## Far East Journal of Applied Mathematics



Volume 52, Number 1, 2011, Pages 27-36

Published Online: April 26, 2011

This paper is available online at http://pphmj.com/journals/fjam.htm

© 2011 Pushpa Publishing House

# CONSTRUCTION OF BAYER'S THEOREM IN THE SAMPLE SPACE $S_{N,r}^{p}$ ( $S_{N,r}^{c}$ ) OF r-PERMUTATIONS/r-COMBINATIONS

C. MOORE<sup>1</sup>, O. C. OKOLI<sup>2</sup>, M. LAISIN<sup>2</sup> and W. UWANDU<sup>3</sup>

Department of Mathematics Nnamdi Azikiwe University Awka, P.M.B. 5025 Awka, Anambra State, Nigeria e-mail: drchikamoore@yahoo.com

<sup>2</sup>Department of Mathematics/Statistics Anambra State University P.M.B. 02, Uli, Anambra State, Nigeria e-mail: odicomatics@yahoo.com laisinmark@yahoo.com

<sup>3</sup>Department of Mathematics/Statistics Abia State Polytechnic Aba, Abia State, Nigeria e-mail: emmy24goal@yahoo.com

### **Abstract**

Let  $X = \{x_1, x_2, ..., x_N\}$  be a collection and  $S_{N,r}^*$  be the set of all r-combinations of distinct elements of X. Let Y be any nonempty subset of X with cardinality k and let  $S_{N,r,k}^*$  be the set of all  $S_{N,r}^*$ that contains Y. We extend the Bayer's Theorem to the class of sets

2010 Mathematics Subject Classification: 05A10.

Keywords and phrases: r-permutations, r-combinations, K-inclusion, K-non-inclusion.

Received December 20, 2010

 $S^* = \{S_{N,r}^*; r = 1, 2, ..., N\}$  which is more general and give an explicit formula for practical purposes.

#### 1. Introduction and Preliminaries

Let  $X \neq \emptyset$ ; n(X) = N, i.e.,  $X = \{x_1, x_2, ..., x_N\}$  and let  $S_{N,r}$  and  $S_{N,r}^*$  be the sets of all r-permutations and r-combinations of distinct elements of X. Let  $Y \subset X$ ; n(Y) = k, i.e.,  $Y = \{y_1, y_2, ..., y_k\}$  and let  $S_{N,r,k}^*$  and  $S_{N,r,k}$  be the sets of all elements of  $S_{N,r}^*$  and  $S_{N,r}$  that contain Y (completely if  $r \geq k$  and partly if r < k). In contrast, let  $S_{N,r,k-1}^*$  and  $S_{N,r,k-1}$  be the sets of all elements of  $S_{N,r}^*$  and  $S_{N,r}$  that do not contain Y. Then we define  $S^* = \{S_{N,r}^*; r = 1, 2, ..., N\}$  and  $S_{N,r}^*; r = 1, 2, ..., N\}$ .

Observe that

$$\begin{split} S_{N,0} &= \{\varnothing\} = S_{N,0}^*, \\ S_{N,1} &= X^* = S_{N,1}^*; \quad X^* = \{\{x\}; \ x \in X\}, \\ S_{N,1,k} &= Y^* = S_{N,1,k}^*; \quad Y^* = \{\{y\}; \ y \in Y\}. \end{split}$$

Let U be the random variable corresponding to an event of  $S_{N,r,k}^*\left(S_{N,r,k}\right)$  chosen randomly. Then the probability of picking  $u \in S_{N,r,k}^*$  is given by

$$p_u = \frac{n(S_{N,r,k})}{n(S_{N,r})} = \frac{n(S_{N,r,k}^*)}{n(S_{N,r}^*)}.$$

Similarly, let V be the random variable corresponding to an event of  $S_{N,r,k-1}^*$  ( $S_{N,r,k-1}$ ) chosen randomly. Then the probability of picking  $v \in S_{N,r,k-1}^*$  is given by

$$q_u = \frac{n(S_{N,r,k-1})}{n(S_{N,r})} = \frac{n(S_{N,r,k}^*)}{n(S_{N,r}^*)}.$$

Observe that

$$n(S_{N,r,k}^*) + n(S_{N,r,k-1}^*) = n(S_{N,r}^*).$$

Hence, it is easy to see that  $p_u + q_v = 1$ .

**Theorem 1.1.** Let  $A_1, A_2, ..., A_N$  be a finite set of events of a sample S. Then

$$P\left(\bigcup_{i=1}^{N} A_{i}\right) = \sum_{1 \le i \le N} P(A_{i}) - \sum_{1 \le i \le j \le N} P(A_{i} \cap A_{j}) + \dots + (-1)^{N+1} P(A_{1} \cap A_{2} \cap \dots \cap A_{N}).$$
(1)

**Proof.** It suffices to prove that the following equation holds (where n(A) denotes the cardinality of A):

$$n\left(\bigcup_{i=1}^{N} A_{i}\right) = \sum_{1 \le i \le N} n(A_{i}) - \sum_{1 \le i \le j \le N} n(A_{i} \cap A_{j}) + \dots + (-1)^{N+1} n(A_{1} \cap A_{2} \cap \dots \cap A_{N}). \quad (2)$$

So from (2) above, we observe that  $a \in A_i$  (i = 1, 2, ..., N) will be counted

$$\binom{N}{1}$$
 times in  $\sum_{1 \le i \le N} n(A_i)$ ,

$$\binom{N}{2} \text{ times in } \sum_{1 \le i \le j \le N} n(A_i \cap A_j), ..., \binom{N}{N} \text{ times in } n(A_1 \cap A_2 \cap \cdots \cap A_N).$$

Thus, the number of times 'a' is counted on the right hand side  $n_a(RHS)$  is given by

$$n_a(\text{RHS}) = \sum_{k=1}^{N} (-1)^{k+1} \binom{N}{k} = 1$$

which is the desired result. Now, the result follows by the definition of relative frequency probability.

**Definition 1.2.** Let  $A_1, A_2, ..., A_N$  be a finite set of events of a sample S such that  $P(A_i) \ge 0$ ,  $\forall i = 1, 2, ..., N$ . Then the events are said to be

(i) dependent if

$$P\left(\bigcap_{i=1}^{N} A_i\right) = \prod_{k=1}^{N} P\left(A_k / \bigcap_{i=1}^{k-1} A_i\right),$$

(ii) independent if

$$P\left(\bigcap_{i=1}^{N} A_i\right) = \prod_{i=1}^{N} p(A_i),$$

(iii) exhaustive if

$$P\left(\bigcup_{i=1}^{N} A_i\right) = 1,$$

(iv) mutually exclusive if

$$P(A_i \cap A_j) = 0, \quad \forall i \neq j, \ i, j = 1, 2, ..., N.$$

**Lemma 1.3.** Let  $A_1$ ,  $A_2$ , ...,  $A_N$  be a finite collection of mutually exclusive and exhaustive events with  $P(A_i) > 0$ ,  $\forall i = 1, 2, ..., N$ . Then for any other event B, such that  $P(A_i) > 0$ ,

$$P(A_k/B) = \frac{P(A_k)P(B/A_k)}{\sum_{i=1}^{N} P(A_i)P(B/A_i)}, \quad k = 1, 2, ..., N.$$

**Lemma 1.4.** Let  $X = \{x_1, x_2, ..., x_N\}$ . Then the number of r-permutations and r-combinations of N distinct elements of X with the inclusion of a fixed k-number of elements of  $Y \subset X$  is

$$n(S_{N,r,k}^*) = \begin{cases} \binom{N-k}{r-k} & \text{if } r \ge k, \\ \binom{k}{r} & \text{if } r < k, \end{cases}$$

where

$$n(S_{N,r,k}) = r! n(S_{N,r,k}^*).$$

**Lemma 1.5.** Let  $X = \{x_1, x_2, ..., x_N\}$ . Then the number of r-permutations and r-combinations of N distinct elements of X with the non-inclusion of a fixed k-number of elements of  $Y \subset X$  is

$$n(S_{N,r,k-1}^*) = \begin{cases} \sum_{j=0}^{k-1} \binom{N-k}{r-j} \binom{k}{j} & \text{if } r \ge k \text{ and } r+k \le N, \\ \binom{N}{r} & \text{if } r < k, \\ \sum_{j=r+k-N}^{k-1} \binom{N-k}{r-j} \binom{k}{j} & \text{if } r \ge k \text{ and } r+k > N, \end{cases}$$

where

$$n(S_{N,r,k-1}) = r! n(S_{N,r,k-1}^*).$$

#### 2. Main Results

At this juncture, we are ready to give an explicit formula on the extension of Bayer's Theorem on the set (sample)  $S^*$  containing all r-combinations of distinct elements of X.

**Theorem 2.1.** Let  $X = \{x_1, x_2, ..., x_N\}$  and Y be a subset of X such that n(Y) = k. Then for any  $B \subset S^*$  partitioned by  $S_{N,r}^*$  (r = 1, 2, ..., N),

$$P(S_{N,r}^*/B) = \frac{P(S_{N,r}^*)P(B/S_{N,r}^*)}{\sum_{i=1}^{N} P(S_{N,t}^*)P(B/S_{N,t}^*)}, \quad r = 1, 2, ..., N.$$
 (3)

**Proof.** By the definition,  $S^* = \{S_{N,r}^*; r = 1, 2, ..., N\}$ .

It is easy to see that  $S_{N, r_i}^* \cap S_{N, r_j}^* = \emptyset$ ,  $\forall i \neq j$ , hence,  $S^*$  is a collection of pair-wise disjoint sets so that we can write

$$S^* = \bigcup_{r=i}^N S_{N,r}^*.$$

Hence, the collections  $S_{N,r}^*$  (r=1, 2, ..., N) are of mutually exclusive and exhaustive events. Elements of the set  $B \subset S^*$  are generated by  $Y \subset X$  in  $S_{N,r}^*$ , that is, B contains element(s) of  $S_{N,r}^*$  that has the k-inclusion property, completely or partly depending if  $r \ge k$  or r < k.

Observe that

$$B = (S_{N,1}^* \cap B) \bigcup_{N,2} (S_{N,2}^* \cap B) \bigcup_{N,2} \cdots \bigcup_{N,N} (S_{N,N}^* \cap B)$$

$$\Rightarrow n(B) = n(S_{N,1}^* \cap B) + n(S_{N,2}^* \cap B) + \cdots + n(S_{N,N}^* \cap B)$$

$$\Rightarrow P(B) = P(S_{N,1}^* \cap B) + P(S_{N,2}^* \cap B) + \cdots + P(S_{N,N}^* \cap B).$$

But

$$P(S_{N,r}^*/B) = \frac{P(S_{N,r}^*)P(B/S_{N,r}^*)}{P(B)} = \frac{P(S_{N,r}^*)P(B/S_{N,r}^*)}{\sum_{t=1}^{N} P(S_{N,t}^*)P(B/S_{N,t}^*)}, \quad r = 1, 2, ..., N.$$

An immediate consequence of Theorem 2.1 is the following corollary:

**Corollary 2.2.** Let B be a subset of  $S^*$  that has been partitioned by  $S_{N,r}^*$  (r = 1, 2, ..., N) and whose elements satisfy the inclusion condition for any subset Y of X with cardinality k. Then

$$P(B) = \sum_{r=1}^{N} P(S_{N,r}^{*}) P(B/S_{N,r}^{*}).$$

In the next two theorems, we shall give an explicit formula for computing the results obtained in Theorem 2.1 and Corollary 2.2 for practical purposes.

**Theorem 2.3.** Let B be any subset of  $S^*$  and  $P: S^* \to [0, 1]$  be such that equation (3) holds in  $S^*$ . Then

$$P(S_{N,r}^*/B) = \begin{cases} \frac{\binom{N-k}{r-k}}{\sum\limits_{t=1}^{k-1} \binom{k}{t}} + \sum\limits_{t=k}^{N} \binom{N-k}{t-k} & \text{if } r \geq k, \ r = k, \ k+1, \ \dots, \ N, \\ \frac{\binom{k}{r}}{\sum\limits_{t=1}^{k-1} \binom{k}{t}} + \sum\limits_{t=k}^{N} \binom{N-k}{t-k} & \text{if } r < k, \ r = 1, \ 2, \ \dots, \ k-1. \end{cases}$$

**Proof.** For  $r \ge k$ , observe that

$$P(S_{N,r}^*) = \frac{n(S_{N,r}^*)}{n(S^*)} = \frac{\binom{N}{r}}{2^N - 1}$$

and

$$P(B/S_{N,r}^*) = \frac{n(B)}{n(S_{N,r}^*)} = \frac{\binom{N-k}{r-k}}{\binom{N}{r}}.$$

Hence, it follows that

$$P(S_{N,r}^*/B) = \frac{\frac{\binom{N}{r}}{2^N - 1} \times \frac{\binom{N - k}{r - k}}{\binom{N}{r}}}{\sum_{t=1}^{k-1} P(S_{N,t}^*) P(B/S_{N,t}^*) + \sum_{t=k}^{N} P(S_{N,t}^*) P(B/S_{N,t}^*)}$$

$$= \frac{\frac{\binom{N}{r}}{2^N - 1} \times \frac{\binom{N - k}{r - k}}{\binom{N}{r}}}{\sum_{t=1}^{k-1} \binom{N}{t}} \times \frac{\binom{k}{t}}{\binom{N}{r}} + \sum_{t=k}^{N} \frac{\binom{N}{t}}{2^N - 1} \times \frac{\binom{N - k}{t - k}}{\binom{N}{t}}$$

$$= \frac{\binom{N - k}{r - k}}{\sum_{t=1}^{k-1} \binom{k}{t}} \times \frac{\binom{N - k}{t - k}}{\binom{N - k}{t - k}} \quad \text{if} \quad r \ge k, \quad r = k, k + 1, ..., N.$$

If we assume that r < k, then by a similar argument the result follows.

**Corollary 2.4.** Let  $B \subset S^*$ ,  $Y \subset X$  and  $P : S^* \to [0, 1]$  be such that n(Y) = k. Then

(i) 
$$P(B) = \frac{1}{2^N - 1} \left\{ \sum_{t=1}^{k-1} {k \choose r} + \sum_{t=k}^{N} {N-k \choose r-k} \right\}, \quad r = 1, 2, ..., N,$$

(ii) 
$$n(B) = \sum_{r=1}^{k-1} {k \choose r} + \sum_{r=k}^{N} {N-k \choose r-k}; \quad r=1, 2, ..., N.$$

**Proof.** By Corollary 2.2,

$$P(B) = \sum_{r=1}^{N} P(S_{N,r}^{*}) P(B/S_{N,r}^{*}) = \sum_{r=1}^{k-1} P(S) P(B) + \sum_{r=k}^{N} P(S) P(B)$$

$$= \sum_{r=1}^{k-1} {k \choose r} + \sum_{r=k}^{N} {N-k \choose r-k}$$

$$= \sum_{r=1}^{k-1} \frac{{N \choose r}}{2^{N}-1} \times \frac{{k \choose r}}{{N \choose r}} + \sum_{r=k}^{N} \frac{{N \choose r}}{2^{N}-1} \times \frac{{N-k \choose r-k}}{{N \choose r}}.$$

Thus, we have (i).

Further, since 
$$P(B) = \frac{n(B)}{n(S^*)}$$
, it follows (ii).

**Remark 2.5.** It is important to note the following, which is a consequence of Corollary 2.4:

$$P(B) = \begin{cases} \frac{1}{2^{N} - 1} \sum_{r=k}^{N} {N - k \choose r - k} & \text{if } r \ge k, \quad r = k, k + 1, ..., N, \\ \frac{1}{2^{N} - 1} \sum_{r=1}^{k-1} {k \choose r} & \text{if } r < k, \quad r = 1, 2, ..., k - 1, \end{cases}$$

and consequently, we have

$$n(B) = \begin{cases} \sum_{r=k}^{N} {N-k \choose r-k} & \text{if } r \ge k, \quad r=k, \ k+1, \dots, N, \\ \sum_{r=1}^{k-1} {k \choose r} & \text{if } r < k, \quad r=1, 2, \dots, k-1. \end{cases}$$

**Corollary 2.6.** Let  $B \subset S^*$ ,  $Y \subset X$  and  $P : S^* \to [0, 1]$  be such that n(Y) = k and n(X) = N. Then

$$\sum_{r=1}^{N} P(S_{N,r}^*/B) = 1.$$

For a practical purpose, we provide a simple illustration of how some of the results obtained in this paper can be applied to real life problems.

**Example 2.7.** Four different boxes contain element of the set  $\{a, b, c, d\}$ , a man was asked to choose an element from the 1st box one at time, from the 2nd box two at a time, from the 3rd box three at a time and from the 4th box four at a time. What is the probability of (a) choosing an element of the set  $\{a, b\}$  from (i) the 1st box (ii) the 2nd box, (b) Picking the 4th box given that the elements of  $\{a, b\}$  has been chosen.

Consider the diagram in appendix i.

Observe that the elements selected from 1st, 2nd, 3rd and 4th boxes are contained in the sets of the form  $S_{4,1}^*$ ,  $S_{4,2}^*$ ,  $S_{4,3}^*$  and  $S_{4,4}^*$ , respectively. Hence from the diagram, we have

(a) (i) 
$$P(B/S_{4,1}) = 1/2$$
, (ii)  $P(B/S_{4,2}) = 1/6$ ,

(b) 
$$P(S_4 A/B) = 1/6$$
.

Now, applying the result obtained

(a) (i) 
$$P(B/S_{4,1}) = \frac{\binom{k}{r}}{\binom{N}{r}} = \frac{\binom{2}{1}}{\binom{4}{1}} = 1/2,$$

(ii) 
$$P(B/S_{4,2}) = \frac{\binom{N-k}{r-k}}{\binom{N}{r}} = \frac{\binom{4-2}{2-2}}{\binom{4}{2}} = 1/6.$$

(b) 
$$P(S_{4,4}/B) = \frac{\binom{N-k}{r-k}}{\sum_{t=1}^{k-1} \binom{k}{t} + \sum_{t=k}^{N} \binom{N-k}{t-k}}$$
 since  $r \ge k$ 

$$= \frac{\binom{4-2}{4-2}}{\sum_{t=1}^{1} \binom{2}{t} + \sum_{t=2}^{4} \binom{4-2}{t-2}}$$
 since  $r \ge k$ 

$$= \frac{1/6}{1}$$

#### Conclusion

We observed that the result obtained by Thomas Bayer's has been given a suitable explicit formula in  $S^*$  which is a larger class of sets. The concepts have been used to modify most of the well-known discrete probability functions of which this work is a follow up.

#### References

- [1] C. Moore, M. Laisin and O. C. Okoli, Generalised *r*-permutation and *r*-combination techniques for *k*-separable inclusion, Internat. J. Appl. Math. Statist. 23(D11) (2011), (to appear).
- [2] Murray R. Spiegel, John J. Schiller and R. Alu Srinivasan, Theory and problems of probability and statistics, Schaum's outline Series. QA273. 25.S64 (2000), 18-19.
- [3] G. Williams, Practical Finite Mathematics, Allyn and Bacon, Inc., Toronto, 1976, pp. 208-210.
- [4] K. H. Rosen, Discrete Math. its Applications, McGraw-Hill, Singapore, 1991, pp. 232-296.
- [5] O. C. Okoli, M. Laisin and W. Uwandu, A generalized *K*-permutation and *K*-combination techniques for *K*-non-inclusion condition, National Appl. Sci. J. 10(1) (2009), 36-44.
- [6] O. C. Okoli, M. Laisin and W. Uwandu, k-partition of k-permutation and k-combination for either k-inclusion or k-non-inclusion, National Appl. Sci. J. 10(2) (2009), 138-145.
- [7] J. Richard, Discrete Math, Macmillan, New York, 1984, pp. 43-65.
- [8] R. Wenjing, Math for Algorithm and System Analysis.