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Abstract 

We provide Stieltjes transform for the binomial function, the negative 
binomial and a recent model for the binomial. Stieltjes transform given by 
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circumstances, when 0>z  upper and lower bounds exist. 
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1. Introduction 

Anscombe [2] introduce the probability function 
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There are two other binomial models: 

 (i) ( ) ( )...,2,1,1,10 ==+<<+ nqppqpt n  

(ii) ( ) ( ).0,01 >>−+ − kpptp k  

Here we study the Stieltjes transformations and some symbolic form due to 
Aitken and Gonin [1]. 

2. Stieltjes Transform ( )∫
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The simple case relates to the p.g.f. ( ) .nqpt +  Defining 
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with Stieltjes fraction development 
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Similarly, for a negative binomial model with 

( ) ( )
( )

( ) ( )...,1,0;0,0,1
!

;, =>>+
Γ
+Γ

= −− tpkpp
kt

tkptkb tkt  

and Stieltjes integral 
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Lastly for the Anscombe [2] model, 
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The continued fractions so far mentioned are in Stieltjes form and referred to as 
S-fractions: they have the property that z alternates in the denominators, and for 

0>z  the odd convergent are decreasing upper bound, the even convergent 
increasing lower bound. For example, for the basic binomial model 

( ( ) )nqpt +f.g.p  the continued fraction is, less than z1  but greater than 

( ) znpz ,1 +  is real and positive. 

We have not mentioned convergent questions - for that questions see Wall [6,          

p. 120]. In the meantime for 0>z  bounds are z
1  and .1

α+z  

3. Symbolic Binomials 

We refer to Aitken and Gonin [1]. They show a formula for the orthogonal set 



K. O. BOWMAN and L. R. SHENTON 126 

related to the function .xnxqp
x
n −⎟
⎠
⎞

⎜
⎝
⎛  In fact, 
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where ( ) ( ) ( ),11 +−−= rxrrx r  and Δ is the forward difference operator Δ with 

( ) ( ) ( ).1 xfxfxfx −+=Δ  

Actually Δ was mentioned by Euler. Newton introduced the main concept of the 
binomial around 1665, about 345 years ago (Boyer [4]). 

Aitken and Gonin show that 
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There is an alternative form due to Shenton [5] namely 
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There is the orthogonality statement 
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where δ is the δ operator. 

For the traditional negative binomial 
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Lastly, for the new negative binomial 
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4. Conclusion 

We have given a comprehensive account of the Stieltjes transform related to the 
binomial. Note that the binomial in some form or other is due to Newton, about 345 
years ago. 
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