A MONTAGE FOR THE BINOMIAL DISTRIBUTION STIELTJES TRANSFORM

K. O. BOWMAN and L. R. SHENTON

Computational Sciences and Engineering Division
Oak Ridge National Laboratory
P. O. Box 2008, 4500N, MS-6191

Oak Ridge, TN 37831-6191
U. S. A.
e-mail: bowmanko@ornl.gov
Department of Statistics
University of Georgia
Athens, Georgia 30602
U. S. A.

Abstract

We provide Stieltjes transform for the binomial function, the negative binomial and a recent model for the binomial. Stieltjes transform given by $\int_{0}^{\infty} \frac{f(x)}{z+x} d x$, continued fractions are S-form and under certain circumstances, when $z>0$ upper and lower bounds exist.

2010 Mathematics Subject Classification: 62E20.
Keywords and phrases: continued fractions, difference operator, S-fraction, symbolic form.
This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC-0500OR22725 with the U. S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Received January 20, 2011

1. Introduction

Anscombe [2] introduce the probability function
$b(x ; \alpha, \theta)=\left(\frac{1}{1+\frac{\theta}{\alpha}}\right)^{x}\left(\frac{1}{1+\frac{\alpha}{\theta}}\right)^{-\theta} \frac{\Gamma(\theta+x)}{\Gamma(\theta) x!} \quad(x=0,1, \ldots, \alpha>0, \theta>0)$
with p.g.f.

$$
\left(1+\frac{\alpha}{\theta}-\frac{\alpha}{\theta} t\right)^{-\theta}
$$

There are two other binomial models:
(i) $(p t+q)^{n}(0<p<1, p+q=1, n=1,2, \ldots)$
(ii) $(1+p-p t)^{-k} \quad(p>0, k>0)$.

Here we study the Stieltjes transformations and some symbolic form due to Aitken and Gonin [1].
2. Stieltjes Transform $\int_{0}^{\infty} \frac{f(x)}{x+z} d x$

The simple case relates to the p.g.f. $(p t+q)^{n}$. Defining

$$
b(x, n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

there is the transform

$$
\sum_{x=0}^{n} \frac{b(x, n, p)}{z+t}
$$

with Stieltjes fraction development

$$
F(x)=\frac{1}{1+} \frac{n p}{1+} \frac{q}{z+} \frac{(n-1) p}{1+} \frac{2 q}{z+} \frac{(n-2) p}{1+} \frac{3 q}{z+} \cdots \frac{n q}{z+} .
$$

Similarly, for a negative binomial model with

$$
b(k, t ; p)=\frac{\Gamma(k+t)}{t!\Gamma(k)} p^{t}(1+p)^{-k-t}, \quad(k>0, p>0 ; t=0,1, \ldots)
$$

and Stieltjes integral

$$
\sum_{t=0} \frac{B(k, t ; p)}{z+t}=\frac{1}{z+} \frac{k p}{1+} \frac{q}{z+} \frac{(k+1) p}{1+} \frac{2 q}{z+} \frac{(k+2) p}{1+} \cdots
$$

Lastly for the Anscombe [2] model,

$$
\begin{aligned}
& b(\theta, t ; \alpha)=\left(\frac{1}{1+\frac{\theta}{\alpha}}\right)^{\alpha}\left(\frac{1}{1+\frac{\alpha}{\theta}}\right)^{-\theta} \frac{\Gamma(\theta+x)}{x!\Gamma(\theta)} \\
& \sum_{x=0}^{\infty} \frac{b(\theta, t ; \alpha)}{z+x}=\frac{1}{z+} \frac{p_{1}}{1+} \frac{q_{1}}{z+} \frac{p_{2}}{1+} \frac{q_{2}}{z+} \cdots,
\end{aligned}
$$

where

$$
\begin{aligned}
& q_{s}=s\left(1+\frac{\alpha}{\theta}\right) \\
& p_{s}=(\theta+s-1) \frac{\alpha}{\theta}, s=1,2, \ldots
\end{aligned}
$$

The continued fractions so far mentioned are in Stieltjes form and referred to as S-fractions: they have the property that z alternates in the denominators, and for $z>0$ the odd convergent are decreasing upper bound, the even convergent increasing lower bound. For example, for the basic binomial model (p.g.f $(p t+q)^{n}$) the continued fraction is, less than $1 / z$ but greater than $1 /(z+n p), z$ is real and positive.

We have not mentioned convergent questions - for that questions see Wall [6, p. 120]. In the meantime for $z>0$ bounds are $\frac{1}{z}$ and $\frac{1}{z+\alpha}$.

3. Symbolic Binomials

We refer to Aitken and Gonin [1]. They show a formula for the orthogonal set
related to the function $\binom{n}{x} p^{x} q^{n-x}$. In fact,

$$
G(x)=\left(1+p \Delta_{x}\right)^{-(n-r+1)_{X}(r)}, \quad(x=1,2, \ldots)
$$

where $x^{(r)}=r(r-1) \cdots(x-r+1)$, and Δ is the forward difference operator Δ with

$$
\Delta_{x} f(x)=f(x+1)-f(x)
$$

Actually Δ was mentioned by Euler. Newton introduced the main concept of the binomial around 1665, about 345 years ago (Boyer [4]).

Aitken and Gonin show that

$$
\Delta G_{r}(x)=r G_{r-1}(x ; p, n-1),
$$

and

$$
\begin{aligned}
x^{(r)}= & G_{r}(x)+r p(n-r+1) G_{r-1}(x ; p, n-1) / 1! \\
& +r_{(2)} p^{2}(n-r+1)^{(2)} G_{r-2}\left(x ; p, n_{2}\right) / 2!+\cdots
\end{aligned}
$$

There is an alternative form due to Shenton [5] namely

$$
\begin{aligned}
x^{(r)}= & G_{r}(x)+r p(n-r+1) G_{r-1}(x) \\
& +r_{(2)} p^{2}(n-r+2)^{(2)} G_{r-2}(x)+r_{(3)} p^{3}(n-r+3)^{(3)} G_{r-3}(x) \cdots
\end{aligned}
$$

There is the orthogonality statement

$$
\sum_{x=0}^{n} G_{r}(x) G_{s}(x)\binom{n}{x} p^{x} q^{n-x}=\delta_{r, s} n^{(r)} p^{r} q^{r} r!, \quad(r, s=0,1, \ldots)
$$

where δ is the δ operator.
For the traditional negative binomial

$$
\sum_{x=0}^{\infty} G_{r}(x) G_{s}(x)(1+p)^{-k}\left(\frac{p}{p+1}\right)^{x} \frac{\Gamma(k+x)}{x!\Gamma(k)}=\delta_{r, s}(k+r-1)^{(r)} p^{r}(1+p)^{r} r!.
$$

Lastly, for the new negative binomial

$$
\begin{aligned}
& \sum_{x=0}^{\infty} G_{r}(x) G_{s}(x)\left(\frac{1}{1+\frac{\theta}{\alpha}}\right)^{x}\left(\frac{1}{1+\frac{\alpha}{\theta}}\right)^{-\theta} \frac{\Gamma(\theta+x)}{x!\Gamma(\theta)} \\
= & \delta_{\alpha, s}(\theta+r-1)^{(r)}\left(\frac{\alpha}{\theta}\right)^{r}\left(1+\frac{\alpha}{\theta}\right)^{r} r!.
\end{aligned}
$$

4. Conclusion

We have given a comprehensive account of the Stieltjes transform related to the binomial. Note that the binomial in some form or other is due to Newton, about 345 years ago.

References

[1] A. C. Aitken and H. T. Gonin, On fourfold sampling with and without replacement, Proceedings of the Royal Society of Edinburgh LV(II) (1934-1935), 114-125.
[2] F. J. Anscombe, Sampling theory of the negative binomial and logarithmic series distributions, Biometrika 37 (1950), 358-382.
[3] K. O. Bowman and L. R. Shenton, Moments of maximum likelihood estimators in the discrete case, Far East J. Theo. Statist. 18(1) (2006), 61-91.
[4] C. B. Boyer, History of Mathematics, John Wiley, New York, 1985.
[5] L. R. Shenton, Non-linear regression and Kapteyn's theory of skewness frequency, Thesis for the requirement of Ph.D. University of Edinburgh, England, 1940.
[6] H. Wall, Analytic Theory of Continued fraction, Chelsea Pub. Co., New York, 1948.

