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Abstract 

Let { }NxxxX ...,,, 21=  be a collection and ∗
rNS ,  be the set of all         

r-combinations of distinct elements of X. Let Y be any nonempty 

subset  of  X with cardinality k and let ∗
krNS ,,  be the set of all ∗

rNS ,  

that  contains Y. We extend the Bayer’s Theorem to the class of sets 
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{ }NrSS rN ...,,2,1;, == ∗∗  which is more general and give an explicit 

formula for practical purposes. 

1. Introduction and Preliminaries 

Let ;∅≠X  ( ) ,NXn =  i.e., { }NxxxX ...,,, 21=  and let rNS ,  and ∗
rNS ,  be 

the sets of all r-permutations and r-combinations of distinct elements of X. Let 

;XY ⊂  ( ) ,kYn =  i.e., { }kyyyY ...,,, 21=  and let ∗
krNS ,,  and krNS ,,  be the 

sets of all elements of ∗
rNS ,  and rNS ,  that contain Y (completely if kr ≥  and 

partly if .)kr <  In contrast, let ∗
−1,, krNS  and 1,, −krNS  be the sets of all elements 

of ∗
rNS ,  and rNS ,  that do not contain Y. Then we define { }NrSS rN ...,,2,1;, == ∗∗  

and { }....,,2,1;, NrSS rN ==  

Observe that 

{ } ,0,0,
∗=∅= NN SS  

{ }{ },;;1,1, XxxXSXS NN ∈=== ∗∗∗  

{ }{ }.;;,1,,1, YyyYSYS kNkN ∈=== ∗∗∗  

Let U be the random variable corresponding to an event of ( )krNkrN SS ,,,,
∗  

chosen randomly. Then the probability of picking ∗∈ krNSu ,,  is given by 

( )
( )

( )

( )
.

,

,,

,

,,
∗

∗

==
rN

krN

rN

krN
u

Sn

Sn
Sn
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Similarly, let V be the random variable corresponding to an event of 

( )1,,1,, −
∗

− krNkrN SS  chosen randomly. Then the probability of picking ∈v  

∗
−1,, krNS  is given by 
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Observe that 

( ) ( ) ( ).,1,,,,
∗∗

−
∗ =+ rNkrNkrN SnSnSn  

Hence, it is easy to see that .1=+ vu qp  

Theorem 1.1. Let NAAA ...,,, 21  be a finite set of events of a sample S. Then 

( ) ( ) ( ) ( ).1
1 1

21
1

1
∑ ∑
≤≤ ≤≤≤

+

=

−++−=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Ni Nji
N

N
jii

N

i
i AAAPAAPAPAP ∩"∩∩"∩∪  (1) 

Proof. It suffices to prove that the following equation holds (where ( )An  

denotes the cardinality of A): 

 ( ) ( ) ( ) ( ).1
1 1

21
1

1
∑ ∑
≤≤ ≤≤≤

+

=

−++−=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Ni Nji
N

N
jii

N

i
i AAAnAAnAnAn ∩"∩∩"∩∪  (2) 

So from (2) above, we observe that ( )NiAa i ...,,2,1=∈  will be counted 

( )∑
≤≤

⎟
⎠
⎞

⎜
⎝
⎛

Ni
iAn

N

1

,intimes
1

 

( ) ( )∑
≤≤≤

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

Nji
Nji AAAn

N
N

AAn
N

1
21 .intimes...,,intimes

2
∩"∩∩∩  

Thus, the number of times ‘a’ is counted on the right hand side ( )RHSan  is given by 

( ) ( )∑
=

+ =⎟
⎠
⎞

⎜
⎝
⎛−=

N

k

k
a k

N
n

1

1 11RHS  

which is the desired result. Now, the result follows by the definition of relative 
frequency probability. 

Definition 1.2. Let NAAA ...,,, 21  be a finite set of events of a sample S such 

that ( ) ,0≥iAP  ....,,2,1 Ni =∀  Then the events are said to be 

  (i) dependent if 
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 (ii) independent if 

( )∏
==

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ N

i
i

N

i
i ApAP

11

,∩  

(iii) exhaustive if 

,1
1

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=
∪
N

i
iAP  

(iv) mutually exclusive if 

( ) ....,,2,1,,,0 NjijiAAP ji =≠∀=∩  

Lemma 1.3. Let NAAA ...,,, 21  be a finite collection of mutually exclusive and 

exhaustive events with ( ) ,0>iAP  ....,,2,1 Ni =∀  Then for any other event B, 

such that ( ) ,0>iAP  

( ) ( ) ( )

( ) ( )
....,,2,1,

1

Nk
ABPAP

ABPAPBAP N

i ii

kk
k ==

∑ =

 

Lemma 1.4. Let { }....,,, 21 NxxxX =  Then the number of r-permutations and 

r-combinations of N distinct elements of X with the inclusion of a fixed k-number of 
elements of XY ⊂  is 

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧
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−
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,

,
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krif
r
k

krif
kr
kN

Sn krN  

where 

( ) ( ).! ,,,,
∗= krNkrN SnrSn  

Lemma 1.5. Let { }....,,, 21 NxxxX =  Then the number of r-permutations and 

r-combinations of N distinct elements of X with the non-inclusion of a fixed 
k-number of elements of XY ⊂  is 
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( )
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where 

( ) ( ).! 1,,1,,
∗

−− = krNkrN SnrSn  

2. Main Results 

At this juncture, we are ready to give an explicit formula on the extension of 

Bayer’s Theorem on the set (sample) ∗S  containing all r-combinations of distinct 
elements of X. 

Theorem 2.1. Let { }NxxxX ...,,, 21=  and Y be a subset of X such that 

( ) .kYn =  Then for any ∗⊂ SB  partitioned by ( ),...,,2,1, NrS rN =∗  

 ( )
( ) ( )

( ) ( )
....,,2,1,

1 ,,

,,
, Nr

SBPSP

SBPSP
BSP N

i tNtN

rNrN
rN ==

∑ =
∗∗

∗∗
∗  (3) 

Proof. By the definition, { }....,,2,1;, NrSS rN == ∗∗  

It is easy to see that ,,, ∅=∗∗
ji rNrN SS ∩  ,ji ≠∀  hence, ∗S  is a collection of 

pair-wise disjoint sets so that we can write 

.,∪N

ir rNSS
=

∗∗ =  

Hence, the collections ( )NrS rN ...,,2,1, =∗  are of mutually exclusive and 

exhaustive events. Elements of the set ∗⊂ SB  are generated by XY ⊂  in ,,
∗

rNS  

that is, B contains element(s) of ∗
rNS ,  that has the k-inclusion property, completely 

or partly depending if kr ≥  or .kr <  
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Observe that 

( ) ( ) ( )∪ ∪ ∪
D D D

∩"∩∩ BSBSBSB NNNN
∗∗∗= ,2,1,  

( ) ( ) ( ) ( )BSnBSnBSnBn NNNN ∩"∩∩ ∗∗∗ +++=⇒ ,2,1,  

( ) ( ) ( ) ( ).,2,1, BSPBSPBSPBP NNNN ∩"∩∩ ∗∗∗ +++=⇒  

But 

( )
( ) ( )

( )
( ) ( )

( ) ( )
....,,2,1,

1 ,,

,,,,
, Nr

SBPSP

SBPSP
BP

SBPSP
BSP N

t tNtN

rNrNrNrN
rN ===

∑ =
∗∗

∗∗∗∗
∗  

An immediate consequence of Theorem 2.1 is the following corollary: 

Corollary 2.2. Let B be a subset of ∗S  that has been partitioned by 

( )NrS rN ...,,2,1, =∗  and whose elements satisfy the inclusion condition for any 

subset Y of X with cardinality k. Then 

( ) ( ) ( ).
1

,,∑
=

∗∗=
N

r
rNrN SBPSPBP  

In the next two theorems, we shall give an explicit formula for computing the 
results obtained in Theorem 2.1 and Corollary 2.2 for practical purposes. 

Theorem 2.3. Let B be any subset of ∗S  and [ ]1,0: →∗SP  be such that 

equation (3) holds in .∗S  Then 
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Proof. For ,kr ≥  observe that 

( )
( )

( ) 12
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⎟
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∗
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N
rN

rN
r
N

Sn

Sn
SP  
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Hence, it follows that 
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If we assume that ,kr <  then by a similar argument the result follows. 

Corollary 2.4. Let XYSB ⊂⊂ ∗,  and [ ]1,0: →∗SP  be such that ( ) .kYn =  

Then 
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 (i) ( ) ,...,,2,1,
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1 1

1
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Proof. By Corollary 2.2, 
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Thus, we have (i). 

Further, since ( ) ( )
( )

,∗=
Sn
BnBP  it follows (ii). 

Remark 2.5. It is important to note the following, which is a consequence of 
Corollary 2.4: 
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Corollary 2.6. Let ,∗⊂ SB XY ⊂  and [ ]1,0: →∗SP  be such that ( ) kYn =  

and ( ) .NXn =  Then 

( ) .1
1

,∑
=

∗ =
N

r
rN BSP  

For a practical purpose, we provide a simple illustration of how some of the 
results obtained in this paper can be applied to real life problems. 

Example 2.7. Four different boxes contain element of the set { },,,, dcba  a 

man was asked to choose an element from the 1st box one at time, from the 2nd box 
two at a time, from the 3rd box three at a time and from the 4th box four at a time. 
What is the probability of (a) choosing an element of the set { }ba,  from (i) the 1st 

box (ii) the 2nd box, (b) Picking the 4th box given that the elements of { }ba,  has 

been chosen. 

Consider the diagram in appendix i. 

Observe that the elements selected from 1st, 2nd, 3rd and 4th boxes are 

contained in the sets of the form ,1,4
∗S  ,2,4

∗S  ∗
3,4S  and ,4,4

∗S  respectively. Hence 

from the diagram, we have 

(a) (i) ( ) ,211,4 =SBP  (ii) ( ) ,612,4 =SBP  

(b) ( ) .614,4 =BSP  

Now, applying the result obtained 
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.61=  

Conclusion 

We observed that the result obtained by Thomas Bayer’s has been given a 
suitable explicit formula in ∗S  which is a larger class of sets. The concepts have 
been used to modify most of the well-known discrete probability functions of which 
this work is a follow up. 
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