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Abstract

Let X ={x, Xp, .., Xy} be a collection and Sy , be the set of all
r-combinations of distinct elements of X. Let Y be any nonempty
subset of X with cardinality k and let Sy ;| be the set of all S ,

that contains Y. We extend the Bayer’s Theorem to the class of sets

2010 Mathematics Subject Classification: 05A10.
Keywords and phrases: r-permutations, r-combinations, K-inclusion, K-non-inclusion.

Received December 20, 2010



28 C. MOORE, O. C. OKOLI, M. LAISIN and W. UWANDU

S* = {Sﬁ,r; r =1 2, .., N} which is more general and give an explicit

formula for practical purposes.

1. Introduction and Preliminaries

Let X # &; n(X)=N, ie, X ={x, X, .., Xy} and let Sy , and Sy  be
the sets of all r-permutations and r-combinations of distinct elements of X. Let

Y < X; n(Y)=k, ie, Y ={y, Yo ... Y} and let Sy, and Sy, be the
sets of all elements of Sy , and Sy, that contain Y (completely if r >k and
partly if r < k). In contrast, let Sy 4 and Sy ; k1 be the sets of all elements

of Sy r and Sy that do not contain Y. Then we define S*={S{ ;;r=12,.., N}

and S ={Sy r;r=12 .., N}
Observe that
Sn.0 =19} = SN.0

Sna=X"=Sn X' ={{x}; xe X},

Snak =Y =Syik Y ={yhyeYh

Let U be the random variable corresponding to an event of Sy k (Sn.r k)

chosen randomly. Then the probability of picking u e S,’Q, r.k IS given by

_ n(SN,r,k) _ n(SKI,r,k)
Tonh) T nsyy)

Similarly, let V be the random variable corresponding to an event of

SN.r k-1 (Sn.rk1) chosen randomly. Then the probability of picking v e

SN, r k-1 is given by

N(Sn,rk-1) N(SN,rk)

BN k)
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Observe that
n(Si rk) T n(Sltl, rk-1) = n(Sltl, r)-
Hence, it is easy to see that p, + g, = 1.

Theorem 1.1. Let A, Ay, ..., Ay be a finite set of events of a sample S. Then

N
P{UA,-J: DP(A)- D PANA++ (DN TP(ANA NN AY). (1)

i=1 1<I=N 1<i<j<N

Proof. It suffices to prove that the following equation holds (where n(A)

denotes the cardinality of A):
N

n[UAi]: D on(A)- D A NAD++ ()N AN A NN AY). (2)
i=1 1<i<N 1<i<j<N

So from (2) above, we observe that a € A (i =1, 2, ..., N) will be counted

(’D times in Z n(A),

1<i<N
(N)ﬁmes in Z n(A NA;) [thimes inn(AANAN-NAy)
2 1<i<j<N N ? N

Thus, the number of times ‘a’ is counted on the right hand side n,(RHS) is given by

N
A(RHS) = 3 (et M) g
" kZ; (kj

which is the desired result. Now, the result follows by the definition of relative
frequency probability.

Definition 1.2. Let A, Ay, ..., Ay be a finite set of events of a sample S such

that P(A)) >0, Vi =1, 2, ..., N. Then the events are said to be

(i) dependent if

i=1

QR

k=1 i=1
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(ii) independent if

i=1

N N
P{ﬂ A\J =TT r).
i=1

(iii) exhaustive if

(iv) mutually exclusive if
P(ANA))=0, Vi=]j ij=12.,N.
Lemma 1.3. Let A, Ay, ..., Ay be a finite collection of mutually exclusive and

exhaustive events with P(A) >0, Vi=1 2,.., N. Then for any other event B,

such that P(A) > 0,

P(A/B) = —PAJPBIAD -y _q 5 N,
D P(A)IP(E/A)

Lemma 1.4. Let X = {X{, Xp, ..., Xy }. Then the number of r-permutations and

r-combinations of N distinct elements of X with the inclusion of a fixed k-number of
elementsof Y = X is

j if r>Kk,
n(sir,k)z (kj
if r<k,

where
n(SN,r,k) = r!n(SKl,r,k)-

Lemma 1.5. Let X = {X{, X5, ..., Xy }. Then the number of r-permutations and

r-combinations of N distinct elements of X with the non-inclusion of a fixed
k-number of elementsof Y = X is
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k-1

N — k) (k
Z( j[j ifr>kandr+k<N,
— r—J J
j=0
N
(S e t) = (r) it r<k,
K1 N Z KK
Z Al . ifrxkandr+k >N,
. r—J j
j=r+k-N

where
N(SN, rk-1) = I'N(SN r k-1)-
2. Main Results

At this juncture, we are ready to give an explicit formula on the extension of

Bayer’s Theorem on the set (sample) S* containing all r-combinations of distinct
elements of X.

Theorem 2.1. Let X ={x, Xy,.., Xy} and Y be a subset of X such that

n(Y)=k. Thenforany B = S™ partitioned by Sy , (r =1 2, .., N),

P(Si.)P(B/Si, )
> P(Sk.OPE/S0)

P(SN.r/B) = r=12..,N. (3)

Proof. By the definition, S* = {Sy ;1 =1, 2, .., N},

It is easy to see that Sy . N S,’i,yrj =@, Vi=# j, hence, S* is a collection of

pair-wise disjoint sets so that we can write

s* =UrN:iSKH'

Hence, the collections Sy, (r=1,2, .., N) are of mutually exclusive and
exhaustive events. Elements of the set B = S™ are generated by Y < X in Sy,

that is, B contains element(s) of S;Q,r that has the k-inclusion property, completely

or partly depending if r > k or r < k.
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Observe that
B=sx:nBJen2ne - Jsinne)

= n(B)=n(Sy 1 NB)+n(Sy 2 NB)+---+n(Sy, n N B)
= P(B) =P(Sy 1 NB)+P(Sy 2 N B)+--+P(Sy n N B).
But

ot /8y - POROPE/SLO) | POROPE/SHD Ly,
NS P(B) Zt'\‘:lp(s’,i"t)P(B/Sﬁ,t)

An immediate consequence of Theorem 2.1 is the following corollary:

Corollary 2.2. Let B be a subset of S* that has been partitioned by
Sn,r (r=1,2, .., N) and whose elements satisfy the inclusion condition for any

subset Y of X with cardinality k. Then

N
P(B) = ) P(Sk,r)P(B/SN,r):

r=1

In the next two theorems, we shall give an explicit formula for computing the
results obtained in Theorem 2.1 and Corollary 2.2 for practical purposes.

Theorem 2.3. Let B be any subset of S* and P:S* —[0,1] be such that

equation (3) holds in S*. Then
oy
r-k .
= N ifr>k, r=k k+1, .., N,
k +z N -k
it t-k

t=
(k
r .

ifr<k,r=12 ..,k-1

P(Sltl,r/B):
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Proof. For r > k, observe that

s ()

PN = ns*) 2N -1

and

P(B/Si. )= —2) (T__fj

n(Si,r) m
v (5

X

N _ N
P(SK, ¢ /B) = 15 o (r)

N
P(SN,0)P(B/SR ) + Y P(Sk,0)P(B/SR 1)
t=k

7 (P2

Hence, it follows that

t=1

(N_k]
r-k .
= if r>k, r=k, k+1, ..., N.
-1 N
t t—k
t=1 t=k

If we assume that r < k, then by a similar argument the result follows.

Corollary 2.4. Let B < S*,Y < X and P : S* — [0, 1] be such that n(Y) = k.
Then
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(i) P(B) = 2”1—1{§(t]+i@—_®} r=12..,N,

(i) n(B) = ki(';} %‘(T-_S r=12..N.

t=1 t=k

Proof. By Corollary 2.2,

N k-1 N
P(B) = ) P(SN,r)P(B/Sk ) = Y P(S)P(B)+ D P(S)P(B)
r=1

r=1 r=k

@ (i) () e 0) (o)
=ZZN_1X N +ZZN 1 (N
= (rj = (rJ

Thus, we have (i).

Further, since P(B) = n(B*)), it follows (ii).
n(S

Remark 2.5. It is important to note the following, which is a consequence of
Corollary 2.4:

1 N /N -k
< Z( kj ifr>k, r=k k+1 .. N,
oN 1 r—

k
2N1 (r] ifr<k r=12 . k-1

P(B) =

= =
=X

[EEN
4N

r=

and consequently, we have

tvjz

(T_kj ifr>k, r=kk+1..,N,

=~

n(B) =

==
LN

k
r

ifr<k, r=12 ..,k-1.

[y

r=
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Corollary 2.6. Let B S*, Y < X and P : S* — [0, 1] be such that n(Y) = k
and n(X) = N. Then

N
D P(SK.r/B) =1
r=1

For a practical purpose, we provide a simple illustration of how some of the
results obtained in this paper can be applied to real life problems.

Example 2.7. Four different boxes contain element of the set {a, b, c, d}, a

man was asked to choose an element from the 1st box one at time, from the 2nd box
two at a time, from the 3rd box three at a time and from the 4th box four at a time.
What is the probability of (a) choosing an element of the set {a, b} from (i) the 1st

box (ii) the 2nd box, (b) Picking the 4th box given that the elements of {a, b} has

been chosen.
Consider the diagram in appendix i.

Observe that the elements selected from 1st, 2nd, 3rd and 4th boxes are
contained in the sets of the form Sz;, Sj,, Si3 and S; 4, respectively. Hence

from the diagram, we have
@) (i) P(B/S4,1) =12, (ii) P(B/S4 ) =1/6,

(b) P(S4,4/B) =1/6.

Now, applying the result obtained

@ (i) P(B/S41) = A5 = 745 = Y2,
a) (I PBS41 (':lj (;‘:j 2
(i) P(B/S4,2) = (’::E] = (3:2] =1/6.

U
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[ru)
r-—k .
(b) P(S4,4/B) = 1= X since r >k
k . Z N -k
t t—k
t=1 t=k
o)
4-2 .
= since r >k
S0
+
t t-2
t=1 t=2
=1/6.
Conclusion

We observed that the result obtained by Thomas Bayer’s has been given a

suitable explicit formula in S* which is a larger class of sets. The concepts have
been used to modify most of the well-known discrete probability functions of which
this work is a follow up.
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