# CONSTRUCTION OF BAYER'S THEOREM 

IN THE SAMPLE SPACE $S_{N, r}^{p}\left(S_{N, r}^{c}\right)$ OF
$r$-PERMUTATIONS/r-COMBINATIONS

C. MOORE ${ }^{1}$, O. C. OKOLI ${ }^{2}$, M. LAISIN ${ }^{2}$ and W. UWANDU ${ }^{3}$<br>${ }^{1}$ Department of Mathematics<br>Nnamdi Azikiwe University<br>Awka, P.M.B. 5025<br>Awka, Anambra State, Nigeria<br>e-mail: drchikamoore@yahoo.com<br>${ }^{2}$ Department of Mathematics/Statistics<br>Anambra State University<br>P.M.B. 02, Uli, Anambra State, Nigeria<br>e-mail: odicomatics@yahoo.com<br>laisinmark@yahoo.com<br>${ }^{3}$ Department of Mathematics/Statistics<br>Abia State Polytechnic<br>Aba, Abia State, Nigeria<br>e-mail: emmy24goal@yahoo.com


#### Abstract

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ be a collection and $S_{N, r}^{*}$ be the set of all $r$-combinations of distinct elements of $X$. Let $Y$ be any nonempty subset of $X$ with cardinality $k$ and let $S_{N, r, k}^{*}$ be the set of all $S_{N, r}^{*}$ that contains $Y$. We extend the Bayer's Theorem to the class of sets

2010 Mathematics Subject Classification: 05A10. Keywords and phrases: $r$-permutations, $r$-combinations, $K$-inclusion, $K$-non-inclusion.


Received December 20, 2010
$S^{*}=\left\{S_{N, r}^{*} ; r=1,2, \ldots, N\right\}$ which is more general and give an explicit formula for practical purposes.

## 1. Introduction and Preliminaries

Let $X \neq \varnothing ; n(X)=N$, i.e., $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ and let $S_{N, r}$ and $S_{N, r}^{*}$ be the sets of all $r$-permutations and $r$-combinations of distinct elements of $X$. Let $Y \subset X ; n(Y)=k$, i.e., $Y=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ and let $S_{N, r, k}^{*}$ and $S_{N, r, k}$ be the sets of all elements of $S_{N, r}^{*}$ and $S_{N, r}$ that contain $Y$ (completely if $r \geq k$ and partly if $r<k$ ). In contrast, let $S_{N, r, k-1}^{*}$ and $S_{N, r, k-1}$ be the sets of all elements of $S_{N, r}^{*}$ and $S_{N, r}$ that do not contain $Y$. Then we define $S^{*}=\left\{S_{N, r}^{*} ; r=1,2, \ldots, N\right\}$ and $S=\left\{S_{N, r} ; r=1,2, \ldots, N\right\}$.

Observe that

$$
\begin{aligned}
& S_{N, 0}=\{\varnothing\}=S_{N, 0}^{*} \\
& S_{N, 1}=X^{*}=S_{N, 1}^{*} ; \quad X^{*}=\{\{x\} ; x \in X\} \\
& S_{N, 1, k}=Y^{*}=S_{N, 1, k}^{*} ; \quad Y^{*}=\{\{y\} ; y \in Y\}
\end{aligned}
$$

Let $U$ be the random variable corresponding to an event of $S_{N, r, k}^{*}\left(S_{N, r, k}\right)$ chosen randomly. Then the probability of picking $u \in S_{N, r, k}^{*}$ is given by

$$
p_{u}=\frac{n\left(S_{N, r, k}\right)}{n\left(S_{N, r}\right)}=\frac{n\left(S_{N, r, k}^{*}\right)}{n\left(S_{N, r}^{*}\right)}
$$

Similarly, let $V$ be the random variable corresponding to an event of $S_{N, r, k-1}^{*}\left(S_{N, r, k-1}\right)$ chosen randomly. Then the probability of picking $v \in$ $S_{N, r, k-1}^{*}$ is given by

$$
q_{u}=\frac{n\left(S_{N, r, k-1}\right)}{n\left(S_{N, r}\right)}=\frac{n\left(S_{N, r, k}^{*}\right)}{n\left(S_{N, r}^{*}\right)}
$$

Observe that

$$
n\left(S_{N, r, k}^{*}\right)+n\left(S_{N, r, k-1}^{*}\right)=n\left(S_{N, r}^{*}\right)
$$

Hence, it is easy to see that $p_{u}+q_{v}=1$.
Theorem 1.1. Let $A_{1}, A_{2}, \ldots, A_{N}$ be a finite set of events of a sample $S$. Then

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{1 \leq i \leq N} P\left(A_{i}\right)-\sum_{1 \leq i \leq j \leq N} P\left(A_{i} \cap A_{j}\right)+\cdots+(-1)^{N+1} P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{N}\right) \tag{1}
\end{equation*}
$$

Proof. It suffices to prove that the following equation holds (where $n(A)$ denotes the cardinality of $A$ ):

$$
\begin{equation*}
n\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{1 \leq i \leq N} n\left(A_{i}\right)-\sum_{1 \leq i \leq j \leq N} n\left(A_{i} \cap A_{j}\right)+\cdots+(-1)^{N+1} n\left(A_{1} \cap A_{2} \cap \cdots \cap A_{N}\right) \tag{2}
\end{equation*}
$$

So from (2) above, we observe that $a \in A_{i}(i=1,2, \ldots, N)$ will be counted

$$
\begin{aligned}
& \binom{N}{1} \text { times in } \sum_{1 \leq i \leq N} n\left(A_{i}\right), \\
& \binom{N}{2} \text { times in } \sum_{1 \leq i \leq j \leq N} n\left(A_{i} \cap A_{j}\right), \ldots,\binom{N}{N} \text { times in } n\left(A_{1} \cap A_{2} \cap \cdots \cap A_{N}\right)
\end{aligned}
$$

Thus, the number of times ' $a$ ' is counted on the right hand side $n_{a}$ (RHS) is given by

$$
n_{a}(\text { RHS })=\sum_{k=1}^{N}(-1)^{k+1}\binom{N}{k}=1
$$

which is the desired result. Now, the result follows by the definition of relative frequency probability.

Definition 1.2. Let $A_{1}, A_{2}, \ldots, A_{N}$ be a finite set of events of a sample $S$ such that $P\left(A_{i}\right) \geq 0, \forall i=1,2, \ldots, N$. Then the events are said to be
(i) dependent if

$$
P\left(\bigcap_{i=1}^{N} A_{i}\right)=\prod_{k=1}^{N} P\left(A_{k} / \bigcap_{i=1}^{k-1} A_{i}\right)
$$

(ii) independent if

$$
P\left(\bigcap_{i=1}^{N} A_{i}\right)=\prod_{i=1}^{N} p\left(A_{i}\right),
$$

(iii) exhaustive if

$$
P\left(\bigcup_{i=1}^{N} A_{i}\right)=1
$$

(iv) mutually exclusive if

$$
P\left(A_{i} \cap A_{j}\right)=0, \quad \forall i \neq j, \quad i, j=1,2, \ldots, N
$$

Lemma 1.3. Let $A_{1}, A_{2}, \ldots, A_{N}$ be a finite collection of mutually exclusive and exhaustive events with $P\left(A_{i}\right)>0, \forall i=1,2, \ldots, N$. Then for any other event $B$, such that $P\left(A_{i}\right)>0$,

$$
P\left(A_{k} / B\right)=\frac{P\left(A_{k}\right) P\left(B / A_{k}\right)}{\sum_{i=1}^{N} P\left(A_{i}\right) P\left(B / A_{i}\right)}, \quad k=1,2, \ldots, N
$$

Lemma 1.4. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$. Then the number of $r$-permutations and $r$-combinations of $N$ distinct elements of $X$ with the inclusion of a fixed $k$-number of elements of $Y \subset X$ is

$$
n\left(S_{N, r, k}^{*}\right)= \begin{cases}\binom{N-k}{r-k} & \text { if } r \geq k \\ \binom{k}{r} & \text { if } r<k\end{cases}
$$

where

$$
n\left(S_{N, r, k}\right)=r!n\left(S_{N, r, k}^{*}\right)
$$

Lemma 1.5. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$. Then the number of $r$-permutations and $r$-combinations of $N$ distinct elements of $X$ with the non-inclusion of a fixed $k$-number of elements of $Y \subset X$ is

$$
n\left(S_{N, r, k-1}^{*}\right)= \begin{cases}\sum_{j=0}^{k-1}\binom{N-k}{r-j}\binom{k}{j} & \text { if } r \geq k \text { and } r+k \leq N, \\ \binom{N}{r} & \text { if } r<k, \\ \sum_{j=r+k-N}^{k-1}\binom{N-k}{r-j}\binom{k}{j} & \text { if } r \geq k \text { and } r+k>N,\end{cases}
$$

where

$$
n\left(S_{N, r, k-1}\right)=r!n\left(S_{N, r, k-1}^{*}\right)
$$

## 2. Main Results

At this juncture, we are ready to give an explicit formula on the extension of Bayer's Theorem on the set (sample) $S^{*}$ containing all $r$-combinations of distinct elements of $X$.

Theorem 2.1. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ and $Y$ be $a$ subset of $X$ such that $n(Y)=k$. Then for any $B \subset S^{*}$ partitioned by $S_{N, r}^{*}(r=1,2, \ldots, N)$,

$$
\begin{equation*}
P\left(S_{N, r}^{*} / B\right)=\frac{P\left(S_{N, r}^{*}\right) P\left(B / S_{N, r}^{*}\right)}{\sum_{i=1}^{N} P\left(S_{N, t}^{*}\right) P\left(B / S_{N, t}^{*}\right)}, \quad r=1,2, \ldots, N \tag{3}
\end{equation*}
$$

Proof. By the definition, $S^{*}=\left\{S_{N, r}^{*} ; r=1,2, \ldots, N\right\}$.
It is easy to see that $S_{N, r_{i}}^{*} \cap S_{N, r_{j}}^{*}=\varnothing, \forall i \neq j$, hence, $S^{*}$ is a collection of pair-wise disjoint sets so that we can write

$$
S^{*}=\bigcup_{r=i}^{N} S_{N, r}^{*}
$$

Hence, the collections $S_{N, r}^{*}(r=1,2, \ldots, N)$ are of mutually exclusive and exhaustive events. Elements of the set $B \subset S^{*}$ are generated by $Y \subset X$ in $S_{N, r}^{*}$, that is, $B$ contains element(s) of $S_{N, r}^{*}$ that has the $k$-inclusion property, completely or partly depending if $r \geq k$ or $r<k$.

Observe that

$$
\begin{aligned}
B & =\left(S_{N, 1}^{*} \cap B\right) \bigcup^{\circ}\left(S_{N, 2}^{*} \cap B\right) \bigcup^{\circ} \cdots \bigcup^{\circ}\left(S_{N, N}^{*} \cap B\right) \\
& \Rightarrow n(B)=n\left(S_{N, 1}^{*} \cap B\right)+n\left(S_{N, 2}^{*} \cap B\right)+\cdots+n\left(S_{N, N}^{*} \cap B\right) \\
& \Rightarrow P(B)=P\left(S_{N, 1}^{*} \cap B\right)+P\left(S_{N, 2}^{*} \cap B\right)+\cdots+P\left(S_{N, N}^{*} \cap B\right)
\end{aligned}
$$

But

$$
P\left(S_{N, r}^{*} / B\right)=\frac{P\left(S_{N, r}^{*}\right) P\left(B / S_{N, r}^{*}\right)}{P(B)}=\frac{P\left(S_{N, r}^{*}\right) P\left(B / S_{N, r}^{*}\right)}{\sum_{t=1}^{N} P\left(S_{N, t}^{*}\right) P\left(B / S_{N, t}^{*}\right)}, \quad r=1,2, \ldots, N
$$

An immediate consequence of Theorem 2.1 is the following corollary:
Corollary 2.2. Let $B$ be a subset of $S^{*}$ that has been partitioned by $S_{N, r}^{*}(r=1,2, \ldots, N)$ and whose elements satisfy the inclusion condition for any subset $Y$ of $X$ with cardinality $k$. Then

$$
P(B)=\sum_{r=1}^{N} P\left(S_{N, r}^{*}\right) P\left(B / S_{N, r}^{*}\right)
$$

In the next two theorems, we shall give an explicit formula for computing the results obtained in Theorem 2.1 and Corollary 2.2 for practical purposes.

Theorem 2.3. Let $B$ be any subset of $S^{*}$ and $P: S^{*} \rightarrow[0,1]$ be such that equation (3) holds in $S^{*}$. Then

$$
P\left(S_{N, r}^{*} / B\right)= \begin{cases}\frac{\binom{N-k}{r-k}}{\sum_{t=1}^{k-1}\binom{k}{t}+\sum_{t=k}^{N}\binom{N-k}{t-k}} & \text { if } r \geq k, r=k, k+1, \ldots, N, \\ \frac{\binom{k}{r}}{\sum_{t=1}^{k-1}\binom{k}{t}+\sum_{t=k}^{N}\binom{N-k}{t-k}} & \text { if } r<k, r=1,2, \ldots, k-1\end{cases}
$$

Proof. For $r \geq k$, observe that

$$
P\left(S_{N, r}^{*}\right)=\frac{n\left(S_{N, r}^{*}\right)}{n\left(S^{*}\right)}=\frac{\binom{N}{r}}{2^{N}-1}
$$

and

$$
P\left(B / S_{N, r}^{*}\right)=\frac{n(B)}{n\left(S_{N, r}^{*}\right)}=\frac{\binom{N-k}{r-k}}{\binom{N}{r}}
$$

Hence, it follows that

$$
\begin{aligned}
P\left(S_{N, r}^{*} / B\right) & =\frac{\frac{\binom{N}{r}}{2^{N}-1} \times \frac{\binom{N-k}{r-k}}{\binom{N}{r}}}{\sum_{t=1}^{k-1} P\left(S_{N, t}^{*}\right) P\left(B / S_{N, t}^{*}\right)+\sum_{t=k}^{N} P\left(S_{N, t}^{*}\right) P\left(B / S_{N, t}^{*}\right)} \\
& =\frac{\sum_{t=1}^{k-1} \frac{\binom{N}{r}}{2^{N}-1} \times \frac{\binom{N-k}{t-k}}{2^{N}-1} \times\binom{ k}{t}}{\binom{N}{t}}+\sum_{t=k}^{N} \frac{\binom{N}{t}}{2^{N}-1} \times \frac{\binom{N-k}{t-k}}{\binom{N}{t}} \\
& \left.=\frac{\sum_{t=1}^{k-1}\binom{k}{t}+\sum_{t=k}^{N}\binom{N-k}{t-k}}{r-k} \begin{array}{l}
N-k \\
r
\end{array}\right)
\end{aligned}
$$

If we assume that $r<k$, then by a similar argument the result follows.

Corollary 2.4. Let $B \subset S^{*}, Y \subset X$ and $P: S^{*} \rightarrow[0,1]$ be such that $n(Y)=k$.
Then
(i) $P(B)=\frac{1}{2^{N}-1}\left\{\sum_{t=1}^{k-1}\binom{k}{r}+\sum_{t=k}^{N}\binom{N-k}{r-k}\right\}, \quad r=1,2, \ldots, N$,
(ii) $n(B)=\sum_{t=1}^{k-1}\binom{k}{r}+\sum_{t=k}^{N}\binom{N-k}{r-k} ; r=1,2, \ldots, N$.

Proof. By Corollary 2.2,

$$
\begin{aligned}
P(B) & =\sum_{r=1}^{N} P\left(S_{N, r}^{*}\right) P\left(B / S_{N, r}^{*}\right)=\sum_{r=1}^{k-1} P(S) P(B)+\sum_{r=k}^{N} P(S) P(B) \\
& =\sum_{r=1}^{k-1}\binom{k}{r}+\sum_{r=k}^{N}\binom{N-k}{r-k} \\
& =\sum_{r=1}^{k-1} \frac{\binom{N}{r}}{2^{N}-1} \times \frac{\binom{k}{r}}{\binom{N}{r}}+\sum_{r=k}^{N} \frac{\binom{N}{r}}{2^{N}-1} \times \frac{\binom{N-k}{r-k}}{\binom{N}{r}}
\end{aligned}
$$

Thus, we have (i).
Further, since $P(B)=\frac{n(B)}{n\left(S^{*}\right)}$, it follows (ii).
Remark 2.5. It is important to note the following, which is a consequence of Corollary 2.4:

$$
P(B)=\left\{\begin{array}{lll}
\frac{1}{2^{N}-1} \sum_{r=k}^{N}\binom{N-k}{r-k} & \text { if } r \geq k, & r=k, k+1, \ldots, N, \\
\frac{1}{2^{N}-1} \sum_{r=1}^{k-1}\binom{k}{r} & \text { if } r<k, \quad r=1,2, \ldots, k-1,
\end{array}\right.
$$

and consequently, we have

$$
n(B)= \begin{cases}\sum_{r=k}^{N}\binom{N-k}{r-k} & \text { if } r \geq k, \quad r=k, k+1, \ldots, N, \\ \sum_{r=1}^{k-1}\binom{k}{r} & \text { if } r<k, \quad r=1,2, \ldots, k-1 .\end{cases}
$$

Corollary 2.6. Let $B \subset S^{*}, Y \subset X$ and $P: S^{*} \rightarrow[0,1]$ be such that $n(Y)=k$ and $n(X)=N$. Then

$$
\sum_{r=1}^{N} P\left(S_{N, r}^{*} / B\right)=1
$$

For a practical purpose, we provide a simple illustration of how some of the results obtained in this paper can be applied to real life problems.

Example 2.7. Four different boxes contain element of the set $\{a, b, c, d\}$, a man was asked to choose an element from the 1st box one at time, from the 2nd box two at a time, from the 3rd box three at a time and from the 4th box four at a time. What is the probability of (a) choosing an element of the set $\{a, b\}$ from (i) the 1st box (ii) the 2nd box, (b) Picking the 4th box given that the elements of $\{a, b\}$ has been chosen.

Consider the diagram in appendix $i$.
Observe that the elements selected from 1st, 2nd, 3rd and 4th boxes are contained in the sets of the form $S_{4,1}^{*}, S_{4,2}^{*}, S_{4,3}^{*}$ and $S_{4,4}^{*}$, respectively. Hence from the diagram, we have
(a) (i) $P\left(B / S_{4,1}\right)=1 / 2$, (ii) $P\left(B / S_{4,2}\right)=1 / 6$,
(b) $P\left(S_{4,4} / B\right)=1 / 6$.

Now, applying the result obtained
(a) (i) $P\left(B / S_{4,1}\right)=\frac{\binom{k}{r}}{\binom{N}{r}}=\frac{\binom{2}{1}}{\binom{4}{1}}=1 / 2$,
(ii) $P\left(B / S_{4,2}\right)=\frac{\binom{N-k}{r-k}}{\binom{N}{r}}=\frac{\binom{4-2}{2-2}}{\binom{4}{2}}=1 / 6$.
(b) $P\left(S_{4,4} / B\right)=\frac{\binom{N-k}{r-k}}{\sum_{t=1}^{k-1}\binom{k}{t}+\sum_{t=k}^{N}\binom{N-k}{t-k}}$ since $r \geq k$

$$
\begin{aligned}
& =\frac{\binom{4-2}{4-2}}{\sum_{t=1}^{1}\binom{2}{t}+\sum_{t=2}^{4}\binom{4-2}{t-2}} \text { since } r \geq k \\
& =1 / 6
\end{aligned}
$$

## Conclusion

We observed that the result obtained by Thomas Bayer's has been given a suitable explicit formula in $S^{*}$ which is a larger class of sets. The concepts have been used to modify most of the well-known discrete probability functions of which this work is a follow up.

## References

[1] C. Moore, M. Laisin and O. C. Okoli, Generalised $r$-permutation and $r$-combination techniques for $k$-separable inclusion, Internat. J. Appl. Math. Statist. 23(D11) (2011), (to appear).
[2] Murray R. Spiegel, John J. Schiller and R. Alu Srinivasan, Theory and problems of probability and statistics, Schaum's outline Series. QA273. 25.S64 (2000), 18-19.
[3] G. Williams, Practical Finite Mathematics, Allyn and Bacon, Inc., Toronto, 1976, pp. 208-210.
[4] K. H. Rosen, Discrete Math. its Applications, McGraw-Hill, Singapore, 1991, pp. 232-296.
[5] O. C. Okoli, M. Laisin and W. Uwandu, A generalized K-permutation and K-combination techniques for K-non-inclusion condition, National Appl. Sci. J. 10(1) (2009), 36-44.
[6] O. C. Okoli, M. Laisin and W. Uwandu, $k$-partition of $k$-permutation and $k$-combination for either $k$-inclusion or $k$-non-inclusion, National Appl. Sci. J. 10(2) (2009), 138-145.
[7] J. Richard, Discrete Math, Macmillan, New York, 1984, pp. 43-65.
[8] R. Wenjing, Math for Algorithm and System Analysis.

