of the theorem: ( ) ( ),, dydyxx δν=ρ ′  where ν is a 

probability measure with ( ) ,0>ν C  and .: CC ×=∆  
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1. .δ=ε=ε −+  

2. ( )β− mAI  is a lower triangle matrix so ( ( ) ) ( ( ) ) 1...,,1,
1

+=
β−β =− qjiijm bAI  is also 

a lower triangle matrix, and fixing 0≥k  all ( )β
−kiib ,  are equal. ( )

( )( )
.

01
1
β

β

−
=

m
ii A

b  

For ,ji >  ( )β
ijb  is the polynomial combination of ( )( ) ( )( )1...,,0 +ββ iAA mm  divided by 

( ( )( )) .01 i
mA β−  By some algebra, we can obtain that ( )

( )( )
( ( )( ))

.
01

1
221 β

β
β

−
=

m

m

A
Ab  So, by 

calculating ( )( ),,1 nxB β  we can get the quantitative bound with a simple form. 

( )( )nxB ,1
β  only involves two test functions ( )xV0  and ( ).1 xV  

Remark 5. From equation (8), ( ) ( ) ,1 0000 bbxV >α−≥  because .10 0 <α<  

Consider the drift condition: .0011 CbVVPV I+−≤−  Since ,π=πP  ( ) ( )CbV π≤π 00  

.0b≤  Hence, the 0V  in the theorem cannot be constant. 

Remark 6. Without the condition ( ) ,∞<π βV  the bound in equation (9) can 

also be obtained. However, the bound is possibly infinity. The subscript l of 
( )( )nxBl ,β  and β can explain the polynomial rate. The related rate is ( )β−+ mnlS 1,  

(( ) ).1 β−+= lmnO  It can be observed that ( )( )nxBl ,β  involves test functions 

( ) ( ),...,,0 xVxV l  and ( )( ) .,suplim ∞<ββ nxBn l
l

n  The maximal rate of convergence 

is equal to .βq  

3.2. Polynomial ergodicity and adaptive MCMC 

To prove Containment using polynomial ergodicity, we shall require some 
additional assumptions, as follows. Say that the family { }Y∈γγ :P  is 

simultaneously polynomially ergodic (S.P.E.) if the conditions (A1)-(A4) are 
satisfied: 

(A1) Each γP  is γφ -irreducible with stationary distribution ( ).⋅π  

Remark 7. By Proposition 10.1.2 of [19], if γP  is ϕ-irreducible, then γP  is π-

irreducible and the invariant measure π is a maximal irreducibility measure. 
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(A2) There is a set ,X⊂C  some integer ,N∈m  some constant ,0>δ  and 

some probability measure ( )⋅νγ  on X  such that: 

 ( ) ,0>π C  and ( ) ( ) ( )⋅νδ≥⋅ γγ xxP C
m I,  for all ., YX ∈γ∈x  (10) 

Remark 8. In Theorem 4, there is one condition equation (7) ensuring the 
splitting technique. Here we consider the special case of that condition: ( )dyxx ′ρ ,  

( )dyγδν=  and .CC ×=∆  Thus, by Remark 4, the bound of ( ) ( ) TV, ⋅π−⋅γ xPn  

depends on C, m, the minorization constant δ, ( ),⋅π  ,γν  and test functions ( )xVl  so 

we assume that they are uniform on all the transition kernels. 

(A3) There is N∈q  and measurable functions: ( ),,0:...,,, 10 ∞→XqVVV  

where qVVV ≤≤≤ 10  such that for ,1...,,1,0 −= qk  there are ,10 <α< k  

∞<kb  and 0>kc  such that: 

( ) ( ) ( ) ( ) ( ) kkCkkkk cxVxbxVxVxVP ≥+−≤ ++γ ,11 I  for X∈x  and ;Y∈γ  (11) 

( ) ( )xVbxV kkkk α≥−  for ;Cx X∈  (12) 

( ) .sup ∞<
∈

xVq
Cx

 (13) 

Remark 9. For ,Cx ∈  ( ) ( ) ( ) .sup11 1
δ

+
δ

≤
δ

≤ν −
∈γγ

l
lCxl

m
l

mbxVxVPV  

(A4) ( ) ∞<π β
qV  for some ( ].1,0∈β  

In terms of these assumptions, we have the following: 

Theorem 5. Suppose an adaptive MCMC algorithm satisfies Diminishing 
Adaptation. Then the algorithm is ergodic under any of the following conditions: 

  (i) S.P.E., and the number q of simultaneous drift conditions is strictly greater 
than two; 

 (ii) S.P.E., and when the number q of simultaneous drift conditions is greater 

than or equal to two, there exists an increasing function ++ → RR:f  such that 

( ) ( )( );01 xVfxV ≤  
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(iii) Under the conditions (A1) and (A2), there exist some positive constants 
,0>c  ,0>>′ bb  ( ),1,0∈α  and a measurable function ( ) +→ RX:xV  with 

( ) 1≥xV  and ( ) ∞<
∈

xV
Cx

sup  such that 

 ( ) ( ) ( ) ( )xbxcVxVxVP CI+−≤− α
γ  for all ,, YX ∈γ∈x  (14) 

and ( ) ( ) bxxcV cC
′≥α I  for all ;X∈x  

(iv) Under the conditions (A1), (A2) and (A4), there exist some constant 

,0>>′ bb  two measurable functions +→ RX:0V  and +→ RX:1V  with 

( ) ( )xVxV 101 ≤≤  and ( ) ∞<
∈

xV
Cx

1sup  such that 

 ( ) ( ) ( ) ( )xbxVxVxVP CI+−≤−γ 011  for all ,, YX ∈γ∈x  (15) 

and ( ) ( ) bxxV cC
′≥I0  for all ,X∈x  and the process ( ){ }0:1 ≥nXV n  is bounded 

in probability. 

For a proof of Theorem 5, see Subsection 5.6. 

Remark 10. In part (iii), (A4) is then implied by Theorem 14.3.7 of [19] with 
.α=β  

Remark 11. Atchadé and Fort [6] recently proved a result closely related to the 
above, using a coupling method similar to that in [23]. Their Corollary 2.2 
establishes ergodicity of adaptive MCMC algorithms under the assumptions of 
uniform strong aperiodicity, simultaneous drift conditions of the form (13), and 
uniform convergence on any sublevel set of the test function ( ).xV  Thus, they 

essentially reprove part (iii) of our Theorem 5, but under somewhat different 
assumptions. 

4. Ergodicity of Adaptive Metropolis-Hastings Algorithms 

We now present some ergodicity results for various adaptive Metropolis-
Hastings algorithms. (For similar results about adaptive Metropolis-within-Gibbs 
algorithms, see [9].) 
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4.1. General adaptive Metropolis-Hastings algorithms 

We first consider general Metropolis-Hastings algorithms. We begin with some 
notation. 

The target density ( )⋅π  is defined on the state space .dR⊂X  In what follows, 

we shall write ⋅⋅,  for the usual scalar product on ,dR  ⋅  for the Euclidean and the 

operator norm, ( ) zzzn =:  for the normed vector of z, ∇  for the usual differential 

(gradient) operator, ( ) ( ) ( ) ,: xxxm π∇π∇=  ( ) { }rxyyrxB dd <−∈= :, R  for 

the hyperball on dR  with the center x and the radius r, ( )rxB d ,  for the closure of 

the hyperball, and ( )AVol  for the volume of the set .dA R⊂  

Say an adaptive MCMC is an Adaptive Metropolis-Hastings algorithm if each 
kernel γP  is a Metropolis-Hastings algorithm, i.e., is of the form 

 ( ) ( ) ( ) ( ) ( ) ( ) ,,,1,,, dydzxQzxdyxQyxdyxP xδ






 α−+α= ∫ γγγγγ
X

 (16) 

where ( )dyxQ ,γ  is the proposal distribution, ( )
( ) ( )
( ) ( ) ( ),1,

,
:, X∈








∧

π
π

=α
γ

γ
γ yyxqx

xyqy
yx I  

and dµ  is Lebesgue measure. Say an adaptive Metropolis-Hastings algorithm is an 

Adaptive Metropolis algorithm if each ( )yxq ,γ  is symmetric, i.e., ( ) =γ yxq ,  

( ) ( ).xyqyxq −=− γγ  

[16] gave conditions which imply geometric ergodicity of symmetric random-

walk-based Metropolis algorithm on dR  for target distribution with lighter-than-
exponential tails, see other related results in [18, 25]. Here, we extend their result a 
little for target distributions with exponential tails. 

Definition 1 (Lighter-than-exponential tail). The density ( )⋅π  on dR  is lighter-

than-exponentially tailed if it is positive and has continuous first derivatives such 
that 

 ( ) ( ) .log,suplim −∞=π∇
∞

xxn
x

 (17) 
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Remark 12. (1) The definition implies that for any ,0>r  there exists 0>R  
such that 

( )( ) ( )
( ) ,rx

xxnx α−≤
π

π−α+π  for .0, >α≥ Rx  

It means that ( )xπ  is exponentially decaying along any ray, but with the rate r 

tending to infinity as x goes to infinity. 

(2) The normed gradient ( )xm  will point towards the origin, while the direction 

( )xn  points away from the origin. For Definition 1, 

( ) ( ) ( )
( ) ( ) ( ) .,log, xmxnx

xxxn
π
π∇

=π∇  

Even ( ) ( ) ,0,suplim <
∞

xmxn
x

 equation (17) might not be true, e.g., ( ) ,
1

1
2x

x
+

∝π  

.R∈x  ( ) ( )xnxm −=  so that ( ) ( ) .1, −=xmxn  ( ) ( ) 21
2log,

x
xxxn

+
−=π∇  so 

( ) ( ) .0log,lim =π∇
∞

xxn
x

 

Definition 2 (Exponential tail). The density function ( )⋅π  on dR  is exponentially 

tailed if it is a positive, continuously differentiable function on ,dR  and 

 ( ) ( ) .0log,suplim:2 >π∇−=η
∞

xxn
x

 (18) 

Remark 13. There exists 0>β  such that for x sufficiently large, 

( ) ( ) ( ) ( ) ( ) .log,log, β−≤π∇=π∇ xxmxnxxn  

Further, if ( ) ( ) ,1,0 ≤−< xmxn  then ( ) .log β≥π∇ x  

Define the symmetric proposal density family { ( ) ( ) =−== yxqyxqq ,::C  

( )}.xyq −  Our ergodicity result for adaptive Metropolis algorithms is based on the 

following assumptions: 

Assumption 1 (Target regularity). The target distribution is absolutely 
continuous w.r.t. Lebesgue measure dµ  with a density π bounded away from zero 

and infinity on compact sets, and ( ) .sup ∞<π
∈

x
x X
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Assumption 2 (Target strongly decreasing). The target density π has continuous 
first derivatives and satisfies 

 ( ) ( ) .0,suplim:1 >−=η
∞

xmxn
x

 (19) 

Assumption 3 (Proposal uniform local positivity). Assume that{ } .: C⊂∈γγ Yq  

There exists 0>ζ  such that 

 ( ) .0infinf: >= γ
ζ≤∈γ

zq
zY

ι  (20) 

Given ,0 ∞<<< qp  for 1−∈ dSu  ( 1−dS  is the unit hypersphere in )dR  and 

,0>θ  define 

 ( ) { }.3,,:, 1
, θ<−ξ∈ξ≤≤|ξ==θ − uSqapazuC d
qp  (21) 

Assumption 4 (Proposal moment condition). Suppose the target density π is 
exponentially tailed and { } .: C⊂∈γγ Yq  Under Assumptions 2, assume that there 

are ( ),,0 1η∈ε  ( ),,0 2η∈β  δ  and ∆ with ∞≤∆<δ≤
βε

< 30  such that 

 
( )

( ) ( ) ( )
( )( )∫ ε

γ
×∈γ ∆δ

− −βε
+>µ

,, ,1
.1

13inf
uC

d
Su e

edzzqz
d Y

 (22) 

Remark 14. Under Assumption 3, let ( )dyxP ,~  be the transition kernel            

of Metropolis-Hastings algorithm with the proposal distribution ( ) ~,~
⋅xQ  

( ( )).2,Unif ζxB d  For any ,Y∈γ  ( ) ( ( )) ( ).,~2,0Vol, dyxPBdyxP d ζ≥γ ι  Under 

Assumption 1, by [25, Theorem 2.2], any compact set is a small set for P~  so that 
any compact set is a uniform small set for all .γP  

Remark 15. (1) Assumption 4 means that the proposal family has uniform 
lower bound of the first moment on some local cone around the origin. The 
condition specifies that the tails of all proposal distributions cannot be too light, and 
the quantity of the lower bound is given and dependent on the tail-decaying rate 2η  

and the strongly decreasing rate 1η  of target distribution. Assumptions 1-4 are used 

to check S.G.E. which is just sufficient to Containment. 
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(2) If the proposal distribution in { } C⊂∈γγ Y:q  is a mixture distribution 

with one fixed part, then Assumption 4 is relatively easy to check, because the 
integral in equation (22) can be estimated by the fixed part distribution. Especially 
for the lighter-than-exponentially tailed target, Assumption 4 can be reduced for this 
case. We will give a sufficient condition for Assumption 4 which can be applied to 
more general case, see Lemma 1. 

Now, we consider a particular class of target densities with tails which are 
heavier than exponential tails. It was previously shown by [12] that the Metropolis 
algorithm converges at any polynomial rate when proposal distribution is compact 

supported and the log density decreases hyperbolically at infinity, ( ) ,~log sxx −π  

for 10 << s  as .∞→x  

Definition 3 (Hyperbolic tail). The density function ( )⋅π  is twice continuously 

differentiable, and there exist 10 << m  and some finite positive constants ,id  ,iD  

2,1=i  such that for large enough ,x  

( ) ;log0 00
mm xDxxd ≤π−≤<  

( ) ;log0 1
1

1
1

−− ≤π∇≤< mm xDxxd  

( ) .log0 2
2

22
2

−− ≤π∇≤< mm xDxxd  

Assumption 5 (Proposal’s uniform compact support). Under Assumption 3, 
there exists some ζ>M  such that all ( )⋅γq  with Y∈γ  are supported entirely on 

( ).,0 MB d  

Theorem 6. An adaptive Metropolis algorithm with Diminishing Adaptation is 
ergodic, under any of the following conditions: 

  (i) The target density π is lighter-than-exponentially tailed, and Assumptions  
1-3; 

 (ii) The target density π is exponentially tailed, and Assumptions 1-4; 

(iii) The target density π is hyperbolically tailed, and Assumptions 1-3 and 5. 

For a proof of Theorem 6, see Subsection 5.7. 
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4.2. Specific cases of adaptive Metropolis-Hastings algorithms 

Here we discuss two specific cases of adaptations of Metropolis-Hastings 
algorithms. The first one (Example 3) is from [24], where the proposal density is a 
fixed distribution of two multivariate normal distributions, one with fixed small 
variance, another using the estimate of empirical covariance matrix from historical 
information as its variance. It is a slight variant of the original adaptive Metropolis 
algorithm of Haario et al. [14]. In the example, the target density has lighter-than-
exponential tails. The second (Example 4) concerns with target densities with truly 
exponential tails. 

Example 3. Consider a d-dimensional target distribution ( )⋅π  on dR  satisfying 

Assumptions 1-2. We perform a Metropolis algorithm with proposal distribution 

given at the nth iteration by ( ) ( ( ) )dIxNxQ dn
21.0,, =⋅  for .2dn ≤  For ,2dn >  

( )⋅,xQn  

( ) ( ( ) ) ( ( ) )

( ( ) )





∑

∑θ+∑θ−
=

definitepositivenotis,1.0,

,definitepositiveis,1.0,38.2,1
2

22

nd

ndn

dIxN

dIxNdxN
 (23) 

for some fixed ( ),1,0∈θ  dI  is dd ×  identity matrix, and the empirical covariance 

matrix 

 ( ) ,11

0













+−=∑ ∑

=

n

i
nniin XXnXXn  (24) 

where ∑ =+
=

n
i in XnX 01

1  is the current modified empirical estimate of the 

covariance structure of the target distribution based on the run so far. 

Remark 16. The fixed part ( ( ) )dIxN d
21.0,  can be replaced by 

( ( ))τ,Unif xBd  for some .0>τ  For targets with lighter-than-exponential tails, τ 

can be an arbitrary positive value, because Assumption 3 holds. For targets with 
exponential tails, τ is dependent on 1η  and .2η  

Remark 17. The proposal ( ( ) )dxN ∑238.2,  is optimal in a particular large-

dimensional context, see [22, 26]. Thus the proposal ( ( ) )dxN n∑238.2,  is an 

effort to approximate this. 
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Remark 18. Commonly, the iterative form of equation (24) is more useful, 

 ( ) ( ) .1
11

111 −−− −−
+

+∑−=∑ nnnnnn XXXXnn
n  (25) 

Proposition 5. Suppose that the target density π is exponentially tailed. Under 

Assumptions 1-4, 1−− nn XX  and Mnn 1−∑−∑  converge to zero in probability, 

where M⋅  is matrix norm. 

For a proof of Proposition 5, see Subsection 5.8. 

Theorem 7. Suppose that the target density π in Example 3 is lighter-than-
exponentially tailed. The algorithm in Example 3 is ergodic. 

Proof. Obviously, the proposal densities are uniformly bounded below. By 

Theorem 6 and Proposition 5, the adaptive Metropolis algorithm is ergodic.  

The following lemma can be used to check Assumption 4: 

Lemma 1. Suppose that the target density π is exponentially tailed and the 
proposal density family { } .: C⊂∈γγ Yq  Suppose further that there is a function 

( ) ( ) ,: zgzq =−  +− → RRdq :  and ,: ++ → RRg  some constants ,0≥M  

( ),,0 1η∈ε  ( )2,0 η∈β  and ∆<δ<∨
βε

M3  such that for Mz ≥  with the 

property that ( ) ( )zqzq −
γ ≥  for Y∈γ  and 

 ( ) ( ) ( )
( )∫

∆

δ

−

−βε
+>





 −






 +Γ

π− ,1
13

2
1,2

1Be

2
12

1
2

2
1

e
edtttgd

d
d d

r

d

 (26) 

where 1η  is defined in equation (18), 2η  is defined in equation (19), =:r  

,3618
2ε−ε  and the incomplete beta function ( ) ( )∫ −− −=

x tt
x dttttt

0
11

21 ,1:,Be 21  

then Assumption 4 holds. 

For a proof of Lemma 1, see Subsection 5.9. 

We now consider a specific example to illustrate the theorem. 
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Example 4. Consider the standard multivariate exponential distribution ( ) =π x  

( )xc λ−exp  on ,dR  where .0>λ  We perform a Metropolis algorithm with 

proposal distribution in the family { ( )} Y∈γγ ⋅Q  at the nth iteration, where 

 ( )

( ( ))

( ) ( ( ) )

( ( ))








∑>∆θ+

∑θ−

∑≤∆

=⋅

singular,isand,2,,Unif

38.2,1

,rnonsingulaisor,2,,Unif

, 2

n
d

n

n
d

n

dnxB

dxN

dnxB

xQ  (27) 

for ( ),1,0∈θ  ( ( ))∆,Unif xBd  is a uniform distribution on the hyperball ( )∆,xBd  

with the center x and the radius ∆, and n∑  is as defined in equation (24). 

Proposition 6. There exists a large enough 0>∆  such that the adaptive 
Metropolis algorithm of Example 4 is ergodic. 

For a proof of Proposition 6, see Subsection 5.10. 

Remark 19. Concurrent with our research, Saksman and Vihola [30]        
recently proved some related results about the original Adaptive Metropolis (AM) 
algorithm of [14], assuming lighter-than-exponential tails of the target distribution  
as in our Theorem 7. Their Theorem 13 shows that if the target density is             
regular, strongly decreasing, and strongly lighter-than-exponentially tailed (i.e., 

( ) ( )
∞−=

π∇
−ρ

∞→
1

log,suplim
x

xxn

x
 for some ,)1>ρ  then strong laws of large numbers 

and central limit theorems hold in the adaptive setting. 

5. Proofs of the Results 

5.1. Proofs related to Example 1 

Proof of Proposition 1. Since the adaptation is state-independent, the 
stationarity is preserved. So, the adaptive MCMC ( )⋅δ

−θθθθ 1210~ nPPPPX n  for 

,0≥n  where ( ( ) ( ) )21 ,: δδ=δ  is the initial distribution. 

The part (i). Consider ( ) ( ) .,, TV1 ⋅−⋅ θθ +
xPxP nn  For any ,X∈x  

( ) ( ) .0,, 1TV1 →θ−θ=⋅−⋅ +θθ + nnxPxP nn  

Thus, for ,0>r  Diminishing Adaptation holds. 
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By some algebra, 

 ( ) ( ) .212
1, TV

nn xP θ−=⋅π−⋅θ  (28) 

Hence, for any ,0>ε  

 ( ) ( ) ( ) +∞→
θ−

−ε≥θε
n

nnXM 21log
21loglog,  as .∞→n  (29) 

Therefore, the stochastic process ( ){ }0:, ≥θε nXM nn  is not bounded in 

probability. 

The parts (ii) and (iii). Let ( ( ) ( ) ) .:,: 0
21

nPPnnn θθδ=µµ=µ  So, 

( ) ( ) ( ( ) ( ) )21
1

11
1 nnnnn µ−µθ−µ=µ ++   and  ( ) ( ) ( ( ) ( ) ).21

1
22

1 nnnnn µ−µθ+µ=µ ++  

Hence, 

( ) ( ) ( ( ) ( ) ) ( )∏
+

=
++ θ−δ−δ=µ−µ

1

0

212
1

1
1 .21

n

k
knn  

For ,1>r  ( )∏ +
=

θ−
1
0 21n

k k  converges to some ( )1,0∈α  as n goes to infinity. 

( ) ( ) ( ( ) ( ) ) .212
1

1
1 αδ−δ→µ−µ ++ nn  For ,10 ≤< r  ( ) ( ) .02

1
1

1 →µ−µ ++ nn  Therefore, for 

,1>r  ergodicity to Uniform distribution does not hold, and for ,10 ≤< r  ergodicity 

holds.  

Proof of Proposition 2. From equation (28), for ,0>ε  ( ) ≥θ −−ε 1212 , kkXM  

( ) ( ) ∞→
−

−ε
k11log

21loglog  as .∞→k  So, Containment does not hold. 

( ) ( ) 2
1

2
1

2
1,, TV122 →−=⋅−⋅

−θθ kxPxP kk  as .∞→k  So Diminishing 

Adaptation does not hold. Let ( ( ) ( ) )21 ,: δδ=δ  be the initial distribution and =µ :n  

( ( ) ( ) ) ., 0
21

nPPnn θθδ=µµ  ( ) ( ) ( ( ) ( ) ) [ ]
( )[ ]

∏
+

=

−− →




 −δ−δ=µ−µ

21

1

122121 02
112

n

k

n
nn k  

as n goes to infinity. So ergodicity holds.  
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5.2. Proofs of Theorem 2 and Corollary 1 

Proof of Theorem 2. Fix .0>ε  For any ,0>δ  taking 0>K  such that 

( ) .2δ<π c
KD  For the set ,KD  there exists M such that 

( ) ( ) .,sup TV ε<⋅π−⋅γ
×

xPM

K YD
 

Hence, for any ( ) ,, 00 YX ×∈γx  by the ergodicity of the adaptive MCMC { } ,nnX  

there exists some 0>N  such that ,Nn >  

( )( ) ( ) .200, δ<π−∈γ
c
K

c
Knx X DDP  

So, for ( ) ( ),, YD ×∈Γ KnnX  

[ ] ( )[ ] ( )[ ].,, MXMXX nnKnnKn ≤Γ⊂×∈Γ=∈ εYDD  

Hence, 

( ) ( )( )MXM nnx >Γεγ ,00 ,P  

( )(( ) ( ) )c
Knnx X YD ×∈Γ≤ γ ,00 ,P  

( )( )c
Knx X D∈= γ00 ,P  

( )( ) ( ) ( ) .00 , δ<π+π−∈≤ γ
c
K

c
K

c
Knx X DDDP  

Therefore, Containment holds.  

Proof of Corollary 1. Using the same technique in Theorem 2, for large enough 
,0>M  

( ) ( )( )MXM nnx >Γεγ ,00 ,P  

( )(( ) ( ) )c
kknnx DX Y×∈Γ≤ γ ,00 ,P  

( )( ) ( )( )c
knx

c
knx DX Y∈Γ+∈≤ γγ 0000 ,, PP  

( )( ) ( ) ( ) ( )( ).0000 ,,
c
knx

c
K

c
K

c
Knx X YDDD ∈Γ+π+π−∈≤ γγ PP  

Since { }0: ≥Γ nn  is bounded in probability, the result holds.  
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5.3. Proof of Proposition 3 

First, we show that Diminishing Adaptation holds. 

Lemma 2. For the adaptive chain { }0: ≥nX n  defined in Example 2, the 

adaptation is diminishing. 

Proof. For ,1=γ  obviously the proposal density is ( ) ( ),, xyyxq −ϕ=γ  

where ( )⋅ϕ  is the density function of standard normal distribution. For ,1−=γ  the 

random variable nZx +1  has the density ( )xy 1−ϕ  so the random variable 

( )nZx +11  has the density ( ) ( ) .11, 2yxyyxq −ϕ=γ  

The proposal density 

( )
( )
( )




−=γ−ϕ

=γ−ϕ
=γ .1,11

,1,
, 2yxy

xy
yxq  

For ,1=γ  the acceptance rate is 

( ) ( )
( ) ( ) ( ) ( ).0

1
1

,
,

,1min 2

2
>

+
+=∈








π
π

γ

γ y
y
xyyxqx

xyqy II X  

For ,1−=γ  the acceptance rate is 

( ) ( )
( ) ( ) ( )

( )

( )
( )0

11
1

1

11
1

1

,1min,
,

,1min
2

2

2
2

>



















−ϕ
+

−ϕ
+=∈








π
π

γ

γ y
yxy

x

xyx
yyyxqx

xyqy II X  

( ).0
1
1,1min 2

2
>









+
+= −

−
y

y
x I  

So for ,Y∈γ  the acceptance rate is 

 ( )
( ) ( )
( ) ( ) ( ) ( ).

1
1,1min,

,
,1min:, 2

2
XX ∈









+
+=∈








π
π

=α γ

γ

γ

γ
γ y

y
xyyxqx

xyqy
yx II  (30) 

From equation (4), [ ] [ ].111 nX nnnn <=Γ≠Γ −Γ
−  Since the joint process 

( ){ }0:, ≥Γ nX nn  is a time inhomogeneous Markov chain, 



ON THE CONTAINMENT CONDITION FOR ADAPTIVE MARKOV … 25 

( )1−Γ≠Γ nnP  

( ) ( )∫ ×
−−−−

Γ γ∈Γ∈γ=Γ=|<= −

YX
ddxXxXnX nnnnnn 1111 ,,11 PP  

( [ ]) ( )∫ ×
−−

γ
γ γ∈Γ∈<>=

YX
ddxXnttxP nn 11 ,1:0, P  

( [ ]) ( )
[ ( )]∫ −≥

−−
γ

γγ
γ∈Γ∈<>=

11
11 ,,1:0,

nx
nn ddxXnttxP P  

where the second equality is from equation (1), and the last equality is from 

( ) 11 =≥Γ nX nnP  implied by equation (4). 

So for any ( ) [( ) ( )],11:,, −≥×∈∈γ ntstx sYX  

( [ ]) ( ) ( ) ( )∫ ∫
∞ +−

−
γ

γγ
γ

γ

γ
ϕ=<=<>

0

1
.,11:0,

nx

x
dzzdyyxqnynttxP I  

Since ( ) ,011 <−+− γ nx  

 ( ) ( [ ]) ( ) .01:0,1
nnttxPxn

ϕ≤<>≤−ϕ γ
γ

γ  (31) 

We have that 

 ( ) .
2
1

1 nnn π
≤Γ≠Γ −P  (32) 

Therefore, for any ,0>ε  

 ( ( ) ( ) ) ( ) .0,,sup 1TV1 →Γ≠Γ≤ε>⋅−⋅ −ΓΓ
∈

− nn
x

xPxP nn PP
X

  

From equation (30), at the nth iteration, the acceptance rate is ( )nn YXn ,11 −Γ −
α  

( ).0
1

1
,1min

1

1

2

2
1 >















+

+
=

−

−

Γ

Γ
−

n
n

n Y
Y

X
n

n
I  Let us denote 1:~ −Γ= nnn YY  and .:~ nnn XX Γ=  The 

acceptance rate is equal to 

( ).0~
~1

~1,1min 2

2
1 >










+

+ −
n

n

n Y
Y

X I  
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From equation (4), ( ) ( ).11 1111 nXXnXXX nnnnn nnnnn ≥+<= −−−− ΓΓΓΓ−Γ II  When nY  

is accepted, i.e., ,nn YX =  

[ ] [ ]nXnY nnn 11~ 1 <=< −Γ  and ( ) ( ).1~~1~~ 1 nYYnYYX nnnnn n ≥+<= −Γ II  

On the other hand, from equation (3), the conditional distribution 1
~~

−| nn XY  is 

( ).1,~
1−nXN  

From the above discussion, the chain { }0:~:~
≥= nX nX  can be constructed 

according to the following procedure. Define the independent random variables 

( ),1,0~iid NZn  ( )5.0Bernoulli~iidnU  and ( ).1,0Unif~iidnT  

Let .~ 0
00
Γ= XX  At each time ,1≥n  define the variable 

 ( ) .1~:~
1 nnnnnn ZUZUXY −+−= −  (33) 

Clearly, ( ) ( )1,01 NZUZU d
nnnn =−+−  ( d

=  means equal in ).ondistributi  

If ( ),0~
~1

~1,1min 2

2
1 >










+

+
< −

n
n

n
n Y

Y
XT I  then 

 ( ) ( ) ;~1~~1~~ 1
nnnnn YnYYnYX ≥+<= − II  (34) 

otherwise .~~
1−= nn XX  

Note that: 

1. The process X~  is a time inhomogeneous Markov chain. 

2. ( ) 11~
=≥ nX nP  for .1≥n  

3. At the time n, nU  indicates the proposal direction :0( =nU  try to jump 

towards infinity; :1=nU  try to jump towards zero). nZ  specifies the step size if 

the proposal value nY  is accepted. nT  is used to check whether the proposal value 

nY  is accepted or not. When 1=nU  and ,0~
>nY  equation (34) is always run. 

For two integers ts ≤≤0  and a process X and a set ,X⊂A  denote 
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[ ] [ ]AXAXAXAX tssts ∈∈∈=∈ + ...;;;: 1:  and { }....,,1,:: tssts +=  For a 

value ,R∈x  denote the largest integer less than x by [ ].x  

In the following proofs for the example, we use the notation in the procedure of 

constructing the process :~X  

Lemma 3. Let .
12

27
2
1

2−








π

−=a  Given ,10 << r  for [ ] ,121
1

rx −>  

( ( ) ( [ ] ) ) [ ]

[ ] [ ] [ ]
.

27
2

~2~,:1 12

1
1

rr

r
ki

r

x
a

xx

xxXxXxkki −

+
+ ≤










π
−

≤=|<++∈∃P  

Proof. The process X~  is generated through the underlying processes 

{( ) }1:,,,~
≥jTUZY jjjj  defined in equation (33)-equation (34). Conditional on 

[ ],~ xX k =  we can construct an auxiliary chain { }kjB j ≥= ::B  that behaves like 

an asymmetric random walk until X~  reaches below ,2x  and B is always dominated 

from above by .~X  

It is defined as that ;~
kk XB =  For ,kj >  if ,2~

1 xX j <−  then ,~: jj XB =  

otherwise. 

1. If proposing towards zero ( ),1=jU  then B also jumps in the same direction 

with the step size jZ  (in this case, the acceptance rate 














+

+ −
2

2
1

~1

~1
,1min

j

j

Y

X
 is equal 

to 1); 

2. If proposing towards infinity ( ),0=jU  then jB  is assigned the value 

jj ZB +−1  (the jumping direction of B at the time j is same as )~X  with the 

acceptance rate ( )
( )2

2

21
21

jZx
x
++

+  ( ),~oftindependen 1−jX  i.e., for ,kj >  

 ( ) ( ) ( ( )),2~~2~: 111 xIBxXXxXB jjjjjj −≥+<= −−− II  (35) 
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where 

 ( ) ( ) ( )
( )

.
21

211: 2

2















++

+<−−=
j

jjjjjj
Zx

xTZUZUxI I  (36) 

Note that 

1. { }kjTUZ jjj >:,,  are independent so { ( ) }kjxI j >:  are independent. 

2. When 2~
1 xX j >−  and 0=jU  (proposing towards infinity), the acceptance 

rate ( )
( )

,
21

21
~1

~1
1 2

2

2

2
1

jj

j

Zx
x

Y

X

++

+≥
+

+
> −  so that 

( )
( ) 












+

+
<⊂













++

+< −
2

2
1

2

2

~1

~1

21
21

j

j
j

j
j

Y

X
T

Zx
xT  

which is equivalent to [ ] [ ].~~
11 jjjjjj ZXXZBB =−⊂=− −−  Therefore, B is 

always dominated from above by .~X  

Conditional on [ ],~ xX k =  

[ ( ) ( [ ] ) ] [ ( ) ( [ ] ) ]2,:12~,:1 11 xBxkkixXxkki i
r

i
r <++∈∃⊂<++∈∃ ++  

and for ( ) ( [ ] ),:1 1 rxkki +++∈  

[ ( ) ]2;21: xBxB iik <≥−  

( ) ( ) ( ) .2;:1allfor2;2
1

1

1 










<−+∈≥−≥⊂ ∑∑

+=

−

+=

i

kl
lk

t

kl
lkk xxIBiktxxIBxB  

So, 

( ( ) ( [ ] ) )xXxXxkki ki
r =|<++∈∃ + ~2~,:1 1P . 

( ) ( [ ] ) ( )













=|<−++∈∃≤ ∑

+=

+
i

kj
kjk

r xBxxIBxkki
1

1 2,:1P  
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(
[ ]

)2~max
1:1

xSl
xl r

>≤
+∈

P  

( ( ) ),2~max 11
:1

r
l

ql
qS +

∈
>= P  

where 0~
0 =S  and ( )∑ = += l

j jkl xIS 1
~  and [ ] { ( ) }lkjkxIxq j

r +≤<⋅= + :1  and 

kB  are independent so that the right hand side of the above equation is independent 

of k. 

By some algebra, 

( )[ ] ( )
( )

[ ( )] ,2712
212

10 2
2

2

x
ZZxZx

ZxZxI ii
i

ii
i π

<+≤












++

+
=≤ EEE  

( )[ ] ( )
( ) 












++

++= 2

2
2

21
21

2
1

2
1Var

i
ii

Zx
xZxI E  

( )
( )

[ ].1,0
214

1
2

2

2
∈























++

+
−

i

ii

Zx
ZxZE  

Let [ ]ll S~E=µ  and lll SS µ−=
~  and note that lµ  is increasing as l increases, 

and .27,0 







π

∈µ q
q  So { }qiSi ...,,1: =  is a Martingale. By Kolmogorov Maximal 

Inequality, 

( ( ) ) ( ( ) )q
r

l
ql

r
l

ql
qSqS µ−>≤> +

∈

+

∈
2max2~max 11

:1
11

:1
PP  

( )[ ]
( ( ) )211 2

Var

q
r

k

q
xIq
µ−

≤
+

 

[ ]

[ ] [ ] [ ]
.

27
2

12

1

rr

r

x
a

xx

x
−

+
<










π
−

≤  
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The last second inequality is from [ ]
rrx

−− 







π

>>
1

1

1
1

21412  implying [ ] >2
x  

[ ] .27
π

rx   

Assume that nX  converges weakly to ( ).⋅π  Take some 1>c  such that for the 

set ( ),,1 ccD =  ( ) .109=π D  Taking a ( ),1,0∈r  there exists 

( ) 






−ϕ
∨∨∨> −−

rc
acN rrr

8.0
1exp25.0122 11

1
1

1
 

(a is defined in Lemma 3) such that for any ,1+> Nn  ( ) .8.0>∈ DX nP  Since 

[ ] [ ]DXDX nnn ∈=∈ Γ  and ,~XXΓ d
=  ( ) .8.0~

>∈ DX nP  So, 2.02
~

<




 > nX nP  

for .Nn >  

Let ( ) ( ) 118.0
1exp −+







−ϕ
= ncm  that implies ,nm >  rnnm +<− 1  

( ) ,8.0
1exp2because 1 





 







−ϕ
> rcn r  and ( ) .8.0

1
1
1log cn

m
−ϕ

=






+
+  Then 

 ( ) .2
~;1

1~;~
2

~2.0
1

:11∑
−

=
++ 





 >

+
<∈≥





 >>

m

nj
mjjjm

nXjYDXnX PP  (37) 

From equation (33) and equation (34), 







+>==





+
<

+
++ 1~

1~
1

1~

1
11 i

Y
XiY

i
ii  

for any .1>i  Consider ( ).1: −∈ mnj  Since X~  is a time inhomogeneous Markov 

chain, 

( ) 




 >

+
<∈ ++ 2~;1

1~;~
:11 nXjYDX mjjjP  

( ) 




 ∈|

+
<=∈= ++ DXjYXDX jjjj

~
1

1~~~
11PP  

( ) 









+>=|>

+
++ 1~

1~
2

~

1
1:2 j

Y
XnX

j
jmjP  
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( ) 









∈|+>=∈=

+
+ DXj

Y
XDX j

j
jj

~1~
1~~

1
1PP  

( ) .1~
1~:1somefor2~1

1
1 




















+>=|+∈≤−

+
+ j

Y
XmjtnX

j
jtP  

From equation (31), for any ,Dx ∈  

( ){ }( ) ( ) ( ) .1
0,111:,~

1
1~

11 





+
ϕ

+
−ϕ∈+<∈=





 =|

+
<+ jj

cjttxPxXjY jj XP  

So, 

( ) .1
~

1
1~

1 +
−ϕ≥





 ∈|

+
<+ j

cDXjY jjP  

Hence, for ,1+> jx  

( ( ) )xXmjtnX jt =|+∈≤ +1
~:1somefor2~P  

( ( ) )xXmjtxX jt =|+∈≤≤ +1
~:1somefor2~P  

( ( ) ( [ ] ) )xXxjjtxX j
r

t =|++∈≤≤ +
+

1
1 ~:1somefor2~P  

[ ]
,11 rr n

a
x

a
−− ≤≤  

because of ,22 nx >  rnnm +<− 1  and Lemma 3. Thus, 

( ) .1~
1~:1somefor2~

1
1

1 r
j

jt
n

aj
Y

XmjtnX −
+

+ ≤









+>=|+∈≤P  

Therefore, 

( ) ∑
−

=
− +






 −−ϕ≥





 >

1

1 1
118.02

~ m

nj
rm jn

acnXP  

( ) ( ) ( )( ) .5.0111log18.0 11 >





 −=++






 −−ϕ≥ −− rr n

anm
n

ac  

This gives a contradiction. By Lemma 2, Containment does not hold. 
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5.4. Proof of Proposition 4 

Fix ,0 X∈x  .0 Y∈γ  By the condition (iii) and the Borel-Cantelli Lemma, 

,0>ε∀  ( ) 0,, 000 >εγ∃ xN  such that ,0Nn ≥∀  

 ( )( ) .211, 00 ε−>=Γ=Γ +γ nnxP  (38) 

Construct a new chain { }0:~
≥nX n  which satisfies that for ,0Nn ≤  ,~

nn XX =  and 

for ,0Nn ≥  ( ).,~~~
0

0
0

⋅−
Γ N

Nn
n XPX

N
 So, for any 0Nn >  and any set ( ) ,XB∈A  by 

the condition (ii), 

( )( ) ( )( ) .2~, 00000 ,1, ε≤∈−Γ==Γ∈ γ−γ AXAX nxnNnx PP  

Since the condition (i) holds, suppose that for some ,0>K  { }....,,1 Kyy=Y  

Denote ( ) ( )( )iNNxi yX =Γ|⋅∈=⋅µ γ 0000
~

,P  for ....,,1 Ki =  Because of the condition 

(ii), for ,0Nn >  

( )( )AX nx ∈γ
~

00,P  

( )( )∑
=

γ =Γ∈=
K

i
iNnx yAX

1
, 000 ,~P  

( ) ( ) ( )
[ ]∑∫

=
=γ

−
−γγ −

=
K

i
y

N
Nn

yNN
iN

N iN AxPdxxPdxxP
1

110
0

0 0
0

00100 ,,,
∩X

 

( )( ) ( )∑
=

−
γ µ=Γ=

K

i

Nn
yiiNx APy
i

1
, .0

000P  

By the condition (i), there exists ( ) 0,,, 0001 >εγ NxN  such that for ,1Nn >  

{ }
( ) ( ) .2sup TV

...,,1
ε<⋅π−⋅µ

∈

n
yi

Ki i
P  

So, for any ,10 NNn +>  any ( ) ,XB∈A  

( )( ) ( )AAX nx π−∈γ00,P  

( )( ) ( )( )AXAX nxnx ∈−∈≤ γγ
~

0000 ,, PP  
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( )( ) ( )AAX nx π−∈+ γ
~

00,P  

( ) .23222 ε=ε+ε+ε≤  

Therefore, the adaptive MCMC { }0: ≥nX n  is ergodic.  

5.5. Proofs of Subsection 2.3 

First, we recall a previous result of [28, Theorem 5]. 

Proposition 7 ([28]). Let ( )dyxP ,  be a Markov kernel on the state space .X  

Suppose there is a set ,X⊂C  ,0>δ  some integer ,0>m  and a probability 

measure mν  on X  such that 

( ) ( )⋅δν≥⋅ m
m xP ,  for .Cx ∈  

Suppose further that there exist ,10 <λ<  ,0>b  and a function →× XX:h  

[ )∞,1  such that 

( )[ ] ( ) ( )( ).,,,, 0011 yxbyxhyYxXYXh CC×+λ≤==| IE  

Let ( ) ( )[ ],,,sup: 00, yYxXYXhA mmCCyx ==|= ×∈ E  ( )0: XL=µ  be the initial 

distribution, and π be the stationary distribution. Then for any integer ,0>j  

( ) ( )[ ] ( )[ ].,1 00
11

TV YXhAX jjmnmj
n π×µ

−+−λ+δ−≤π− EL  

We now proceed to the proofs for this section. 

Proof of Theorem 3. Let { ( ) }0: ≥γ nX n  and { ( ) }0: ≥γ nYn  be two realizations 

of γP  for .Y∈γ  Define ( ) ( ) ( )( ) .2:, yVxVyxh +=  From (ii) of S.G.E., 

[ ( ( ) ( ) ) ( ) ( ) ] ( ) ( )( ).,,,, 0011 yxbyxhyYxXYXh CC×
γγγγ +λ≤==| IE  

It is not difficult to get ( ) ( ) bmxVxVP mm +λ≤γ  so 

( ) [ ( ( ) ( ) ) ( ) ( ) ] .:sup,,sup: 00, BbmVyYxXYXhA C
m

mmCCyx =+λ≤==|= γγγγ
×∈ E  

Consider ( ( ) ) xX δ=γ
0L  and .: nj =  By Proposition 7, 

( ) ( ) ( )[ ] ( ) ( )( ) .21, 11
TV VxVBxP nmnnmnn π+λ+δ−≤⋅π−⋅ −+−

γ  (39) 
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Note that the quantitative bound is dependent on x, n, δ, m, C, V and π, and 
independent of γ. As n goes to infinity, the uniform quantitative bound of all 

( ) ( ) TV, ⋅π−⋅γ xPn  tends to zero for any .X∈x  

Let { }0: ≥nX n  be the adaptive MCMC satisfying S.G.E. From (ii) of S.G.E., 

( )[ ] ∞<γ=Γ=| 000 ,sup xXXV nn E  so the process ( ){ }0: ≥nXV n  is bounded 

in probability. Therefore, for any ,0>ε  ( ){ }0:, ≥Γε nXM nn  is bounded in 

probability given any xX =0  and .00 γ=Γ   

Proof of Corollary 2. From equation (6), letting 

( )
( ) ,1supsuplim <=λ γ

∈γ∞→ XV
xVP

x Y  

there exists some positive constant K such that 
( )

( ) 2
1sup +λ<γ

∈γ XV
xVP

Y  for .Kx >  

By ,1>V  ( ) ( )xVxVP 2
1+λ<γ  for .Kx >  ( ) ( ) { }( ),2

1
: xbxVxVP Kzz ≤∈γ ++λ≤ XI  

where { } ( ).sup : xVb Kzzx ≤∈∈= X   

5.6. Proof of Theorem 5 

The theorem follows from Theorem 8, Theorem 9, Theorem 10 and Lemma 4. 
Theorem 10 shows that ( ){ }0: ≥nXV n  in the case (iii) is bounded in probability. 

The case (iii) is a special case of S.P.E. with 1=q  so that the uniform quantitative 

bound of ( ) ( ) TV, ⋅π−⋅γ xPn  for Y∈γ  exists. 

Lemma 4. Suppose that the family { }Y∈γγ :P  is S.P.E. If the stochastic 

process ( ){ }0: ≥nXV nl  is bounded in probability for some { },...,,1 ql ∈  then 

Containment is satisfied. 

Proof. We use the notation in Theorem 4. 

From S.P.E., for ,Y∈γ  let ( ) ( )dydyxx γ′ δν=ρ ,  ( ( ) )δ=ρ ′ Xxx,so  and 

.: CC ×=∆  So, .δ=ε=ε −+  
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Note that the matrix ( )β− mAI  is a lower triangle matrix. Denote ( ( ) ) 1−β− mAI  

( ( ) ) .: ...,,0, qjiijb =
β=  

By the definition of ( )( ),, nxBl
β  

( )( )
( ) ( ) ( )

( ) ( ) ( )( ( ) ( ) )∑
∑ ∫

−+≥
ββ−−+β

=
ββ+

β

−+ε++−+

πε
=

mnj
mnj

l

k klk
l jlSjlSmnlS

yxWdyb
nxB

1

0

,1,11,

,
,  

( )
( ) ( ) ( )∑ ∫

=

ββ
β

+
π

−+
ε≤

l

k
klk yxWdyb

mnlS 0

.,
1,

 

By some algebra, for ,...,,1 qk =  

 ( ) ( ) ( ) [ ( ) ( )],1,
1

0
0∫ ∏ ββ

β−−

=

β π+












+≤π kk

k

i
ik VxVaVmyxWdy  (40) 

because ( ].1,0∈β  In addition, ( ) 00 cVm ≥  so the coefficient of the second term on 

the right hand side is finite. 

By induction, we obtain that ( )
( )( )

( ( )( ))210 01
1

β

β
β

−
=

m

m

A
Ab  and ( )

( )( )
.

01
1

11 β
β

−
=

mA
b  It 

is easy to check that ( ) .10 11 δ
≤< βb  

By some algebra, 

( )( )
( )

( ) ( ) ( )∫ ′′′+≤ β
′′

×∈′

ββ yyWydxRdyxRmA xxxx
CCxx

m ,,,sup1 1,,
,

 

( )
[ ( )( ) ( ( ) ( ))]xVPxVPVmam mm

CCxx
′+++≤ β

γ
β

γ
β−

×∈′

β
1100

,
1sup  

( )( ) ( ( ) ),sup21 0100 mbxVVmam
Cx

+++≤
∈

β−β  

because ( ) ( ) ( ) .0111 mbxVxVPxVP mm +≤≤ γ
β

γ  Therefore, ( )β
10b  is bounded from the 

above by some value independent of γ. 
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Thus, 

( )( )
( )

( ) ( ) ( ) ( ) ( ) ( )




 π+π

−+

δ≤ ∫ ∫ ββββ
β

β yxWdybyxWdyb
mnS

nxB ,,
1,1

, 1110101  

( )
( ( ) ( ) ( )[ ( )( ) ( ( ) ( ))]).1

1 11001110
βββ−ββ

β π+++π
−+

δ≤ VxVVmabCb
mn

 

Therefore, the boundedness of the process ( ){ }0:1 ≥kXV k  implies that the random 

sequence ( )( )nXB n ,1
β  converges to zero uniformly on X  in probability. Containment 

holds.  

Let { }0: ≥jZ j  be an adaptive sequence of positive random variables. For 

each j, jZ  will denote a fixed Borel measurable function of .jX  nτ  will denote any 

stopping time starting from time n of the process { },0: ≥iXi  i.e., [ ] ⊂=τ in  

( )inkX k +=σ ...,,1:  and ( ) .1=∞<τnP  

Lemma 5 (Dynkin’s formula for adaptive MCMC). For 0>m  and ,0>n  

[ ] [ ]( ) ,,,
,

,

~

1
11~














Γ|−|+=Γ| ∑

τ

=
−+−++τ

nm

nm
i

mmimimimmmm XZZZXZ FEEE  

where ( )( ).:0inf,,min:~
, nZkn kmmnm ≥≥τ=τ +  

Proof. 

( ) ( ) ( ).~
,

,

~

1 1
1,1~ ∑ ∑

τ

= =
−++−++τ −≥τ+=−+=

nm

nm
i
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i
imimnmmimimm ZZiZZZZZ I  

Since inm ≥τ ,
~  is measurable to ,1−+imF  

[ ]mmXZ nm Γ|τ ,,
~E  

[ ] ( )











Γ|≥τ|−+= ∑
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−+−++
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mmnmimimimm XiZZZ

1
,11 ,~IEE F  

[ ]( ) .,
,

~

1
11 













Γ|−|+= ∑

τ

=
−+−++

nm

i
mmimimimm XZZZ FEE   
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Lemma 6. (Comparison lemma for adaptive MCMC). Suppose that there exist 
two sequences of positive functions { }0:, ≥jfs jj  on X  such that 

 [ ] ( ) ( ).1 jjjjjjj XsXfZZ +−≤|+ FE  (41) 

Then for a stopping time nτ  starting from the time n of the adaptive MCMC 

{ },0: ≥iX i  

( ) ( ) ( ) .,,
1

0

1

0













Γ|+≤














Γ| ∑∑

−τ

=
++

−τ

=
++

nn

j
nnjnjnnn

j
nnjnjn XXsXZXXf EE  

Proof. From Lemma 5 and equation (41), the result can be obtained.  

The following proposition shows the relations between the moments of the 
hitting time and the test function V-modulated moments for adaptive MCMC 
algorithms with S.P.E., which is derived from the result for Markov chain in [17, 
Theorem 3.2]. Define the first return time and the ith return time to the set C from 
the time n, respectively: 

 ( ) { }CXk knCnCn ∈≥=τ=τ +:1min:1: ,,  (42) 

and 

 ( ) { ( ) }CXiki knCnCn ∈−τ>=τ +:1min: ,,  for 0≥n  and .1>i  (43) 

Proposition 8. Consider an adaptive MCMC { }0: ≥iX i  with the adaptive 

parameter { }.0: ≥Γ ii  If the family { }Y∈γγ :P  is S.P.E., then there exist some 

constants { }1...,,0: −= qidi  such that at the time n, for ,...,,1 qk =  

[ ]
( ) ( )
















Γ|+≤

Γ|τ ∑
−τ

=
+−

−−
1,

0

1, ,1
, Cn

i
nninkq

knn
k

Cnkq XXVik
Xc

E
E

 

( ) ( ) ,
1














+≤ ∑

=
−−

k

i
nCiqnqkq XbXVd I  

where the test functions ( ){ },...,,0: qiVi =⋅  the set C, { }1...,,0: −= qici  and 

{ }1...,,0: −= qibi  are defined in the S.P.E.. 
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Proof. 

( )∑ ∫
−τ

=

τ
−−− τ=≥+

1,
,

0
0

,
111 .1

Cn
Cn

i

k
Cn

kk kdxxi  

Since ( ) kqkq cxV −− ≥  on ,X  

 ( ) ( ) [ ].,,1 ,
0

1
1,

nn
k

Cn
kq

i
nninkq

k Xk
c

XXVi
Cn

Γ|τ≥















Γ|+ −

τ

=
+−

−∑
−

EE  (44) 

So, the first inequality holds. 

Consider .1=k  By S.P.E. and Lemma 6, 

 ( ) ( ) ( )., 1
0

1

1,

nCqnq
i

nninq XbXVXXV
Cn

IE −

τ

=
+− +≤
















Γ|∑

−

 (45) 

So, the case 1=k  of the second inequality of the result holds. 

For ,0≥i  by S.P.E., 

[( ) ( ) ] ( )inkq
k

inininkq
k XViXXViE ++−

−
+++++−
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1

11
1 ,1  

( ) ( ( ) ( ) ( )) ( )inkq
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11 I  
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− ++++−≤ I1
1

21 1
~

1  

for some positive d
~

 independent of i. 

By Lemma 6, 
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From the above equation, by induction, the second inequality of the result   
holds.  

Theorem 8. Suppose that the family { }Y∈γγ :P  is S.P.E. for .2>q  Then 

Containment holds. 

Proof. For ,...,,1 qk =  take large enough 0>M  such that { ( )xVxC kq−⊂ :  

},M≤  

( )( ( ) ) ( )( ( ) )∑
=

−γ−γ ∈−>τ>=>
n

i
iCinkqxnkqx CXinMXVMXV

0
,,, ,,0000 PP  

( )( ( ) ).,, 0,0, 00 CXnMXV Cnkqx ∉>τ>+ −γP  

By Proposition 8, for ,...,,0 ni =  

( )( ( ) )CXinMXV iCinkqx ∈|−>τ>−γ ,, ,00P  

( ) ( ) ( ) ( )







−>+≤ ∑

−τ

=

−
+−

−
γ

1,

00
0

11
, 1

Ci

j

k
jikq

k
x MinXVjP  

( )








∈|−>τ++ ∑
−−

=

−
−

1

0
,

1,1
in

j
iCi

k
kq CXinjc  

( ) ( ) ( ) ( ) ( )















∈|++−>+≤ ∑∑

−−

=

−
−

τ

=

−
+−

−
γ

− 1

0

1

0

11
, 11

1,

00

in

j
i

k
kq

j

k
jikq

k
x CXjcMinXVj

Ci

P  

( ) ( ) ( ) ( )

( ) ( )∑
∑

−−

=
−

−
−

τ

= +−
−

γγ∈

++−





 =|



 Τ|+

≤

−

1

0
11

0
1

,,

1

,1sup 1,
0000

in

j
k

kq
k

ij iijikq
k

xxCx

jcMin

xXXXVjCiEE
 

( ) ( )

( ) ( )∑
∑

−−

=
−

−
−

= −∈−

++−







 +

≤ 1

0
11

1

1

sup

in

j
k

kq
k

k

j CjqqCxkq

jcMin

xbxVd I
 



YAN BAI, GARETH O. ROBERTS and JEFFREY S. ROSENTHAL 40 

and 

( )( ( ) )
( ) ( )

( )
.

1
, 1
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11

1 00
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By simple algebra, 
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( )( )

( ) ( ( ))

( )

( )
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0
1
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+

δ
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∈
⋅ ∑

= −
−

−
−

γ
n

i kq
k

C

kq
k

ix

ncMn

x

incMin

CX cP
 (47) 

Whenever ,2≥q  k can be chosen as 2. While ,2≥k  the summation of      

L.H.S. of equation (47) is finite given M. But if ,2=q  then just the process 

( ){ }0:0 ≥nXV n  is bounded probability so that 2>q  is required for the result. 

Hence, taking large enough ,0>M  the probability will be small enough. So, the 

sequence { ( ) }0:2 ≥− nXV nq  is bounded in probability. By Lemma 4, Containment 

holds.  

Remark 20. In the proof, only (A3) is used. 

Remark 21. If 0V  is a “nice” non-decreasing function of ,1V  then the sequence 

( ){ }0:1 ≥nXV n  is bounded in probability. In Theorem 10, we discuss this situation 

for certain simultaneously single polynomial drift condition. 

Theorem 9. Suppose that { }Y∈γγ :P  is S.P.E. for .2=q  Suppose that there 

exists a strictly increasing function ++ → RR:f  such that ( ) ( )( )xVfxV 01 ≤  for 

all .X∈x  Then Containment is implied. 
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Proof. From equation (47), we have that ( ){ }0:0 ≥nXV n  is bounded in 

probability. Since ( ) ( )( ),01 xVfxV ≤  

( ) ( ) ( )( ) ( ) ( )( ) ( )( )MfXVfMfXV nxnx >≤> γγ 0,1, 0000 PP  

( ) ( )( ),0, 00 MXV nx >= γP  

because ( )⋅f  is strictly increasing. By the boundedness of ( ),0 nXV  for any ,0>ε  

there exists 0>N  and some 0>M  such that for ,Nn >  ( )( ( ) >γ nx XV1, 00P  

( )) .ε≤Mf  Therefore, ( ){ }0:1 ≥nXV n  is bounded in probability. By Lemma 4, 

Containment is satisfied.  

Consider the single polynomial drift condition, see [17]. ( ) ( ) ≤−γ xVxVP  

( ) ( ),xbxcV CI+− α  where .10 <α≤  Because the moments of the hitting time to 

the set C is (see details in [17]), for any ( ),111 α−≤ξ≤  

( ) ( ) ( ) ( ).1
1

0

1 xbxVXViE C
i

ix

C

I+<















+∑

−τ

=

−ξ  

The polynomial rate function ( ) .1−ξ= nnr  If ,0=α  then ( )nr  is a constant. Under 

this situation, it is difficult to utilize the technique in Theorem 8 to prove 
( ){ }0: ≥nXV n  is bounded in probability. Thus, we assume ( ).1,0∈α  

Proposition 9. Consider an adaptive MCMC { }0: ≥nX n  with an adaptive 

scheme { }.0: ≥Γ nn  Suppose that (A1) holds, and there exist some positive 

constants ,0>c  ,0>b  ( ) ,1,0∈α  and a measurable function ( ) +→ RX:xV  

with ( ) 1≥xV  and ( ) ∞<
∈

xV
Cx

sup  such that 

 ( ) ( ) ( ) ( )xbxcVxVxVP CI+−≤− α
γ  for .Y∈γ  (48) 

Then for ( ),111 α−≤ξ≤  

 ( ) ( ) ( )( ) ( ) ( )( ).1,1
1,

00
0

111
, +≤
















Γ|+ ξ

τ

=
+

α−ξ−−ξ
γ ∑

−

n
i

nninx XVCcXXViE
Cn

 (49) 



YAN BAI, GARETH O. ROBERTS and JEFFREY S. ROSENTHAL 42 

Proof. The proof applies the techniques in Lemma 3.5 and Theorem 3.6 of  
[17].  

Theorem 10. Suppose that (A2) and the conditions in Proposition 9 are 

satisfied, and there exists some constant bb >′  such that ( ) bxcV cC
′>α I  for all 

.X∈x  Then Containment is implied. 

Proof. Using the same techniques in Theorem 8, we have that 

( )( ( )( ) )MXV nx >α−ξ−
γ

11
, 00P  

( { } ( ) ) ( )( )

( ) ( )

( )

( )
.1sup

0 1
0

1
, 00

0 








+

δ
+

−+−

∈
+≤ ∑ = −ξ−ξ

γ
∈ξ

n

i
Cix

xCx
nMn

x

inMin

CXP
xVc

c
∪  (50) 

Therefore, for ( )[ ),11,1 α−∈ξ  the sequence { ( )( ) }0:11 ≥α−ξ− nXV n  is bounded 

in probability. Since ( ) ,011 >α−ξ−  the process ( ){ }0: ≥nXV n  is bounded in 

probability. By Lemma 4, Containment holds.  

5.7. Proof of Theorem 6 

Before we prove Theorem 6, we recall [16, Lemma 4.2]. 

Lemma 7. Let x and z be two distinct points in ,dR  and let ( ).zxn −=ξ  If 

( ) 0, ≠ξ ym  for all y on the line from x to z, then z does not belong to 

{ ( ) ( )}.: xyy d π=π∈ R  

Consider the test function ( ) ( )xcxV s−π=  for some 0>c  and ( )1,0∈s  such 

that ( ) .1≥xV  By some algebra, 

( ) ( ) ( )
( )

( ) ( )
( )∫ −

γγ µ








+π
π=

xxA
ds

s
dzzq

zx
xxVxVP  

( )
( )

( )
( )

( ) ( )
( )∫ −

γ−

−
µ









π
+π+

π
+π−+

xxR
ds

s
dzzq

x
zx

x
zx ,1 1

1
 

where the acceptance region ( ) ( ) ( ){ },: xyyxA π≥π|∈= X  and the potential 

rejection region ( ) ( ) ( ){ }.: xyyxR π<π|∈= X  From [21, Proposition 3], we have 

( ) ( ) ( ),xVsrxVP ≤γ  where ( ) ( ) .11: 11 ssssr +−−+=  
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Proposition 10. Suppose that the target density π is exponentially tailed. Under 
Assumptions 1-4, Containment holds. 

Proof. Note that it is not difficult to check that for ( ),1,0∈s  ( ) ∞<π V  by 

utilizing Definition 2. 

Consider [ ).21,0∈s  Under Assumption 4, let 

( ) ( )
( )21

1,
s

srsh
−

+′=α  

( )
[ ( ) ] ( ) ( )

( )∫ ε
γ

−α−α−

×∈γ ∆δ
−

µ−
−
α−

,

1

, ,1
inf1 uC

d
zszs

Su
dzzqeezs d Y

 

and 

( ) ( )∫ α+=α
s

dtthsH
0

,,1,  

where ε, β, δ, ∆ and ( )⋅⋅∆δ ,,C  are defined in Assumption 4. So, ( ) 10,3 =βεH  and 

( ) ( )0,30,3 βε=
∂
βε∂ hs

H  

( )
( )

( ) ( )
( )∫ ε

γ
×∈γ

−
−

∆δ
−

<µ−βε−+≤
,,

1
1

,1
.0inf3

11
uC

d
Su

dzzqzee
d Y

 

Therefore, there exists ( )21,00 ∈s  such that ( ) .1,3 0 <βε sH  

Denote ( ) ( )( )ε−= ∆δ ,: , xnCxxC  and ( ) ( )( ).,: , ε+= ∆δ xnCxxC  For ∆≥ 2x  

and ( ) ( ) ,xCxCy ∪∈  ∆≥∆−≥ xy  so ( ) ( ) .3ε<− xnyn  

Since the target density ( )⋅π  is exponentially tailed and Assumption 2, for 

sufficiently large 1Kx >  with some ,21 ∆>K  ( ) ( ) β−≤π∇ xxn log,  and 

( ) ( ) ., ε−≤xmxn  Then there exists some 12 KK >  such that for ,2Kx ≥  

( ) ( ) ε−≤ymyn ,  for ( ) ( ).xCxCy ∪∈  Thus, ( ) ( ) ( )
( ) ( )ymyn

yyny ,
log,log π∇

=π∇  

.β≥  Moreover, ξ±= axy  for some ∆≤≤δ a  and .1−∈ξ dS  So, 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .3,,,, ε−<+−+−ξ=ξ ymynymynxnymxnym  (51) 

Hence, by Lemma 7, for ,2Kx >  

( ) { ( ) ( )} ∅=π=π∈ xyyxC d :R∩  and ( ) { ( ) ( )} .: ∅=π=π∈ xyyxC dR∩  

For ( ),xCaxy ∈ξ+=  

( ) ( ) ( )∫ ξ+π∇ξ=π−π
a

dttxxy
0

,  

( )( ) ( )∫ ξ+π∇ξ+π∇ξ=
a

dttxtxn
0

,  

( )∫ ≤ξ+π∇ε−<
a

dttx
0

02  

so that ( ) ( ).xRxC ⊂  Similarly, ( ) ( ).xAxC ⊂  

Consider the test function ( ) ( )xcxV s0−π=  for some 0>c  such that ( ) .1>xV  

By Assumption 1, for any compact set ,dC R⊂  ( ) .sup ∞<
∈

xV
Cx

 

For any sequence { }0: ≥nxn  with ,∞→nx  there exists some 0>N  such 

that ,Nn >  .2Kxn >  We have 

( ) ( ) ( ) ( ) ( )
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For ( ) nn xxCaz −∈ξ=  and ( ),,0 zt ∈  by equation (51), 

( ) ( ) ( ) .3log,log, εβ−<ξ+π∇ξ+ξ=ξ+π∇ξ txtxmtx nnn  

So, by Assumption 4, 

( )
( )

( ) ( )nn xzx

n
n ex
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π

+π loglog  
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.133log,
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Similarly, for ( ) ,nn xxCaz −∈ξ−=  
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+π
π eezx

x z
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1 00 1
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1 ttstt ss −
−

≤− −−  Since ttst s −
−

→ − 01
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1  is an increasing function 

on [ ],1,0  
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On the other hand, 

( ) ( ) ( )
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γ µ
c
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nxxCxxC

dsx dzzqzI
∩ 0,  

( ) ( ( ){ } { ( ) } ).0
c
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nn xxCxxCQsr −−≤ γ ∩  
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( )
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γ
−

−
γ

−
γ µ=µ=

xxC
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xxC
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x dzzqedzzqetK :,  
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and 

( )
( )

( ) ( )
(( ) )

( ) ( ( )).0211
1

01:, ,
,

,,
,

, γ
γ

γγ
γ

γ −+
−

θ−
+θ−+

−
θ

=θ x
x

xx
x

x Ktrt
tK

KKt
tK

tH  

So, 

( ) ( ) ( ).,3 0, sHxVxVP nxnn βε≤ γγ  

Clearly, ( ) .21, ≤γ tKx  For ,210 <≤ t  

( )
t

tH x
∂
θ∂ γ ,,  

( ) ( ( ))
( ) ( )( )

( )
( ( ) ( )( ))tKtKtt

tKtK
Ktr xx

xx
x −θ′−θ′

−
θ+

−

−θ+θ
+−′= γγ

γγ
γ 111

1
021 ,,2

,,
,  

( )
( )

( ( ) ) ( ) ( )
( )∫ −

γ
−θ−θ− µ−

−
θ−

−
+′≤

xxC
d

ztzt dzzqzeett
tr 1

2 11
1  

( )., th θ≤  

Since ( ) ,10,, =θγxH  ( ) ( )tHtH x ,,, θ≤θγ  for .210 <≤ t  Thus, ( ) ≤βεγ 0, ,3 sH nx   

( ) 1,3 0 <βε sH  so 
( )
( ) .1supsuplim <γ

∈γ∞→ xV
xVP

x Y
 By Corollary 2, Containment holds.  

Remark 22. Jarner and Hansen [16] showed that if under Assumption 2          
the target density is lighter-than-exponential tailed, then the random-walk-based 
Metropolis algorithms are geometrically ergodic. The technique in Proposition 10 
can be also applied to MCMC. So, even if the target density is exponentially tailed 
under some moment condition similar as equation (22), any random-walk-based 
Metropolis algorithm is still geometrically ergodic. In fact, our symmetry assumption 
( ( ) ( ) ( ))xyqyxqyxq −=−=,  is a little weaker than the assumption ( ( ) =yxq ,  

( ))yxq −  of [16]. 

Proof of Theorem 6. For (ii), by Proposition 10, Containment holds. Then 
ergodicity is implied by Containment and Diminishing Adaptation. 

For (i), from Assumption 3, for any ( )1,0 η∈ε  and any ,1−∈ dSu  
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( ) ( )
( ( ))

( )∫ ε

ζζ
γ

ζζ

εζ
≥µ

,
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,2
,2

,Vol

uC
d

uC
dzzqz

ι
 

where ι is defined in equation (20), ζ is defined in Assumption 3, ( )⋅⋅,, baC  is 

defined in equation (21). The right hand side of the above equation is positive and 
independent of γ and u. Since target density is lighter-than-exponentially tailed, 

( ) ( ) +∞=π∇−=η ∞→ xxnx log,suplim:2  such that there is some sufficiently 

large β such that equation (22) holds. So, Assumption 4 is satisfied. 

For (iii), adopting the proof of [12, Theorem 5], we will show that the 
simultaneous drift condition given by (14) holds. Denote 

( ) ( ) ( ) ( ) .,:,, xyxgxgygyxgR −∇−−=  

Consider the test function ( ) ( ),1: xfxV s+=  where ( ) ( )xxf π−= log:  for 

,23,2min12





 −<<− mmsm  where m is defined in Definition 3. 

So, 

( ) ( ) ( ) ( ) ( )∑
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) { }∫ ≤−

γ
− µ∇−=γ

MzxxR
d

s dzzqzznxmxfxsfxI
∩

,,:, 2221
0  

( ) ( ) ( ) ( )
{ }∫ ≤

γ µ+=γ
Mz

d
s dzzqzxxfRxI ,,,:,1  

( ) ( ) ( )
( ) ( ) ( )

( ) { }∫ ≤−
γ µ

π
+π+=γ

MzxxR
d

s dzzqx
zxxRzxxfRxI

∩
,,,,,:,2  

( ) ( ) ( ) ( ) ( )
( ) { }∫ ≤−

γ µ∇+=γ
MzxxR

d
s dzzqzxfzxxfRxI

∩
,,,,:,3  

( ) ( )
( ) ( ) ( ) ( )

( ) { }∫ ≤−
γ µ∇

π
+π=γ

MzxxR
d

s dzzqzxfx
zxxRxI

∩
.,,,:,4  



YAN BAI, GARETH O. ROBERTS and JEFFREY S. ROSENTHAL 48 

By [12, Lemma B.4] and Assumption 5, 

( ) ( ) ( ) ( ( ) ),,,, 42
2

2
1

−+− =γ=γ smms xOxIxOxI  

( ) ( ( ) ) ( ) ( ( ) ).,,, 32
4

31
3

−+−+ =γ=γ smsm xOxIxOxI  

Note that the ( ) sO ⋅  in the above equations are independent of γ. Since <− 12
m  

,23,2min 




 −< mms  ( ) ,,1 γxI  ( ) ,,2 γxI  ( )γ,3 xI  and ( )γ,4 xI  converge to 

zero as .∞→x  

By Assumption 2, for ( )1,0 η∈ε  1(η  is defined in equation (19)), 

( ) ( ) ε−<xmxn ,  as x  is sufficiently large. By Assumption 3, for sufficiently 

large ,x  for any ( )( )ε∈ ζ ,,0 xnCz  ζ(  is defined in Assumption 3, ι is defined in 

equation (20), and ( )⋅⋅⋅⋅ ,,C  is defined in equation (21)), 

( ) ( ) ( ) ( ) ( ) ( ) ( ) .3,,,1 ε+ε−≤−+=≤− xnznxmxnxmznxm  

Thus, 

( ) ( ) ( ) ( )
( )( )∫ ε

−

ζ
µ

∇ε
−≤γ

,

2
212

0
,09

4,
xnC

d

s
dzzxfxsfxI ι  

( ) ( ) ( ) ( )xfcxfxfc mmss −−− ≤∇−= 2
2

21
1  

for some 01 >c  (independent of x), where ( )( ) ( )ε=ε ζζ ,, ,0,0 uCxnC  for any 

.1−∈ dSu  

So, there exist some 0>K  and some 03 >c  such that ( ) 1.1>xV  and 

( ) ( ) ( )xVcxVxVP α
γ −≤− 3  for ,Kx >  some ( ).1,0∈α  Let 

( ) ( ) ( ) ( ).:~ KxKxxVxV ≤+>= II  

So, 

( ) ( ) ( ) ( ).~~~
33 KxcxVcxVxVP ≤+−≤− α

γ I  

Hence, by Theorem 5, Containment holds.  
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5.8. Proof of Proposition 5 

Note that in the proof of Theorem 6, some test function ( ) ( )xcxV s−π=  for some 

( )1,0∈s  and some 0>c  is found such that S.G.E. holds. 

To check Diminishing Adaptation, it is sufficient to check that both 

Mnn 1−∑−∑  and 1−− nn XX  converge to zero in probability, where M⋅  is 

matrix norm. 

We compute by standard algebraic manipulation that 
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11112 nnnnnn XXXXnXX
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Hence, 

Mnn 1−∑−∑  
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M

n

i iiMnn XXnXXnnXXn 11
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21

1
1

1
1

−−
−

=
+

−
+

+
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.1
1

11 Mnnnn XXXXn −− +
+

+  (52) 

Indent to prove 1−∑−∑ nn  converges to zero in probability, it is sufficient to check 

that ,Mnn XX  ,1 1
0 M

n
i ii XXn∑
−
=

 Mnn XX 11 −−  and Mnnnn XXXX 11 −− +  

are bounded in probability. 

Since ( ) ( ) ,0log,suplim <π∇
∞→

xxn
x

 there exist some 0>K  and some 0>β  

such that 

( ) ( ) .log,sup β−≤π∇
≥

xxn
Kx

 

For ,Kx ≥  ( ) ( )
( ) ,1

loglog β−≤
−

π−π
xr

xy  where 1>r  and ,rxy =  i.e., ( )
( )

s

x
y −






π
π  
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.
1 yr

rs
e

−β
≥  Taking dx R∈0  with ,0 Kx =  

( ) ( ) ( )
( )

xr
rss

s caex
xxcxV

1

0
0

−β−
− ≥







π
ππ=  

for ,0rxx =  ,1>r  and ( ) ,0inf: >π= −

≤
ya s

Ky
 because of Assumption 1. If ,2≥r  

then .5.01 ≥−
r

r  Therefore, as x  is extremely large, ( ) .2xxV ≥  We know that 

( )[ ] ∞<nn XVEsup  (see Theorem 18 in [23]). 

Since 

,supsup: 222

11
nn

u
nn

u
Mnn XXuuXXuXX ≤≤=

==
 

Mnn XX  is bounded in probability. 

Obviously, 

∑∑
−

=

−

=

≤
1

0

1

0

.11
n

i
Mii

M

n

i
ii XXnXXn  

Then, for ,0>K  

[ ]∑∑
−

=

−

=

≤













>

1

0

1

0

111
n

i
Mii

n

i
Mii XXnKKXXn EP  

[ ] ( )[ ]∑
−

=

≤≤
1

0

2 .sup111
n

i
n

n
i XVKXnK EE  

Hence, 
M

n
i ii XXn ∑
−
=

1
0

1  is bounded in probability. 

∑ =+
≤ n

i in XnX 0 .1
1  So, 

( ) [ ] ( )[ ]∑
=

≤
+

≤>
n

i
n

n
in XVKXnKKX

0

.sup1
1

11 EEP  

nX  is bounded in probability. Hence, Mnn XX 11 −−  is bounded in probability. 
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Finally, 

.2 111 −−− ≤+ nnMnnnn XXXXXX  

Therefore, Mnnnn XXXX 11 −− +  is bounded in probability.  

5.9. Proof of Lemma 1 

For ,1−∈ dSu  

( ) ( ) ( ) ( )
{ }( )∫ ∫ ∫ε

∆

δ ε<−ξ∈ξ∆δ
−

ξω=µ
, 3:,

1
,

uC uS
d

d d
ddtttgdzzgz  

where ( )⋅ω  denotes the surface measure on .1−dS  

By the symmetry of ,1−∈ dSu  let ( ).1,0...,,0:
1−

==
d

deu  So, the projection 

from the piece { }3:1 ε<−ξ∈ξ − uS d  of the hypersphere 1−dS  to the subspace 

1−dR  generated by the first 1−d  coordinates is 1−d  hyperball ( )rBd ,01−  with 

the center 0 and the radius .3618
2ε−ε=r  Define ( ) ( ) :1 2

1
2
1 −++−= dzzzf  

({ })3:1 ε<−ξ∈ξω − uS d  

( )∫ − −∇+=
rB

dd
dzdzf

,0
11

2
1

1  

( ) ( )∫ 




 −






 +Γ

π−=ρ
ρ−

ρ






 +Γ

π−=

−
−

−
r

r

d
d

d
d

d
ddd

d
0

2
1

2

22
1

.2
1,2

1Be

2
12

1

1
2

1
1

2  

Hence, 

( ) ( ) ( ) ( )
( )∫ ∫ε

∆

δ

−

∆δ





 −






 +Γ

π−=µ
,

2
1

,
2 .2

1,2
1Be

2
12

1
uC

d
r

d

d dtttgd
d

ddzzgz  (53) 

Therefore, the result holds.  
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5.10. Proof of Proposition 6 

We compute that ( ) ( ) ( ).xxnx πλ−=π∇  So, ( ) ( ) λ−=π∇ xxn log,  and 

( ) ( ) .1, −=xmxn  So, the target density is exponentially tailed, and Assumptions 1 

and 2 hold. Obviously, each proposal density is locally positive. Now, let us check 
Assumption 4 by using Lemma 1. Because 

( ( )) ,
12

,Vol
2






 +Γ

π∆=∆ dd
xB

d
d

d  

the function ( )tg  defined in Lemma 1 is equal to 
( ( ))

.
,Vol

1
∆xBd  1η  defined in 

equation (18) and 2η  defined in equation (19) are, respectively, λ and 1. Now, fix 

any ( )1,0∈ε  and any .,1





 ∞
λ

∈δ  The left hand side of equation (26) is 

( ) ( )∫
∆

δ

−






 −






 +Γ

π− dtttgd
d

d d
r

d

2
1,2

1Be

2
12

1
2

2
1

 

( )

( )
,12

1,2
1Be

2
1,2

1Be12

1
1

1
2 









∆
δ−∆⋅





 −⋅






 ++

−= +

+

d

d

r
d

dd

dd  

where ( )yx,Be  and ( )yxr ,Be  are beta function and incomplete beta function, r is 

a function of ε defined in Lemma 1. 

Once fixed ε and δ, the first two terms in the right hand side of the above 
equation is fixed. Then, as ∆ goes to infinity, the whole equation tends to infinity. 
So, there exists a large enough 0>∆  such that equation (26) holds. By Lemma 1, 
Assumption 4 holds. Then, by Proposition 10, Containment holds. By Proposition 5, 
Diminishing Adaptation holds. By Theorem 1, the adaptive Metropolis algorithm is 
ergodic.  
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