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Abstract

This paper considers ergodicity properties of certain adaptive Markov
chain Monte Carlo (MCMC) algorithms for multidimensional target
distributions. It was previously shown in [23] that Diminishing Adaptation
and Containment imply ergodicity of adaptive MCMC. We derive various
sufficient conditions to ensure Containment.

1. Introduction

Markov chain Monte Carlo (MCMC) algorithms are widely used for
approximately sampling from complicated probability distributions. However, it is

often necessary to tune the scaling and other parameters before the algorithm will
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converge efficiently, and this can be very challenging especially in high dimensions.
Adaptive MCMC algorithms attempt to overcome this challenge by learning from the
past and modifying their transitions on the fly, in an effort to automatically tune the
parameters and improve convergence. This approach was pioneered by the original
adaptive Metropolis algorithm of Haario et al. [14], which can be viewed as a
version of the Robbins-Monro stochastic control algorithm [3, 20]. Their paper was
quickly followed by numerous other papers which generalised, modified, clarified,
and proved theorems about various adaptive MCMC algorithms in various contexts
and under various assumptions [1, 2, 4-8, 10, 11, 15, 23, 24, 30, 32, 33], as well as
some general-purpose adaptive MCMC software [29, 31].

Despite this considerable progress, it remains true that verifying ergodicity of
adaptive MCMC algorithms on unbounded state spaces remains non-trivial. Most of
the ergodicity theorems assume a Diminishing Adaptation condition, whereby the
amount of adapting done at iteration » converges to zero as n — oo, which is easily
ensured by designing the algorithm appropriately. On a compact state space, this
condition together with a simple continuity assumption suffices to ensure ergodicity
of the algorithm (see, e.g., Theorem 5 of [23]). However, on an unbounded state
space, some additional assumption (such as the Containment condition discussed
below) is also required or ergodicity may fail.

In this paper, we consider the Containment condition in more detail. In
particular, we prove a number of results about sufficient (and occasionally
necessary) conditions for Containment to hold. We hope that these results will allow
users to verify Containment for adaptive algorithms more easily, and thus use

adaptive MCMC more widely without fear of ergodicity problems.
1.1. Preliminaries

Consider a target distribution 7(-) defined on a state space X with respect to
some o-field B(X) (n(x) is also used to denote the density function). Let

{P, : v € Y} be a family of transition kernels of time homogeneous Markov chains,
each having the same stationary probability distribution =, ie., nP, =n for all
ye

An adaptive MCMC algorithm Z = {(X,, T,,): n > 0} can be regarded as

lying in the sample path space Q := (X x )))*. It proceeds as follows: We begin
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with an initial state X = xo € X' and a kernel A, where Iy := vy € ). At each
iteration n +1, X, is generated from 7 (X,, ), so thatif G, = o(X,, X, ...,

X,, Ty, I, ..., [,), then forall 4 € B(X),
P(xo,yo)(XnH € 4lG,) = IED(x(),yo)()(nﬂ € Ad|X,,T,)= PF,, (X, A), (1

where Plxy,y,) Tepresents the probability induced by our adaptive scheme when

starting at Xy = xy and I =7yy. Concurrently, I,,; is obtained from some
function of Xy, ..., X,,;; and I, ..., T,,, according to the specific adaption scheme

being used. (Intuitively, the adaptive scheme is designed so that it hopefully learns
as it goes, so that the values I', hopefully get correspondingly better, in terms of

improved convergence of Prn , as n increases.)

In the paper, we study adaptive MCMC with the property equation (1). We say
that the adaptive MCMC Z is ergodic if for any initial state x; € X and any kernel

index yg € ),
nIE;I}D ” IP)(xo,yo)()(n € ) - TC() "TV =0,
where || u|py = SUF )| u(A4)| is the usual total-variation metric on measures.
AeB

To study this ergodicity, we consider the properties of Diminishing Adaptation
and Containment, following [23]. (There are several other closely related approaches
to ergodicity of adaptive MCMC, see, e.g., [2, 6, 8, 30].)

Diminishing Adaptation is the property that for any X, = x¢ and Iy = vy,
lim,,_,,, D, =0 in probability Py, ,,), Where D, =sup,cx| 7t (x,)= A, (x,7) |y

represents the amount of adaptation performed between iterations n and n + 1.

Containment is the property that for any Xy = xy and Iy = y,, forany € > 0,
the stochastic process {M(X,,[},):n =0} is bounded in probability Py ),
ie., forall 8 >0, thereisan N e N such that P, , (M(X,,[,)< N)=1-3
for all neN, where My(x,y)=inf{n >1:| P'(x, )= n() |y <&} is the “e-

convergence time”.
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Theorem 1 ([23]). Ergodicity of an adaptive MCMC algorithm is implied by
Diminishing Adaptation and Containment.

Thus, to ensure ergodicity of adaptive MCMC, it suffices to have Diminishing
Adaptation and Containment. When designing adaptive algorithms, it is usually
not difficult to ensure directly that Diminishing Adaptation holds. However,
Containment may be more challenging, and is the subject of this paper.

Remark 1. Atchadé et al. [8] allowed for more general adaptive schemes, in

which the different P, can have different stationary distributions, but we do not
pursue that here.
1.2. Organisation of the paper

Section 2 presents several examples to show that ergodicity can hold even if
neither Containment nor Diminishing Adaptation holds, and that Diminishing
Adaptation alone - even together with a weaker form of Containment - is not
sufficient for ergodicity of adaptive MCMC. It also presents a simple summable
adaptive condition which can be used to check ergodicity more easily. Finally, it
discusses properties related to simultaneous geometric ergodicity which also imply
ergodicity of adaptive algorithms.

Section 3 then discusses the weaker property of simultaneous polynomial
ergodicity, and shows that this property also implies ergodicity of adaptive
algorithms under appropriate conditions.

Section 4 specialises to adaptive algorithms based on families of Metropolis-
Hastings algorithms. It shows that for lighter-than-exponential target distributions,
ergodicity holds under relatively weak assumptions. On the other hand, for targets
with exponential or hyperbolic tails, additional assumptions are required.

For ease of readability, all non-trivial proofs are deferred until Section 5.
2. Some Simple Results about Containment
We begin with a collection of relatively simple results about the Containment
condition, before considering more substantial results in subsequent sections.

2.1. On necessity of the conditions

We begin with a very simple example to show that neither Diminishing
Adaptation nor Containment is actually necessary for ergodicity of adaptive MCMC.
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Example 1. Let the state space X = {I, 2}, and let the available Markov

o [1-0 0
"l o 1-9

for fixed 0 € (0, 1). Obviously, for each 0 e (0, 1), the stationary distribution is

transition kernels be:

Unif(X), the uniform distribution on X. Assume the following very simple state-
independent adaptation scheme: at each time n > 0, we choose the transition kernel

Fy, , where 0, is some specific function of n.

1

Proposition 1. For the adaptation scheme of Example 1 with 0, = ﬁ
n+2

for some fixed r > 0, we have the following:
(1) For any r > 0, Diminishing Adaptation holds but Containment does not.

@) If r>1, then oo, o, - Hy, = 1, where p depends on p, and in
particular, if ng # Unif(X), then p # Unif(X), i.e., the adaptive scheme is not

ergodic.

(i) If 0<r <1, then for any probability measure p, on X, we have

HoPo, P, -+ Py, — Unif(X), i.e., the adaptive scheme is ergodic in this case.

See the proof in Subsection 5.1.

Remark 2. The chain in Proposition 1 is simply a time inhomogeneous Markov
chain, artificially fit into the framework of adaptive MCMC. Although very simple,
this example indicates the complexity of adaptive MCMC ergodicity. In particular:

1. For » > 1, the limiting distribution of the chain is not uniform. So it shows

that Diminishing Adaptation alone cannot ensure ergodicity.

2. For 0 <r <1, the algorithm is ergodic to the uniform distribution, but

Containment does not hold. That is, although the “e convergence time” goes to
infinity (see equation (29)), the distance between the chain and the target is still

decreasing to zero.
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Proposition 2. For the adaptation scheme of Example 1 with 0, =1/2 for n
even, and 0, =1/n for n odd, both Diminishing Adaptation and Containment do

not hold, but the chain still converges to the target distribution Unif(X).

See the proof in Subsection 5.1.

Example 1 shows that Containment is not a strictly necessary condition for
ergodicity to hold. In the following theorem, we prove that under certain additional
conditions, Containment is in fact necessary for ergodicity of adaptive algorithms.

Theorem 2. Suppose a family {PY }Yey has the property that there exists an

increasing sequence of sets Dy, T X on the state space X such that for any k > 0,

lim sup | B/(x, )= () [lpy = 0. (2)
N0 P XY

If an adaptive MCMC algorithm based on {Py }yey is ergodic, then Containment
holds.

Corollary 1. Suppose that the parameter space Y is a metric space, and the
adaptive scheme {T, : n > 0} is bounded in probability. Suppose that there exists an
increasing sequence of sets (Dy., V) T X x Y such that for any k > 0,

lim sup | P'(x, )= n()[lpy = 0.
n—0 ’Dkxyk

If the adaptive MCMC algorithm is ergodic, then Containment holds.
For proofs of Theorem 2 and Corollary 1, see Subsection 5.2.

We now present a second, more complicated example. This example also fails to
be ergodic, even though it satisfies Diminishing Adaptation, and also satisfies the

“weak Containment” property that sup,cy sup,cc M¢(x, y) < oo for some small set

C of positive stationary measure (indeed, that trivially holds for this example with C

any compact interval within X, since ) is finite). Thus, this example shows that to

ensure ergodicity, the full Containment condition is not redundant, and in particular,

it cannot simply be replaced by the “weak Containment” property.

Example 2. Let the state space X = (0, ), and the kernel index set ) =
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I(x > 0)
1+ x2

{-1, 1}. Then the target density m(x) o is a half-Cauchy distribution on

the positive part of R. At each time n, run the Metropolis-Hastings algorithm, where

the proposal value Y, is generated by

Yl = X,{ﬁ[l +Z, (3)

with i.i.d standard normal distribution {Z,}, i.e.,if [,_; =1, then ¥, = X,,_| + Z,,,

while if I,,_; = -1, then ¥, = W The adaptation is defined as
n-1 n

r._ 1 - 1
Fn = n—]I[(Xnn ! <;)+FH—IH(XI‘!” ! 2;)’ (4)

i.e., we change I from 1 to —1 when X <1/n, and change I from —1 to 1 when

X > n, otherwise we do not change I'.

Proposition 3. The adaptive chain {X, : n > 0} defined in Example 2 is not

ergodic, and Containment does not hold, although Diminishing Adaptation does
hold.

See the proof in Subsection 5.3.
2.2. Summable adaptive condition

In the following result, we use a simple coupling method to show that a certain

summable adaptive condition implies ergodicity of adaptive MCMC.

Proposition 4. Consider an adaptive MCMC {X,, : n > 0} on the state space

X with the kernel index space Y. Under the following conditions:

() Y is finite. For any v € Y, P, is ergodic with the stationary distribution

(1) At each time n, I, is a deterministic measurable function of Xy, ..., X

| WU S

n»

(iii) For any initial state xy € X and any initial kernel index vy, € Y,
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o0
ZP(Fn %L, 1| X = X0, Ty = v9) <0, Q)
n=l1

the adaptive MCMC {X,, : n = 0} is ergodic with the stationary distribution 7.
See the proof in Subsection 5.4.

Remark 3. In Example 2, the transition kernel is changed when X ,1; n=1 reaches

below the bound 1/n. If instead this bound is re-defined as 1/n" for some r > 1,

then Proposition 4 can be used (by adopting the procedure in Lemma 2 to check
equation (5)) to show that the adaptive algorithm is ergodic.

2.3. Simultaneous geometric drift conditions revisited

It was proven in [23] (see [2] for similar related results) that Containment is
implied by simultaneous strongly aperiodic geometric ergodicity (S.S.A.G.E.).
S.S.A.G.E. is the condition that there is C € B(X), a function V : X — [1, ),

8>0, A <1 and b < o such that sup V(x) < o0, and
xeC

(i) for each y, 3 a probability measure v, () on C with P,(x, -) > &v,(-) for

all x e C, and
(ii) BV <AV + bl forally.
The idea of utilizing S.S.A.G.E. to check Containment is that S.S.A.G.E.

guarantees there is a uniform quantitative bound of | B'(x, ) = n() |y for all

y € Y. However, S.S.A.G.E. can in fact be weakened to the simultaneously

geometrically ergodic condition (S.G.E.) studied by [27]. We say that the family
{P, 1y e} is SGE. if there is C € B(X), some integer m > 1, a function

V:X —>[l,©), §>0, A<1 and b < o such that sup V(x) < o, n(V) < o, and:
xeC

(1) Cis a uniform v, -small set, i.e., for each y, 3 a probability measure vy(~)

on C with P (x, -) > 8v, () forall x € C, and

i) PV <AV + bl forall y.
Y C Y
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Note that the difference between S.G.E. and S.S.A.G.E. is that a uniform

minorization set C for all P, is assumed in S.S.A.G.E., however, a uniform small set

C is assumed in S.G.E. (see the definitions of minorization set and small set in [19,
Chapter 5]).

Theorem 3. S.G.E. implies Containment.

See the proof in Subsection 5.5.

Corollary 2. Consider the family {P;, 1y € Y} of Markov chains on X RY,
Suppose that for any compact set C € B(X), there exist some integers m > 0,
8 >0 and a measure v, (-) on C for y e Y such that P;"(x, ) > &v,(-) for all

x € C. Suppose that there is a function V : X — (1, ©) such that for any compact

set C € B(X), supV(x)< oo, n(V)< o, and
xeC

i By ()
im sup sup W <1. (6)

| x |00 yey
Then, for any adaptive strategy using {PY vy € Y}, Containment holds.

See the proof in Subsection 5.5.
3. Ergodicity via Simultaneous Polynomial Ergodicity

The previous section considered simultaneous geometric drift conditions. We
now consider the extent to which Containment is ensured by the weaker property of

simultaneous polynomial drift conditions.
3.1. Polynomial ergodicity

There are many results available about polynomial ergodicity bounds for
Markov chains [12, 13, 16, 17]. We begin by recalling in some detail a result by Fort
and Moulines [13], giving a quantitative convergence bound for (non-adaptive)
time-homogeneous Markov chains with polynomial (subgeometric) convergence

rates.

Theorem 4 ([13]). Suppose that the time-homogeneous transition kernel P

satisfies the following conditions:
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o P is m-irreducible for an invariant probability measure T;

e There exist some sets C € B(X) and D € B(X), C = D, n(C)> 0 and an
integer m > 1 such that for any (x, x') e A =CxDUDxC, 4e B(X),

P (x, AY A PT(x', A) 2 py v (4), ™

where p, v is some measure on X for (x, x') € A, and & =inf(, e Py, v (X)

> 0.

e Let q > 1. There exist some measurable functions Vi : X — R™\{0} for

kel{0,1,.., g}, and for k €{0,1, ..., g —1} for some constants 0 < a; <1, by <
and c¢;, > 0 such that

PVia(x) < Vi (x) = Vi(x) + Ble(x),  inf V3 (x) 2 ¢ > 0,
xeX

Vk(x)— bk > aka(x), X € Dc,

sup V, < oo. (®)
D

. n(VqB) < o for some B € (0, 1].

Then, for any x € X, n > m,

|7 ) = 70) by min 8z, n) ©)
with
BP)(x, n) = e (1= 49 "5, ®7(rP), )

SUnrl=mf +) (+e" )Y (s, j+ 1P - s, )Py

jzn+l-m

where (-, -) denotes the inner product in RI*, {e/}, 0<1<gq is the canonical

basis on ]Rq”, 1 is the identity matrix;

5, @ =) = [&.(r)n(a )P (3 )
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where WP(x, x') = (WOB(x, x'), e WqB(x, XN with Wy(x, x') =1 and

-1\
Wi(x, x") = Ip(x, &) + 1 (x, X'){ ak] (m(p)) (Vi (x) + V(x) for 1< 1< ¢q,

k=0

where m(Vy) = inf )’ Vo (x) + Vo (x")};

(

k

S0, k) =1 and S, k)= Y S(G=1, j),i>1;

j=1
A,(nB)(O) 0 0 0
AP 1) APy . 0 0
A=) aPg-2) -~ AP0 o
V@) Vg0 4P 4P

where
/
AP = sup(e e Y S mP (1= pe (X))

-IRx, (5 @) Ry (5, )P (3, 3),
where the residual kernel
Ry (uty dy) = (1= py o (X)) (B (1 dy) = py o (d));
and & = Sup(s, vycn P (X).
Remark 4. In the Bl(B )(x, n), € depends on the set A and the measure p VR
the matrix (1 — A,(,,B))_1 depends on the set A, the transition kernel P, p, » and the
test functions V}; &, ® n(WB) depends on the set A and the test functions V.

Consider the special case of the theorem: p, ,/(dy) = dv(dy), where v is a

probability measure with v(C) > 0, and A = C x C.
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l.et =g =38.

2. 1- A,(,?) is a lower triangle matrix so (/ — A,(,?))_1 = (big-p’))l-’j:Lm,q+1 is also
a lower triangle matrix, and fixing £ > 0 all bl.(l‘);.)_  are equal. b,-(iB) = ;
’ 1-4P(0)

For i > j, bgj) is the polynomial combination of A,(,?)(O), v A,(,?)(i +1) divided by

, (B)
(1- A,(y? )(0))’. By some algebra, we can obtain that bg?) = Ll)z So, by
(1= 4P 0)

calculating Bl(B )(x, n), we can get the quantitative bound with a simple form.
Bl(ﬁ)(x, n) only involves two test functions V,(x) and V;(x).
Remark 5. From equation (8), Vy(x) = by /(1 — 09) > by, because 0 < g < 1.

Consider the drift condition: PV; — V| < -V, + byl . Since nP =n, (V) < byn(C)

< by. Hence, the ¥}, in the theorem cannot be constant.

Remark 6. Without the condition n(VB) < oo, the bound in equation (9) can
also be obtained. However, the bound is possibly infinity. The subscript / of
Bl(B )(x, n) and B can explain the polynomial rate. The related rate is S(Z, n+1—m)P
=0((n+1-m)P). It can be observed that BI(B)(x, n) involves test functions
Vo(x), ..., Vi(x), and limsup,, nBlBl(B )(x, n) < %. The maximal rate of convergence
is equal to ¢p.

3.2. Polynomial ergodicity and adaptive MCMC

To prove Containment using polynomial ergodicity, we shall require some

additional assumptions, as follows. Say that the family {P, :ye Y} is

simultaneously polynomially ergodic (S.P.E.) if the conditions (A1)-(A4) are

satisfied:

(A1) Each P, is ¢, -irreducible with stationary distribution n(-).

Remark 7. By Proposition 10.1.2 of [19], if Py is @-irreducible, then Py is -

irreducible and the invariant measure 7« is a maximal irreducibility measure.
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(A2) There is a set C — X, some integer m € N, some constant & > 0, and

some probability measure v, (-) on A’ such that:

n(C) > 0, and B"(x, -) > 8l¢(x)v, () forall x € X,y € V. (10)

Remark 8. In Theorem 4, there is one condition equation (7) ensuring the

splitting technique. Here we consider the special case of that condition: p, v(dy)

= 8v,(dy) and A = C x C. Thus, by Remark 4, the bound of | B (x, -) = () |y
depends on C, m, the minorization constant 8, n(-), v,, and test functions 7;(x) so
we assume that they are uniform on all the transition kernels.

(A3) There is ¢ € N and measurable functions: Vp, 1, ..., V 1 X — (0, ),
where Vy <V <. < # such that for £ =0, 1, .., ¢ —1, there are 0 < oy <1,

by < o and ¢; > 0 such that:

P Vi1 (x) £ Vi1 (x) = Vie(x) + be(x), Vi(x) > ¢ for x € X and y € V5 (11)

Vk(x)— bk > ocka(x) for x X/C, (12)
sup V,(x) < oo. (13)
xeC

mby_

)

Remark 9. For x € C, v, (V) < %PymVl(x) < %Squec Vi(x) +

(A9) n(Vqﬁ) < oo for some B € (0, 1].

In terms of these assumptions, we have the following:

Theorem 5. Suppose an adaptive MCMC algorithm satisfies Diminishing
Adaptation. Then the algorithm is ergodic under any of the following conditions:

(1) S.P.E., and the number q of simultaneous drift conditions is strictly greater
than two;

(i) S.P.E., and when the number q of simultaneous drift conditions is greater

than or equal to two, there exists an increasing function f :R*Y — R™ such that

Nx) < 1 (Vo (x)):;
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(i) Under the conditions (Al) and (A2), there exist some positive constants
c>0, b'>b>0, ae(0,1), and a measurable function V(x): X — R+ with
V(x) =1 and sup V(x) < o such that

xeC

PV (x)=V(x) < —cV*(x) + blc(x) forall x e X,y €, (14)
and cVa(x)HCc(x) >b' forall x e X,

(iv) Under the conditions (Al), (A2) and (A4), there exist some constant
b'>b >0, two measurable functions Vy:X — RY and Vi : X — R" with

1 < Vy(x) < Vi(x) and sup Vi(x) < oo such that
xeC

PVi(x) = V(x) < =Vo(x) + ble(x) forall x e X,y € Y, (15)

and Vo(x)]lcc (x) = b' forall x € X, and the process {V1(X,): n = 0} is bounded
in probability.
For a proof of Theorem 5, see Subsection 5.6.

Remark 10. In part (iii), (A4) is then implied by Theorem 14.3.7 of [19] with
B=oa.

Remark 11. Atchadé and Fort [6] recently proved a result closely related to the
above, using a coupling method similar to that in [23]. Their Corollary 2.2
establishes ergodicity of adaptive MCMC algorithms under the assumptions of
uniform strong aperiodicity, simultaneous drift conditions of the form (13), and

uniform convergence on any sublevel set of the test function V(x). Thus, they

essentially reprove part (iii) of our Theorem 5, but under somewhat different

assumptions.
4. Ergodicity of Adaptive Metropolis-Hastings Algorithms

We now present some ergodicity results for various adaptive Metropolis-
Hastings algorithms. (For similar results about adaptive Metropolis-within-Gibbs

algorithms, see [9].)
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4.1. General adaptive Metropolis-Hastings algorithms

We first consider general Metropolis-Hastings algorithms. We begin with some
notation.

The target density n(-) is defined on the state space X < R¥. In what follows,
we shall write (-, -) for the usual scalar product on RY, |-| for the Euclidean and the
operator norm, 7n(z) = z/| z| for the normed vector of z, V for the usual differential
(gradient) operator, m(x):=Vn(x)/|Vr(x)|, B (x, r)={y e R? :|y— x| < r} for
the hyperball on RY with the center x and the radius r, B¢ (x, r) for the closure of
the hyperball, and Vol(4) for the volume of the set 4 = RY.

Say an adaptive MCMC is an Adaptive Metropolis-Hastings algorithm if each

kernel P, is a Metropolis-Hastings algorithm, i.e., is of the form

(s, 49 = 0,0 90,5 )+ 1 [ 50,5 o). (1)

m(»)qy (v, x)

where O, (x, dy) is the proposal distribution, o, (x, y):= (m
'y 9

/\l)ﬂ(yeX),

and p; is Lebesgue measure. Say an adaptive Metropolis-Hastings algorithm is an

Adaptive Metropolis algorithm if each q,(x, y) is symmetric, i.e., g,(x, y) =
q,(x = ¥) = q,(y - x).

[16] gave conditions which imply geometric ergodicity of symmetric random-

walk-based Metropolis algorithm on R for target distribution with lighter-than-
exponential tails, see other related results in [18, 25]. Here, we extend their result a

little for target distributions with exponential tails.

Definition 1 (Lighter-than-exponential tail). The density m(-) on RY is lighter-
than-exponentially tailed if it is positive and has continuous first derivatives such

that

lim sup (n(x), V log n(x)) = —o0. (17)

| x |00
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Remark 12. (1) The definition implies that for any » > 0, there exists R > 0
such that

n(x + an(x)) — n(x)

n(x)

It means that n(x) is exponentially decaying along any ray, but with the rate r

< —ar, for [x|= R, a > 0.

tending to infinity as x goes to infinity.
(2) The normed gradient m(x) will point towards the origin, while the direction

n(x) points away from the origin. For Definition 1,

(n(x), Vlog n(x)) = %(n(}(}, m(x)).

Even limsup(n(x), m(x)) < 0, equation (17) might not be true, e.g., n(x) oc

b
| x |00 +x?

2

x € R. m(x)=—n(x) so that (n(x), m(x)) = -1. (n(x), Vlogn(x)) = —% $O

‘xl‘igw(n(x), V log n(x)) = 0.

Definition 2 (Exponential tail). The density function n(-) on R is exponentially
tailed if it is a positive, continuously differentiable function on Rd, and

M, = —limsup{n(x), V log n(x)) > 0. (18)

| x |00

Remark 13. There exists § > 0 such that for x sufficiently large,

(n(x), ¥ log () = (n(x), m()] ¥ log ()| < .
Further, if 0 < —(n(x), m(x)) <1, then |V log n(x)| = B.

Define the symmetric proposal density family € ={q :q(x, y)=q(x - y) =
q(y — x)}. Our ergodicity result for adaptive Metropolis algorithms is based on the
following assumptions:

Assumption 1 (Target regularity). The target distribution is absolutely
continuous w.r.t. Lebesgue measure p,; with a density n bounded away from zero

and infinity on compact sets, and sup 7(x) < oo.
xeX
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Assumption 2 (Target strongly decreasing). The target density © has continuous
first derivatives and satisfies

Ny = —limsup(n(x), m(x)) > 0. (19)

| x [0

Assumption 3 (Proposal uniform local positivity). Assume that {qy yeYicd

There exists > 0 such that

v=inf inf g,(z) > 0. (20)
ey |z[<¢
Given 0 < p<g <o, for u sd-1 (Sd_1 is the unit hypersphere in ]R{d) and
0 > 0, define

Cp g, 0)={z=a|p<a<q, e Sd_1,|§—u| < 6/3}. 21

Assumption 4 (Proposal moment condition). Suppose the target density 7 is

exponentially tailed and {qY .y € Y} < €. Under Assumptions 2, assume that there

are £ € (0, 1y), Be(0,my), & and A with 0 < é <8 < A £ o such that

: 3e+1)
(u’y);;g_lxy I Caal08) | zlgy(2)ng(dz) > Bee D) (22)

Remark 14. Under Assumption 3, let P(x, dy) be the transition kernel
of Metropolis-Hastings algorithm with the proposal distribution Q(x, )~
Unif(B9 (x, ¢/2)). Forany y € ), P,(x, dy) > LVol(B4(0, ¢/2)) P(x, dv). Under

Assumption 1, by [25, Theorem 2.2], any compact set is a small set for P so that

any compact set is a uniform small set for all P,.

Remark 15. (1) Assumption 4 means that the proposal family has uniform
lower bound of the first moment on some local cone around the origin. The
condition specifies that the tails of all proposal distributions cannot be too light, and
the quantity of the lower bound is given and dependent on the tail-decaying rate m,

and the strongly decreasing rate m; of target distribution. Assumptions 1-4 are used

to check S.G.E. which is just sufficient to Containment.
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(2) If the proposal distribution in {g, :y € Y} € is a mixture distribution

with one fixed part, then Assumption 4 is relatively easy to check, because the
integral in equation (22) can be estimated by the fixed part distribution. Especially
for the lighter-than-exponentially tailed target, Assumption 4 can be reduced for this
case. We will give a sufficient condition for Assumption 4 which can be applied to

more general case, see Lemma 1.

Now, we consider a particular class of target densities with tails which are
heavier than exponential tails. It was previously shown by [12] that the Metropolis
algorithm converges at any polynomial rate when proposal distribution is compact

supported and the log density decreases hyperbolically at infinity, log n(x) ~ —| x|*,

for 0 <s<1las|x|—> oo

Definition 3 (Hyperbolic tail). The density function m(-) is twice continuously
differentiable, and there exist 0 < m <1 and some finite positive constants d;, D;,

i =1, 2 such that for large enough | x |,
0 < do| x|" < —logm(x) < Do| x[";
0<d|x|"" <|Viogn(x)| < Dy|x|"";
0 < dy| x|"2 <| VZ logn(x)| < Dyf x|" 2.

Assumption 5 (Proposal’s uniform compact support). Under Assumption 3,

there exists some M > C such that all 9y () with y € Y are supported entirely on
B (0, M).

Theorem 6. An adaptive Metropolis algorithm with Diminishing Adaptation is

ergodic, under any of the following conditions:

(1) The target density  is lighter-than-exponentially tailed, and Assumptions
1-3;

(i1) The target density T is exponentially tailed, and Assumptions 1-4;
(iii) The target density w is hyperbolically tailed, and Assumptions 1-3 and 5.

For a proof of Theorem 6, see Subsection 5.7.
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4.2. Specific cases of adaptive Metropolis-Hastings algorithms

Here we discuss two specific cases of adaptations of Metropolis-Hastings
algorithms. The first one (Example 3) is from [24], where the proposal density is a
fixed distribution of two multivariate normal distributions, one with fixed small
variance, another using the estimate of empirical covariance matrix from historical
information as its variance. It is a slight variant of the original adaptive Metropolis
algorithm of Haario et al. [14]. In the example, the target density has lighter-than-
exponential tails. The second (Example 4) concerns with target densities with truly
exponential tails.

Example 3. Consider a d-dimensional target distribution 7(-) on RY satisfying
Assumptions 1-2. We perform a Metropolis algorithm with proposal distribution

given at the nth iteration by O, (x, -) = N(x, (0.1)? 1;/d) for n < 2d. For n > 2d,
Qn(xs )
(1-0)N(x, (2.38)* %, /d)+6N(x, (0.1)* 1;/d), X, ispositive definite,
N(x, (0.1 1,/d), >, isnot positive definite

for some fixed 0 € (0, 1), I; is d x d identity matrix, and the empirical covariance

matrix

n
1 T 7 vT
Sy == D XX — (DX, X, |, (24)
i=0
where X, = ﬁZLO X; is the current modified empirical estimate of the

covariance structure of the target distribution based on the run so far.

Remark 16. The fixed part N(x,(0.1)? I;/d) can be replaced by

Unif (B (x,1)) for some 1 > 0. For targets with lighter-than-exponential tails,

can be an arbitrary positive value, because Assumption 3 holds. For targets with
exponential tails, T is dependent on m; and nj.
Remark 17. The proposal N(x, (2.38)% >/d) is optimal in a particular large-

dimensional context, see [22, 26]. Thus the proposal N(x, (2.38)*%, /d) is an

effort to approximate this.
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Remark 18. Commonly, the iterative form of equation (24) is more useful,

n-—1 1 - =
X, = n anl"'n +1(Xn _anl)(Xn _anl)T~ (25)

Proposition 5. Suppose that the target density © is exponentially tailed. Under

Assumptions 1-4,| X, = X,y | and | X, -%,_ |, converge to zero in probability,

where | -||,, is matrix norm.

For a proof of Proposition 5, see Subsection 5.8.

Theorem 7. Suppose that the target density © in Example 3 is lighter-than-
exponentially tailed. The algorithm in Example 3 is ergodic.

Proof. Obviously, the proposal densities are uniformly bounded below. By

Theorem 6 and Proposition 5, the adaptive Metropolis algorithm is ergodic. O

The following lemma can be used to check Assumption 4:

Lemma 1. Suppose that the target density T is exponentially tailed and the
proposal density family {qy 1y € YV} < €. Suppose further that there is a function

qg (z)=g(z]), ¢ :RY 5> R* and g:R*Y > R*, some constants M > 0,

£e€(0,m;), Be(0,ny) and 3 UM <8<A such that for |z |2 M with the

Pe

property that q,(z) > q”(z) for y € ¥ and

d—1

(d-1)rm 2 d-1 1\(% 4 3(e +1)

ar( 4] weafh g )f st iy e
2

where v is defined in equation (18), m, is defined in equation (19), r =

%\136 — &%, and the incomplete beta function Be (1], t,) = J(;Cttl_l(l — 027 ar,

then Assumption 4 holds.

For a proof of Lemma 1, see Subsection 5.9.

We now consider a specific example to illustrate the theorem.
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Example 4. Consider the standard multivariate exponential distribution n(x) =

cexp(-A x|) on RY, where L >0. We perform a Metropolis algorithm with
proposal distribution in the family {Q, ()}Y cy at the nth iteration, where

Unif (B9 (x, A)), n < 2d, or X, is nonsingular,
0,(x, ) = (1= O)N(x, (238)" ,,/d) @7
+0 Unif (B9 (x, A)), n > 2d, and Y, is singular,

for 0 e (0, 1), Unif(B%(x, A)) is a uniform distribution on the hyperball BY (x, A)
with the center x and the radius A, and Y, is as defined in equation (24).

Proposition 6. There exists a large enough A >0 such that the adaptive
Metropolis algorithm of Example 4 is ergodic.

For a proof of Proposition 6, see Subsection 5.10.

Remark 19. Concurrent with our research, Saksman and Vihola [30]
recently proved some related results about the original Adaptive Metropolis (AM)
algorithm of [14], assuming lighter-than-exponential tails of the target distribution
as in our Theorem 7. Their Theorem 13 shows that if the target density is
regular, strongly decreasing, and strongly lighter-than-exponentially tailed (i.e.,

lim supM = —oo for some p > 1), then strong laws of large numbers

oo |xP

and central limit theorems hold in the adaptive setting.
5. Proofs of the Results

5.1. Proofs related to Example 1

Proof of Proposition 1. Since the adaptation is state-independent, the
stationarity is preserved. So, the adaptive MCMC X, ~ 8Py Py By, -+ Fy, () for

n >0, where & = (81, 5} is the initial distribution.
The part (i). Consider || £y (x, )= PRy (x, ) |py. Forany x € X,
" PG,Hl(xa ')—Pe,,(xs ) "TV = | en-*—l - en | - 0.

Thus, for » > 0, Diminishing Adaptation holds.
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By some algebra,

1
| 2e ) = 7 Iy = 311 20"

(28)
Hence, for any ¢ > 0,
log()  log(1/2)
> _“o\®) Mo\/4)
M. (X,,0,)> log| 1= 20, | —> +00 as n —>» o (29)

Therefore, the stochastic process {M.(X,,0,):n >0} is not bounded in

probability.
The parts (ii) and (iii). Let p,, = (un , Wy, )) =8Py, By . So,
) =l =0, —u?) and pZ) = u® + 0,0 - u?).
Hence,
n+l
R G a<2>)1‘[(1 20).
For r > 1, nil

k=0( —20;) converges to some o € (0,1) as n goes to infinity
uSJ)rl “51242 — (8(1) —8(2))0c. For 0 <r <1, ugil “5;2+)1 — 0. Therefore, for
r > 1, ergodicity to Uniform distribution does not hold, and for 0 < » <1, ergodicity
holds.

O

Proof of Proposition 2. From equation (28), for € > 0, M (X1, 025_1) =
M — o as k — . So, Containment does not hold.
log| 1 -1/k|

1 S
I Py, (x5 ) = Poyy (x5 ) oy = ‘3 - E‘ — 5 as ko So Diminishing

Adaptation does not hold. Let & := (8(1), 8(2)) be the initial distribution and p,, =

- —

[(n+1)/2]
M _ @ _ (50 _ §(2)yp-[n/2]-1 1
(“n 7“11 ) 6P9 9,1- Hp” =Ky _(6 372 I | ( 2kj -0

k=1
as n goes to infinity. So ergodicity holds. |
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5.2. Proofs of Theorem 2 and Corollary 1
Proof of Theorem 2. Fix ¢ > 0. For any & > 0, taking K > 0 such that

(D% ) < 8/2. For the set D, there exists M such that

sup | PYM (x, )= n(") ||TV <e
Dny

Hence, for any (xy, v¢) € & x ), by the ergodicity of the adaptive MCMC {X,,},,

there exists some N > 0 suchthat n > N,
| Plxg,v0)(Xn € D)= (D) | < /2.
So, for (X, I},) € (Dg x ),

[Xn € DK] = [(Xn’ 1—‘n) € DK X y] = [Mg(Xn’ Fn) < M]

Hence,
Plrg,yo)Me(Xy, T,) > M)
< Plag.yo) (X Ty) € (D x Y)°)
= Blxg.10)(Xn € Pk)
<| ]P’(XO,VO)(XH e D) - (D) |+ n(Dy) < 8.
Therefore, Containment holds. O

Proof of Corollary 1. Using the same technique in Theorem 2, for large enough
M >0,

Plrg,yo) M (Xy, T,) > M)
< Plag.yo) (X Ty) € (D x Vi)%)
< Plagy0)(Xn € DF) + Pl )T € Vi)
< | Plag,vo)Xn € Dk ) = (D) |+ (D) + Py 40) (T € Vi)

Since {I, : n > 0} is bounded in probability, the result holds. O
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5.3. Proof of Proposition 3

First, we show that Diminishing Adaptation holds.

Lemma 2. For the adaptive chain {X, :n > 0} defined in Example 2, the
adaptation is diminishing.

Proof. For y =1, obviously the proposal density is g¢,(x, )= ¢(y - x),
where ¢(-) is the density function of standard normal distribution. For y = —1, the

random variable 1/x + Z, has the density ¢(y —1/x) so the random variable
1/(1/x + Z,,) has the density ¢,(x, y) = o(1/y - 1/x)/y*.

The proposal density

0 (x y):{cp(y—x), y=1,
Y’ o(/y =1/x)/»* v =-1.

For y =1, the acceptance rate is

(. m(y)g,(y, x) 1+ x?
mln[l, Wjﬂ(}/ eX)= )7 I(y > 0).

For y = —1, the acceptance rate is

1

/x -1 2
min{1, S iy € ) = minf1, 12 o0/ =13
wUxX)gy\x, ¥y l (P(l/y - l/x)/y2

+x2

I(y > 0)

-2

-2
= min| 1, I+ x I(y > 0).
1+y

So for y € ), the acceptance rate is

1+x2

my)ay (. x)]]I(y € X)= min(l, zy jﬂ(y e X). (30)
1+ y77

" m(x)qy (x, )

oy (x, y) = min(l

From equation (4), [, #T,;]=[X."1 <1/n]. Since the joint process

X,,T,):n >0} is atime inhomogeneous Markov chain,
n n g
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IP)(Fn # 1—‘nfl)

|
= xy IP>()(nn < 1/n‘)(n—l =x Ly = Y)P(Xn—l €dx,I; € dy)
J A

"y P(x,[t>0:¢"<1/n])P(X,_y €dx, T, €dy)

_ i
g [E P(x, [t >0:¢" <1/n))P(X,_; € dx,T,_| €dy),

where the second equality is from equation (1), and the last equality is from

IP’(X,I;” >1/n) = 1 implied by equation (4).

So forany (x, y)e[(t,s)e X x Y :¢* >21/(n—-1)],

Y

0 —x"+1/n
R[> 07 < 1) = [ 107 < Ymgy e )y = [ ol
Since —x" +1/(n-1) <0,
Lo < p (e le> 00 <yn) < %"). 31)
We have that
P, #I,;)< 32
Therefore, for any & > 0,
P(sup || B, (x, ) - kK, () lpy > &) <P, #T,_;) = 0. O

xeX

From equation (30), at the nth iteration, the acceptance rate is or , (X,—1, ¥,)
20

) + X, ~ r ~ r
= min| I, ——J=—|I(¥, > 0). Let us denote ¥, := ¥, "' and X, = X,". The
1+ Y21

acceptance rate is equal to

2
min| 1, “Lf; I(¥, > 0).
1+7,
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From equation (4), X1n = X, Tr11(x It < 1/n) + X n11(X 11 > 1/n). When ¥,

is accepted, i.e., X, =17,
[¥, <1/n] =[x <1/n] and X1n = YUY, < Yn)+ V1Y, > 1/n).

On the other hand, from equation (3), the conditional distribution Y, | X,_; is

N(Xn—lﬂ 1)‘

From the above discussion, the chain X := {)? , - n >0} can be constructed
according to the following procedure. Define the independent random variables

7, 9N (0, 1), U, 9 Bemoulli(0.5) and T, “ Unif(0, 1).

Let )N(O =X (1;0. At each time n > 1, define the variable

Y= X, = Uyl Z, [+ (1=U,)| Z, |. (33)

Clearly, -U,|Z, |+ (1-U,)| Z d N(O, 1 4 means equal in distribution).
y n n n n q

2
If T, < min{l, 1+ Xy

-1
1+7Y?2

)H(?n > 0), then

X, = 1T, <1n)i; + 17, = Yn)F: (34)

otherwise )N(n =X,

Note that:
1. The process X is a time inhomogeneous Markov chain.
2. P(X, 21/n)=1for n > 1.

3. At the time n, U, indicates the proposal direction (U, = 0: try to jump
towards infinity; U, = 1: try to jump towards zero). | Z, | specifies the step size if

the proposal value Y, is accepted. 7, is used to check whether the proposal value

Y, is accepted or not. When U, =1 and )7,, > 0, equation (34) is always run.

For two integers 0 <s <¢ and a process X and a set 4 c X, denote
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Xy €Al =[X; e 4 Xg;1€4;..; X, € A] and s:t:={s,s+1,..,1}. For a

value x € R, denote the largest integer less than x by [x].

In the following proofs for the example, we use the notation in the procedure of

constructing the process X:

) 1
Lemma 3. Let a = [% - 11%} . Given 0 < r <1, for [x] > IZE,
B(i e (k+1): (k + {7, B < /2| %y = n) < — 11 R
( [ 76[x]rJ [x]
2 n

Proof. The process X is generated through the underlying processes

{()71, Z;,U;,T;): j 21} defined in equation (33)-equation (34). Conditional on
[X, = x], we can construct an auxiliary chain B = {B ;1 J 2 kj that behaves like
an asymmetric random walk until X reaches below x/2, and B is always dominated
from above by X.

It is defined as that B, = X;; For j >k, if )N(j_l < x/2, then B; = )?j,
otherwise.

1. If proposing towards zero (U ;= 1), then B also jumps in the same direction

1+ X2
with the step size | Z i | (in this case, the acceptance rate min[l, —szlJ is equal
Y
to 1);
2. If proposing towards infinity (U; = 0), then B; is assigned the value

B +|Z;| (the jumping direction of B at the time j is same as X) with the

1+ (x/2)?

(independent of X i_1), i.e., for j > k,
L+ (x/2+] 2, |)? /

acceptance rate
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where

2
L(x)=U,z;|-0-U,) z, |H(Tj < (li/rz(i/f)z- I)ZJ' (36)
J

Note that

1.{Z;,U;, T; : j > k} areindependentso {/;(x): j > k} are independent.

2. When X -1 > x/2 and U ; = 0 (proposing towards infinity), the acceptance

2
T+ X5 1+ (x/2)?

/\»2 el 2 b
1472 1+ (/242 )

2 1+ X2
[Tj< L+ (x/2) zlclTJ-<—szl]
1+ (x/2+]Z; ) 1+7Y;

which is equivalent to [B; ~ B, | =| Z; || c [)?j - )?j—l =|Z; |]. Therefore, B is

rate 1 > so that

always dominated from above by X.
Conditional on [X; = x],
[Fiek+1):(k+[x]""), X; <x/2] < [Fiek+1):(k+[x]"), B < x/2]
and for i e (k +1): (k + [x]"™"),
[Bk:(l-_l) > x/2; B; < x/2]
t—1 i

c | B, > x/2; By - Z L(x)>x/2 forallt e (k+1):i; B, — Z L(x) < x/2|.
I1=k+1 I=k+1

So,

P3i e (k+1): (k+[x]""7"), X; < x/2| X, = x).

i
<P{3iek+1):(k+[x]") B, - Z 1;(x) < x/2|By = x
J=k+1
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<P( max S > x/2)
lelfx]'*"

= P(max §; > ql/(1+r)/2),
lelq

where Sy =0 and §; = lezllkﬂ-(x) and g = [x]"" {I,(x) k< j<k+1} and

By, are independent so that the right hand side of the above equation is independent

of k.

By some algebra,

2
0 < B[1,(x)] = %E[%} < %E[l Z, P +|7 ] < %

Var[l;(x)] = = +

E{| zfp 12l 2 }

1+ (x/2+]| Z; |)2

(g 1zPerz) |V .
3 (EL 2417, |)2D o1

Let y; = E[gl] and S; = §1 — u; and note that p; is increasing as / increases,

1
2

| —

and p, € [ , @} So {S;:i=1,.., q} is a Martingale. By Kolmogorov Maximal
T
Inequality,

P(max S, > ql/(Hr)/Z) < P(max S; > ql/(Hr)/Z —Hy)
lel:q leliq

gVar[Z; (x)]
- (ql/(1+r)/2 —uy )2

[x]l+r a

[M W2l T N

2 Jn
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1
1 —
— -
The last second inequality is from [x]>121-" > (%J ' implying [x] >
o 2
V2[x] 0
oo

Assume that X, converges weakly to m(-). Take some ¢ > 1 such that for the

set D = (1/c, ¢), n(D)=9/10. Takinga r € (0, 1), there exists

N> 2¢v 1217y L1 ol exp(

05 m)

(a is defined in Lemma 3) such that for any n > N +1, P(X, € D) > 0.8. Since
[X, € D] =[x e D] and X" £X, P(X, € D) > 038. So, IP()?,, > %) <02
for n > N.

1+r

Let m= exp(mj (n+1)—1 that implies m>n, m—-n<n

Then

1/r _ mr 1] = 1
(because n>2 eXp(O.Sqo(—C)VD’ and log( n+1) 08¢p(-c)’

m—1
= n Z = = 1 = n
j=n

From equation (33) and equation (34), [f’;H < %} = [)N(Hl = NL >0+ 1}
i+l
for any i > 1. Consider j € n : (m —1). Since X is a time inhomogeneous Markov

chain,

~ ~ 1 ~
P(Xj €eD; Y, ATEE X(jrtym > ”/2)

~ ~ ~ 1~
ZP(X] ED)P(X]_H :Yj+1 <m|X] GD)

o n, = .
IEJ{‘X(jJJ):m > E‘Xj“’l ==—>J +1j
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. = 1
=P(X; e D)IP{X]H ==

>j+l|)N(jeDJ
Jj+l

(1—IP{)~(, <n/2 forsomete(j+1):m|/\7j+1 :%>j+1D.
Jj+l

From equation (31), for any x € D,

P(?jﬂ <ﬁ|)?j = xj =R, {reX:t<1l/(j+1)})e [%’%}

So,

Hence, for x > j + 1,
}P’()N(t < n/2 for somete(j+1):m|)N(j+1 = x)
< P(X, < x/2 for somete(j+1):m|)?j+1 = x)

< P(X, < x/2 for somete(j+1):(j+[x]l+r)\/\~’j+1 =x)

1+r

because of x/2 > n/2, m—n<n"" and Lemma 3. Thus,

P[)?t < n/2 for somete(j+1):m|)?j+1 = ?1 >j+1]§ -
j+l n
Therefore,
m—1
P()?m > %j > 0.8@(—0)(1 - nl"_ erﬁ
j=n

1-r

> 0.8@(—0)(1 - nlL_j log((m + 1)/(n +1)) = (1 - HLJ > 0.5.

This gives a contradiction. By Lemma 2, Containment does not hold.
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5.4. Proof of Proposition 4

Fix xy € X, y¢ € Y. By the condition (iii) and the Borel-Cantelli Lemma,
Ve > 0, INy(xg, 79, €) > 0 such that Vi > Ny,

]P)(XO,YO)(FH =T, = ) >1- 8/2. (38)

Construct a new chain {X,, : n > 0} which satisfies that for n < Ny, X, = X,,, and

for n 2 Ny, X, ~ P]f]\;NO()?NO, -). So, for any n > N, and any set 4 € B(X), by
0

the condition (ii),
| IPj(xo,vo)(Xn €d Ty, == 1)~ IP)(xo,“/o)(X" e d)[=¢/2

Since the condition (i) holds, suppose that for some K >0, Y = {y, ..., yx }-
Denote p;(-) = P(Xo,vo)()?No €|y, = ;) for i =1, ..., K. Because of the condition

(i1), for n > Ny,
I[D(xo,vo)()?n € 4)

K
= ZP(XO’VO)(XH € 4, FNO = yl)
i=l1

K
-N,
= P (x0= dxl)"'P (xN -1 de )Pn. O(xN > A)
;“‘XNOQ[YN():%] 70 YNg-1 ¥ No oy 0

K
-N,
=D PBlguy) Ty = 2Pl 0 ().
i=1

By the condition (i), there exists N;(xq, Yo, & Ng) > 0 such that for n > Ny,

sup | ul-P; ()==() ||TV < g/2.
iefl,..,K} !

So, forany n > Ny + Ny, any 4 € B(X),

| IP)()C(),'yo)()(rl € A) - TC(A) |

<| ]P(XOaYO)(X” € d)- P(XO,VO)()?H €4)]|
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| Py o) (X € 4) = () |
< (g/2+¢/2)+¢/2 = 3¢/2.
Therefore, the adaptive MCMC {X,, : n > 0} is ergodic. O

5.5. Proofs of Subsection 2.3
First, we recall a previous result of [28, Theorem 5].

Proposition 7 ([28]). Let P(x, dy) be a Markov kernel on the state space X.
Suppose there is a set C < X, & >0, some integer m >0, and a probability

measure v,, on X such that

P"(x,) > 8v,,(") for x e C.

Suppose further that there exist 0 <A <1, b >0, and a function h: X x X —
[1, o) such that

E[a(Xy, 1) Xg = x, Yy = y] < Mh(x, ) + bLeye((x, ).

Let A= sup(y yyecxe BI(X,y, V)Xo = x, Yo = y], wi=L(Xo) be the initial

distribution, and T be the stationary distribution. Then for any integer j > 0,
| £X0) = 7y < (=S a2 TR (X, Yo
We now proceed to the proofs for this section.

Proof of Theorem 3. Let {X"):n >0} and {¥\") : n > 0} be two realizations
of P, for y € Y. Define h(x, y) = (V(x) + ¥V(y))/2. From (ii) of S.G.E.,

B, YO X = 5 ¥ = y]< MG, ) + Blleee (v, ).
It is not difficult to get PV (x) < A"V (x) + bm so
4= SUp(y y)ecxC E[a(x (), Y,g,Y))\X(()V) =x, YO(Y) = y] < X" supc V + bm = B.
Consider £(X (()Y)) = 8, and j = v/n. By Proposition 7,

| B2, ) = ) oy < (1= S/ qndmme pdnt () nry) /2. (39)
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Note that the quantitative bound is dependent on x, n, o, m, C, V and =, and

independent of y. As n goes to infinity, the uniform quantitative bound of all

| B (x, ) = n(-) |y tends to zero for any x € X.

Let {X, : n = 0} be the adaptive MCMC satisfying S.G.E. From (ii) of S.G.E.,
sup,, B[V (X,)| Xy = x, Ty = yo] < o so the process {V/'(X,):n >0} is bounded
in probability. Therefore, for any & >0, {M.(X,,[,):n>0} is bounded in
probability given any X, = x and Iy = y,. O

Proof of Corollary 2. From equation (6), letting

P,V (x)

A = lim Sup‘ x‘_x)o Supyey W < 1,

PV(x) a+1
vy AT
7 (X) < 3 for|x|>K.

By V' >1, BV(x)< %V(x) for | x| > K. BV (x)< %V(x) By - <) (%),

there exists some positive constant K such that sup, <y

where b = SUPxe{zeX1| z |<K} V(x). O

5.6. Proof of Theorem 5

The theorem follows from Theorem 8, Theorem 9, Theorem 10 and Lemma 4.
Theorem 10 shows that {¥'(X,): n > 0} in the case (iii) is bounded in probability.

The case (iii) is a special case of S.P.E. with ¢ =1 so that the uniform quantitative

bound of | P'(x, -) = n() |y for v € Y exists.

Lemma 4. Suppose that the family {P, :y € Y} is S.P.E. If the stochastic

process {V;(X,):n =0} is bounded in probability for some [ €], ..., q}, then

Containment is satisfied.
Proof. We use the notation in Theorem 4.
From S.P.E., for ye Y, let p, (dy)=3v,(dy) (sop, (X)=3) and

A=CxC. So, e =¢ =38.
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Note that the matrix 7 — A,S? ) is a lower triangle matrix. Denote (7 — A,S? ))_1
= 0P o0,

By the definition of Bl(ﬁ)(x, n),

&Y @ )
Ston+t-mf+) U+ mm(sa, j+ 1P -5 )

jzn+l-m

BI(B)(x, n) =

S SUntl-mP S n+1-m) 4 szﬁ)jn(dy)W,P(x, 7).

By some algebra, for £k =1, ..., ¢

k-1

B
LGSR {m(Vo)Hai] 78 (o) + =P, (40)
i=0

because B € (0, 1]. In addition, m(V;)) > ¢y so the coefficient of the second term on

the right hand side is finite.

AP 1

. . . ®) _ —_—
By induction, we obtain that by (- Ar(y?) (0))2 1— A,g?)(O)' It

is easy to check that 0 < b(B) E

By some algebra,

APO P+ sup Rl )R TP )
(x,x")eCxC

< b4 o (agm(Vo)) (B VP (x) + BV ()]
x,x")eCxC

< mP + 1+ 2(agm(Vy)) P (sup ¥ (x) + mby),
xeC

because PY'"VIl3 (x) < P"Vi(x) < Vi(x) + mby. Therefore, bl(g) is bounded from the

above by some value independent of y.



36 YAN BAIL, GARETH O. ROBERTS and JEFFREY S. ROSENTHAL

B, m) < ——2

= il mP 16_ o OE(C) + 51+ (agm(7)) P (7P (x) + =P ).

Therefore, the boundedness of the process {/;(X}): k > 0} implies that the random

sequence Bl(B)(X 2> 1) converges to zero uniformly on X" in probability. Containment

holds. O

Let {Z_]- : j > 0} be an adaptive sequence of positive random variables. For
each j, Z; will denote a fixed Borel measurable function of X ;. 1, will denote any
stopping time starting from time n of the process {X; :i >0}, ie., [1, =i]c

o(X;:k=1.,n+i)and P(1, <o) =1,
Lemma S (Dynkin’s formula for adaptive MCMC). For m > 0 and n > 0,

Tm,n

]E‘[Z?mjn | X 1Hm] =Zy+E Z(E[Zmﬂ' |-7:m+i—1] = Zpsi)| Xy Ty |
i=1

where 7,

m,n = min(n, T, inf(k > 0:Z, ., > n)).

Proof.

Tm,n

n
Z?m,n =Ly + Z(Zmﬂ' ~Zpii1) = Zy + ZH(Fm,n 2 i) (Zpsi = Zpyic1)-
i=1 i=1

Since T, , =i is measurable to F,,; |,

E[Z?m’n | X s rm]

[ n
= Zm +E ZE[ZmH - Zm+i—1 |‘7:m+i—1]]1(?m,n 2 i)|Xm9 l—‘m
Li=1

Tm,n

=Z,+E Z(E[Zeri |~7:m+i71] - Zm+i71)|Xm» Ly | U
i=1
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Lemma 6. (Comparison lemma for adaptive MCMC). Suppose that there exist
two sequences of positive functions {s Stz 0} on X such that

BIZjnlFil<Z; - (X)) +5,;(X ;). (41)

Then for a stopping time t, starting from the time n of the adaptive MCMC
{X;:i>0},

T,-1 T,—1
E an+‘/(Xn+j)|Xn’ 1—‘n < Zn(Xn) +E an+j(Xn+j)‘ Xm Fn :
J=0 Jj=0
Proof. From Lemma 5 and equation (41), the result can be obtained. ]

The following proposition shows the relations between the moments of the
hitting time and the test function V/-modulated moments for adaptive MCMC
algorithms with S.P.E., which is derived from the result for Markov chain in [17,
Theorem 3.2]. Define the first return time and the ith return time to the set C from
the time n, respectively:

Tyc =Ty c(l)=mintk > 1: X, .4 € C} (42)

and

T, (i) = min{k > 1, (i =1): X,y € C} for n >0 and i > 1. (43)

Proposition 8. Consider an adaptive MCMC {X; :i > 0} with the adaptive
parameter {T; :i > 0}. If the family {P, :y € Y} is S.P.E., then there exist some

constants {d; : i =0, ..., g — 1} such that at the time n, for k =1, ..., q,

k n, ]
¢y B[t | X,.T,] S
q ”k nn <E (l + 1) Vq_k(Xn+i)|Xn’ Fn

i=0

k
< dg i V() + D by Te(X,) |,

i=1
where the test functions {V;(-):i =0, ..., q}, the set C, {c; :i=0,..,q—1} and
{bj :i=0, .., q—1} are defined in the S.P.E..
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Proof.
Tn,C_1

- ™, C p_ -
Z(i+1)klzj K lae = k71
i=0 0 ,

Since V,_x(x) 2 ¢,y on X,

T
n,C
. k-1 Co—k
E Z (l+1) Vq—k(Xn+[)|anrn 2 qk E[Tﬁ,C|Xnarn]' (44)
i=0
So, the first inequality holds.
Consider k£ = 1. By S.P.E. and Lemma 6,
n,C_1
E Z Vq—l(Xn+i)|Xna Fn < Vq(Xn)+ bq—IHC(Xn)- (45)
i=0

So, the case k =1 of the second inequality of the result holds.

For i > 0, by S.P.E,,
N | k-1
E[(’ + 1) Vq—k+1(Xn+i+1)|Xn+i» rn+z’] -1 Vq—k+1(Xn+i)
. k-1 k-1
< (l + 1) (Vq—k+1 (Xn+i) - Vq—k(Xn+i) + bq—kHC(Xn+i )) -1 Vq—k+1(Xn+i)
<+ )Y (X)) + A2V (X)) + D by T (X,0))
= q—k\ A n+i q—k+1\2 n+i q—k *C\* n+i
for some positive d independent of i.

By Lemma 6,

T 1

n,C~
: k-1
E Z (l+1) quk(XnJri)‘Xn’rn
i=0

n,C_1

< dE Z i(k_l)_qu—(k—l)(XnHNan Ly |+ by Ie(X). (46)

=

T
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From the above equation, by induction, the second inequality of the result

holds. O

Theorem 8. Suppose that the family {\P, :y € Y} is S.P.E. for q > 2. Then
Containment holds.

Proof. For k =1, ..., g, take large enough M > 0 such that C < {x : V,_;(x)

< M},

n

Py y0) Vot (X)) > M) = ZIP(XOJO)(VCI_,{(X,,) >M, v c>n—i, X; €C)
i=0
+ P(XO,VO)(Vq—k(Xn) > M, To,c > 1, XO & C)

By Proposition 8, for i = 0, ..., n,

P(x0770)(Vq_k(Xn) > M, Ti.C >n— l|Xl € C)

T -1
i,C
. k—1 k-1
<Pl DO U+ Wk (Xiy) > (=0 '
j=0
n—i—1
+ ¢y i Z (j+l)k_1, T,c>n-i|lX;eC
Jj=0
fic! n—i-1
. k-1 Nk—1 . k—1
<Pl DUV TV (X)) > (= M ey Y G+ X eC
j=0 j=0

Tl kel
SUPxeC E(xo,yo)[E(xo,yo)[zjig U+ Vq—k(Xi-#j)‘Xia Ti:||Xi = x:l
< .

- k-1 n—i-1 k-1
- M +1
(=M ey G+

k
dya{spacc 70+ Y by le)
. |

- k-1 n=i=l o f
(n-0)"M+ cq_ijzo (j+1)
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and

dya{ V) + by leo)

P(XOaYO)(quk(Xn) > M, TO,C > n‘XO & C) < k_lM ol ( . l)k_l
+ E +
n Cq_k =0 ]

By simple algebra,
n—i-l1
k-1 . k-l k-1 .
(=M g DG )T =0 = i) TN M + ey (0= 1),
J=0
Therefore,

P(xo,YO)(Vq—k(Xn) > M)

k
<dyp| sup Vy(x)+ qu_j
xeCU{xq} =

. Zn: ]P)(xo,Yo)(Xi e () 8Cc(xO)

. 47
(n—iY'(M + cq—i(n = 1)) ’ n* Y+ Cq—ich) @7

i=0

Whenever ¢ > 2, k can be chosen as 2. While k£ > 2, the summation of
L.H.S. of equation (47) is finite given M. But if g =2, then just the process
{Vo(X,)) : n > 0} is bounded probability so that ¢ > 2 is required for the result.
Hence, taking large enough M > 0, the probability will be small enough. So, the
sequence {V,_»(X,):n > 0} is bounded in probability. By Lemma 4, Containment

holds. O

Remark 20. In the proof, only (A3) is used.

Remark 21. If ¥}, is a “nice” non-decreasing function of /], then the sequence
{ri(X,): n >0} is bounded in probability. In Theorem 10, we discuss this situation

for certain simultaneously single polynomial drift condition.

Theorem 9. Suppose that P, :y € Y} is S.P.E. for q = 2. Suppose that there

exists a strictly increasing function f: R — RY such that Vi(x) < f(Vy(x)) for

all x € X. Then Containment is implied.
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Proof. From equation (47), we have that {/;(X,):n >0} is bounded in
probability. Since Vj(x) < f(Vp(x)),

Plxg.yo)V1(X0) > f(M)) < Py ) (f(Fo(X,) > £(M))
= P(ry,y0) V0 (X)) > M),

because f(-) is strictly increasing. By the boundedness of V,(X,,), for any & > 0,
there exists N >0 and some M >0 such that for n> N, P . (1(X,)>

f(M)) < & Therefore, {V;(X,):n >0} is bounded in probability. By Lemma 4,

Containment is satisfied. g
Consider the single polynomial drift condition, see [17]. PJV(x)-V(x)<

—cV*(x) + blo(x), where 0 < a < 1. Because the moments of the hitting time to
the set C is (see details in [17]), forany 1 < & <1/(1 - a),
Tl

E D G+ )~V (X) | < P (x) + ble(x).
i=0

The polynomial rate function r(n) = nSUIf o = 0, then r(n) is a constant. Under

this situation, it is difficult to utilize the technique in Theorem 8 to prove
{V(X,): n > 0} is bounded in probability. Thus, we assume o € (0, 1).

Proposition 9. Consider an adaptive MCMC {X,, : n > 0} with an adaptive
scheme {T, :n > 0}. Suppose that (Al) holds, and there exist some positive
constants ¢ >0, b>0, oe(0,1), and a measurable function V(x): X — R+
with V(x) =1 and sup V(x) < o such that

xeC
BV(x)=V(x) < —cV*(x) + blc(x) for y € Y. (48)
Then for 1 <& <1/(1-a),

T —
n,C 1

E(XOaYO) Z (i + 1)5371 Vl_a(l_a)(xn+i)| Xna rn < Cé(C) (V(Xn) + 1) (49)
i=0
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Proof. The proof applies the techniques in Lemma 3.5 and Theorem 3.6 of
[17]. O

Theorem 10. Suppose that (A2) and the conditions in Proposition 9 are
satisfied, and there exists some constant b' > b such that cVo‘(x)]ICC > b for all
x € X. Then Containment is implied.

Proof. Using the same techniques in Theorem 8, we have that

Py )V (X,) > M)

n ID(X(),’Y())(Xi € C) + 6CC (XO) J (50)
=0 (n =5 (M +n—i) 5N (M +n)

< ¢ (SUPxecUpy) V(¥) + 1)(2

Therefore, for & € [1, 1/(1—a.)), the sequence {Vl_é’(l_a)(X »):n >0} is bounded
in probability. Since 1-§&(1—a) > 0, the process {/(X,):n > 0} is bounded in
probability. By Lemma 4, Containment holds. ]
5.7. Proof of Theorem 6

Before we prove Theorem 6, we recall [16, Lemma 4.2].

Lemma 7. Let x and z be two distinct points in R, and let & = n(x — z). If

(&, m(y)) # 0 for all y on the line from x to z, then z does not belong to
v e R? s n(y) = n(x)}.

Consider the test function V(x) = cn*(x) for some ¢ > 0 and s € (0, 1) such

that ¥ (x) > 1. By some algebra,

B =] [4] ,(Ina(de)

(x + z)

1-s
+ IR(x)_X (1 _mxtz) m (x4 Z)qu(z)pd(dz),

) AT
where the acceptance region A(x):={y € X|n(y)> n(x)}, and the potential
rejection region R(x) = {y € X|n(y) < n(x)}. From [21, Proposition 3], we have

PYV(x) < r(s)V(x), where r(s) =1+ s(1 - S)—1+1/s.
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Proposition 10. Suppose that the target density 7t is exponentially tailed. Under
Assumptions 1-4, Containment holds.

Proof. Note that it is not difficult to check that for s € (0, 1), n(V) <o by

utilizing Definition 2.

Consider s € [0, 1/2). Under Assumption 4, let

h(a, s)=7'(s) +

1
(1)

[0

inf

TS o L s 7 = @t
u,y)e X S,AM,S

and
S
H(a, s) =1+ I h(a, £)dt,
0

where g, B, 3, A and Cs A(-, -) are defined in Assumption 4. So, H(Be/3,0)=1 and

O0H(Be/3,0) _
— - h(BS/3, 0)

-1
<e! +I—M inf J‘ | 2]qy(2)pq(dz) < 0.
(u,7)es 1<y ¥ G5, a(u2)

Therefore, there exists sq € (0, 1/2) such that H(Be/3, s¢) < 1.

Denote C(x) = x — Cs s (n(x), &) and Cl(x)=x+ Cs, a(n(x), €). For | x| > 2A
and y e C(x)UCT(x), |y]2]x|-A=A so|n(y)-n(x)|< g3
Since the target density n(-) is exponentially tailed and Assumption 2, for

sufficiently large |x|> K; with some Kj >2A, (n(x), Vlogn(x)) <—B and

(n(x), m(x)) < —e. Then there exists some K, > Kj such that for |x|2 K,,

(n(v), m(y)) < =& for y € C(x)UC (x). Thus, |V logn(y)| = <"((fz)<’y?2%f>(>y !

> [3. Moreover, y = x + a& forsome 6 < a < A and § € s4-1, So,
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(€ m(»)) = (€ = n(x), m(y)) + (n(x) = n(y), m(y)) + (n(y), m(y)) < =&/3. (1)

Hence, by Lemma 7, for | x | > K>,
Cx)N{y e R? . (y) = n(x)} = J and CT(x) N{ye R? . (y) = n(x)} = &.
For y = x+af e C' (x),
w3 =) = (6 Valx+ @) a
- j : (& n(Va(x + ©)| Valx + &) |dr

g a
<——J. | Va(x +¢€) |dt <0
2Jo

so that C' (x) = R(x). Similarly, C(x) = A(x).

Consider the test function ¥ (x) = et *0(x) for some ¢ > 0 such that V(x) > 1.

By Assumption 1, for any compact set C = RY, sup V(x) < .
xeC

For any sequence {x, : n > 0} with |x, | —> oo, there exists some N > 0 such

that n > N, |x,|> K,. We have

Xp5S0 (Z) qy (Z) Hq (dZ)

PV(x,)/V(x,) = 1
Gl J (€G3 UICT ()}

+ I, (2)q,(z)py(dz),
I{C(xn)—xn}fn{c%)—x,,}c oo (247 (MHa ()

where

0 (x,)

ze Alx,)—x
0 (x, + z) ’ " "

I 5 (2) =
0 _nlx, +2) rl %0 (x, +2)

") ()

, ze€R(x,)-x,
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For z=at e C'(x,)—x, and ¢ (0, |z]), by equation (51),
(&, Vlog n(x, + ) = (& m(x, + )] V log n(x, +1£)] < ~eB/3.

So, by Assumption 4,

TE(xn + Z) _ elog n(x,+z)-log n(x,)
n(x,)

|z]
0 (&, Vlog n(x,+&)) dt < e—ﬁs‘z /3 < e—B85/3 < e_l,

Similarly, for z = —a& € C(x,) — x,,,

M < e‘ﬁa‘ z|/3 < e—l
m(x, +z) " -

1-s . . . .
t %0 —¢ is an increasing function

_ 1 .
7750 < {750 ¢, Since t —
I—SO I—SO

Iy s d
I{C(xn )_xn }U{CT (Xn )_xn } n>°0 (Z) qy (Z) Hg ( Z)

L -soBel 2 1/3
< - %0 d
J.C(xn)xn l_SO qY(Z)ud( Z)

—Be| z 1 —(1-s0)Be| z
(1o 18 g ey ),

+
ICT (xn )_xn
On the other hand,

- Ay s (Z)q (Z)}l (dz)
JA{C(’Cn )_xn }L ﬂ{CT (Xn )—xn }" n>°0 Y d

< r(SO)Qy({C(xn) X }C N {CT(xn) - xn}c)'
Define

el Z‘qy(z)ud(dz) - ICT(X)—x e Z‘qy(z)ud(dz)

Ky () = I

C(x)-x
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and
H, ,(6,1):= K)lc+(:e) + K, ,(0)- K, ,(0)+ M +r(t)(1-2K, ,(0)).
So,

PyV(xn )/V(xn) < Hx”,y(ﬁg/3s SO)'
Clearly, K, ,(¢) <1/2. For 0 < <1/2,

oH , (6, 1)
ot

Ky (00)+ K, ,(0(1— 1))
(-0

=r()(1-2K, ,(0))+ +7 > 7 (K y (00) = Ko (B(1 = 1))

1o 2| —801-1)z
T T e Dl g e

<)+

< h(0, 1).
Since H,,(0,0)=1, H,,(6,¢)<H(0,¢) for 0<r<1/2. Thus, H, ,(Be/3,s0)<

H(Be/3, s¢) < 1 so limsup sup ——= < 1. By Corollary 2, Containment holds. [J

PV (x)
| x| >0 yey V(x)
Remark 22. Jarner and Hansen [16] showed that if under Assumption 2
the target density is lighter-than-exponential tailed, then the random-walk-based
Metropolis algorithms are geometrically ergodic. The technique in Proposition 10
can be also applied to MCMC. So, even if the target density is exponentially tailed
under some moment condition similar as equation (22), any random-walk-based
Metropolis algorithm is still geometrically ergodic. In fact, our symmetry assumption

(q(x, y) = g(x — y) = g(y — x)) is a little weaker than the assumption (¢(x, y) =
q( x - y|)) of [16].

Proof of Theorem 6. For (ii), by Proposition 10, Containment holds. Then

ergodicity is implied by Containment and Diminishing Adaptation.

For (i), from Assumption 3, for any & (0, n;) and any u € S9!,
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| 2]q,(2)nq(dz) > LCVOl(C@éz,g(u, s))’

J.Cg/z’g(u,a)

where o is defined in equation (20), ¢ is defined in Assumption 3, C, (-, -) is

defined in equation (21). The right hand side of the above equation is positive and
independent of y and u. Since target density is lighter-than-exponentially tailed,

Ny = —limsup| |0, (n(x), Vlog m(x)) = +oo such that there is some sufficiently
large B such that equation (22) holds. So, Assumption 4 is satisfied.

For (iii), adopting the proof of [12, Theorem 5], we will show that the
simultaneous drift condition given by (14) holds. Denote

R(g. x, y) = g(v) - g(x) = (Vg(x), y - x).
Consider the test function V(x):=1+ f*(x), where f(x):=-logn(x) for

2 l<s< min(z, 3 2), where m is defined in Definition 3.
m m’ m

So,

4
PV )=V (@)= Bf ()= £ (x) = Y 1;(x7),

Jj=0

where M is defined in Assumption 5 and

Io(x, 7) = =97 (%) V/ (%) |2J (m(x), n(2)*] 2 P q,(2) ma),

R(x)—xN{| z |<M}

nixv)= |

R(fsa X, x + Z)qy(z)ud(dz)a
{|z|<M}

_ s R(m, x, x + z)
(e y)= IR(x)—xﬂ{ z \SM}R(f % x+2) m(x) T (2)ualdz).

1) = | R(fS, x, %+ 2)(Vf(x), 2) g, (z)ng(d),

R(x)-xN{ z|<M}

)= | R 322 (9750, 2}y (D).

R(x)-xN{| z |<M }
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By [12, Lemma B.4] and Assumption 5,
-2 2)-4
| ()= 0(x™72), [ L(x y)] = 0 x["6F2H),

s+1)-3 s+2)-3
| 5(e 1) = 00 x "), |y )] = 0( x0T,
Note that the O(-)s in the above equations are independent of y. Since % -1<

s < min(%,%—Z), [ 1i(x, )|, | 12(x, )|, | 13(x, y)| and | I4(x, )| converge to

zero as | x| — oo,

By Assumption 2, for €€ (0,n;) (n; is defined in equation (19)),
(n(x), m(x)) < —& as | x| is sufficiently large. By Assumption 3, for sufficiently

large | x|, forany z € Cy ((n(x), &) (C is defined in Assumption 3, v is defined in

equation (20), and C. (-, -) is defined in equation (21)),
-1 < (m(x), n(z))y = (m(x), n(x)) + (m(x), n(z) - n(x)) < —¢ + ¢/3.

Thus,

2
z|"nq(dz)
Co,g("(x),ﬁ)l P

2 ps—1 2
[O(x’ ,Y) <_ 4e s/ (;)l Vf(x)l I

=—af WP < e )
for some ¢ > 0 (independent of x), where C ((n(x), &) = Cy ¢(u, ) for any
ue S
So, there exist some K >0 and some c¢3 >0 such that V(x)>1.1 and
PV (x)=V(x) < =3 *(x) for | x| > K, some o € (0, 1). Let
V(x)=V()I(| x| > K)+1( x| < K).
So,

P, V(x)=V(x) < =3/ *(x) + 31(] x| < K).

Hence, by Theorem 5, Containment holds. O
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5.8. Proof of Proposition S

Note that in the proof of Theorem 6, some test function V'(x) = ern™*(x) for some

s € (0, 1) and some ¢ > 0 is found such that S.G.E. holds.

To check Diminishing Adaptation, it is sufficient to check that both
1%, -2, and | X, - X, || converge to zero in probability, where ||-|,, is

matrix norm.

We compute by standard algebraic manipulation that

n—1

1 T 1 1 T

Zn_zn—l = n+1Xan _n—l[gi XiX; ]
i=0

2n = 1 = =
+ » _an—l it —m(XanT—l + X, X)),
Hence,
" Zn _zn—l "M
1 1|1~ 20 = =
< ot )5 2y YT | T Xy
1 — - —
1 XX+ Xa Xy (52)

Indent to prove >, —>,_; converges to zero in probability, it is sufficient to check
1 n—1 T
W D XX

are bounded in probability.

bt X, 1y

" | X1 X, 1 [l and | X, X, + X, 01X, [,

Since limsup(n(x), V log n(x)) < 0, there exist some K > 0 and some 3 > 0
| x|>

such that

sup (n(x), Vlogr(x)) < —P.
| x|2K

For |x|= K, logn(y) —logm(x)

G )

ni(x)

< —B, where » > 1 and y =rx, i.e., (
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r=1
> M. Taking xo € R? with | xq |= K,

V(x)= Cﬂ_s(xO)(M)_s s a1

m(xo)
for x = rxy, r>1, and a = | il‘lf 7 *(y) > 0, because of Assumption 1. If r > 2,
VI|£K

r—1

then > 0.5. Therefore, as | x| is extremely large, ¥'(x) > | x |*. We know that

sup, E[V(X,)] < o (see Theorem 18 in [23]).
Since

| X, %, [y = ‘S“‘P ' X, X, u < ‘SU‘P lulPlx, <] X, [,
u =1 ul=1

| X, X, |, isbounded in probability.

Obviously,

n—1
1 Z T
W X X;
i=0

n—1
1
< § | XX |y,
M i=0

Then, for K > 0,

n-l n—1
1 T 11 T
ﬂ;}ﬂ&&|W>K}sE; Bl XX, |,
i=0 i=0
Bhe 1
2
<= 1< —
- K n E[l Xl | ]— K Sup E[V(Xn)]
i=0 n
1 -1 T . . .
Hence, o XiXi ‘ is bounded in probability.
- M

= 1
PAEEE YR AR

n
= 1 1 1
< - A< —
P, 1> K% ey B ) s (X, )
=

| X,y | is bounded in probability. Hence, | X, X,y [, is bounded in probability.
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Finally,
| XXt + Xna Xy g <20 %, [ Xy |
Therefore, | X, X,_ + X,_1 X, ||, is bounded in probability. O
5.9. Proof of Lemma 1

For u € Sd_l,

A
_ d
J‘C&A(u, 8)|Z|g(|z|)uaz(d2) = J-s g(t)t dtJ‘ o(dE),

{ees? ™! e-u |<e/3}
where o(-) denotes the surface measure on § -1

By the symmetry of u e S9!, let u=e; =(0, ..., 0,1). So, the projection
——
d-1
from the piece {& e S9! : | & —u| < &/3} of the hypersphere 597 to the subspace

RY"" generated by the first d — 1 coordinates is d — 1 hyperball Bd_l(O, r) with

the center 0 and the radius » = —\/36 — &2, Define f(z)= \/1 —(zF++ 25_1):

o({g e 897 E—u| < g/3})

:-[Bdl(o )\/1+|Vf Pdzy -dzy_
,

d- d
(d—])T r d—2 (d—l)TcT (d—l 1]
d Bez y = |
0 _ d+1 r 2 2
( j Jl 2r(_2)
Hence,
d-1
(d-Dn 2 (d—l 1) A
“) = B > dr. (53
T R
2

Therefore, the result holds. O
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5.10. Proof of Proposition 6

We compute that Vr(x) = —An(x)n(x). So, (n(x), Vlegn(x))=-A and
(n(x), m(x)) = —1. So, the target density is exponentially tailed, and Assumptions 1

and 2 hold. Obviously, each proposal density is locally positive. Now, let us check
Assumption 4 by using Lemma 1. Because

d
Alr2

dl“(% + 1)

the function g(¢) defined in Lemma 1 is equal to

Vol(BY(x, A)) =

+. n; defined in
Vol(B9 (x, A))

equation (18) and m, defined in equation (19) are, respectively, A and 1. Now, fix

any € € (0,1) andany 8 e (%, Ooj' The left hand side of equation (26) is

d-1
(d-m 2 (d—l lj Ay
—(de Berz 7% .[5 g(®)tdr
2T

2

d+1
. dd-D B(%%)A(l%J

2d + l)Be(T+, 5) A

where Be(x, y) and Be,(x, y) are beta function and incomplete beta function, r is

a function of € defined in Lemma 1.

Once fixed € and 9, the first two terms in the right hand side of the above
equation is fixed. Then, as A goes to infinity, the whole equation tends to infinity.
So, there exists a large enough A > 0 such that equation (26) holds. By Lemma 1,
Assumption 4 holds. Then, by Proposition 10, Containment holds. By Proposition 5,
Diminishing Adaptation holds. By Theorem 1, the adaptive Metropolis algorithm is
ergodic. ]
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