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Abstract 

In this paper, the stability of complete synchronization in a class of 
unidirectional coupled chaotic systems is investigated. A particular 
Lyapunov functional is constructed in terms of the master-slave system 
directly, instead of error systems. By means of some similar Lipschitz 
conditions, a new criterion for the asymptotically stability of complete 
synchronization motion is obtained. This result can be applied to some 
systems widely. 

1. Introduction 

As the sensitivity to the initial conditions, even two identical chaotic systems 
starting from slightly different initial conditions would evolve in time in an 
unsynchronized manner. Therefore, the setting of synchronized behavior in coupled 
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chaotic systems has a great importance and interest [1]. Since the pioneering work of 
Pecora and Carroll [2], the synchronization of chaotic systems and its application 
have been a subject of active research in the field of chaos. Many research efforts 
have been focused on chaos control and chaos synchronization problems in physical 
chaotic systems [3-5]. For the complete synchronization in unidirectional coupling 
chaotic systems, several theoretical methods have been developed, such as the 
Pecora and Carroll method, linear and nonlinear feedback control, the adaptive 
coupling, impulsive control methods, time-delay feedback approach [6], and so on. 

Meanwhile, stability of the synchronized motion is also a very relevant issue. 
Many criteria have been established for complete synchronization. One of the most 
popular and widely used criteria is the use of the Lyapunov exponents of the 
linearized system for the synchronization error [7], another method is the use of the 
Lyapunov functions [8], some further criteria for the stability of synchronized states 
are carried out from the analysis of eigenvectors [9], invariance principle [10], etc. 
Park [11] presented a master-slave synchronization scheme via a single controller. 
Such an adaptive backstepping control law is derived to make the error dynamics 
only depending on the error state. Thus, the stability of synchronization was easily 
translated to the stability of the trivial solution of error dynamics. By constructing a 
suitable Lyapunov-Krasovskii functional, [12] studied the exponential stability of 
synchronization in some particular unidirectional coupled chaotic systems. Applied 
such method, we often consider the linearization system instead of the error system 
itself, so some criteria of stability relate to the evolution of the drive systems. Chen  
et al. [10] developed some feasible method of chaos synchronization in systems 
dissatisfying global Lipschitz conditions. By means of the varying coupling strength 
techniques sufficient criteria for both complete synchronization and generalized 
synchronization are established. 

In the study of the stability of synchronized motion, error systems are often 
discussed, and then obtain some criterion for stability. But, in general, there are 
some specific terms relating to the driving system in error systems. In these cases, it 
is difficult to judge the stability of error systems. Usually, methods of such as the 
linearized systems, global or locally Lipschitz condition are considered. Though 
various techniques are applied, most of the corresponding criteria for the 
synchronization include the evolution of the drive systems more or less. This paper 
attempts to study the stability of synchronized motion via some kind of similar 
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Lipschitz conditions, in which the error systems do not employed. Our method is 
constructing a Lyapunov functional in terms of the master-slave system directly. 
Sufficient criteria for complete synchronization are presented. 

2. The General Theorem for Stability of Synchronization Motion 

Consider the following coupled chaotic system: 

( ) ( ) ( )( ),,, τ−= txtxtftx  (1) 

 ( ) ( ) ( )( ) ( ) ( )( ),,,, tytxKtytytfty +τ−=  (2) 

where ( ),, RRRRCf ××∈  ( ),, RRRCK ×∈  ( ) .0, =xxK  

First, some notations must be introduced. 

[ ]( )RCC ,0,τ−=  is the space of continuous functions mapping the interval 

[ ]0,τ−  into R. For ,C∈φ  ( ) ( ) ( ),sup 0 θ+=θ⋅θφ=φ ≤θ≤τ− txxt  [ ].0,τ−∈θ  

Theorem 1. Suppose that there exists a continuous functional ( ),,, ψφtV  

C∈ψφ,  such that 

 (i) ( ) ( )( ) ( ) ( ),,,00 ψ−φ≤ψφ≤ψ−φ btVa  

(ii) ( ) ( ) ( )( ),,, tytxcyxtV tt −−≤  

where ( ),xa  ( ),xb  ( )xc  are Kamke-type functions, ( )tt yxtV ,,  is time derivative 

along the solutions of equations (1) and (2), then the complete synchronization 
motion ( ) ( ){ }tytx =  between equations (1) and (2) is uniformly asymptotically 

stable. 

The proof is similar to the Lyapunov stability theorem (Hale and Lunel [13]), 
here omitted. 

3. Synchronization for Two Classes of Delay Systems 

Consider the following coupled chaotic systems: 

( ) ( )( ) ( )( ),τ−+= txgtxftx  (3) 

 ( ) ( )( ) ( )( ) ( ) ( )( ),tytxKtygtyfty −+τ−+=  (4) 

where ( ),,, RRCgf ∈  ( )xg  is nondecreasing, .0>K  
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Theorem 2. Assume that there exist positive constants L and k such that 
( ) ( ) ( ),yxLygxg −<−  ( ) ( ) ( ) ( ) ( ) ( ),yxkygxgyfxfyxK −−<−+−+−−  for 

.yx ≥  Then the complete synchronization between system (3) and (4) is uniformly 

asymptotically stable. 

Proof. Let ( )txx =  be the solution of the initial problem 

 
( ) ( )( ) ( )( )

( ) ( ) [ ]⎩
⎨
⎧

τ−∈θθφ=θ+

τ−+=

,0,,

,

0tx

txgtxftx
 (5) 

and ( ),tyy =  ( )tzz =  are the solutions of following initial problems, respectively, 

( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( ) [ ]⎩
⎨
⎧

τ−∈θθψ=θ+

−+τ−+=

,0,,

,

0ty

tytxKtygtyfty
 (6) 

( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) [ ]⎩
⎨
⎧

τ−∈θθψθφ=θ+

−+τ−+=

.0,,,max

,

0tz

tztxKtzgtzftz
 (7) 

It is obvious that 

 ( ) ( ) ( ) ( ) .,, 0tttztytztx ≥≥≥  (8) 

Define a functional as 

( ) ( ) ( ) ( ) ( )( ) ( )( )( )∫ τ−
−+−==

t

t
tt dsszgsxgtztxzxVtV .,11  

Then ( )tt zxV ,1  satisfies the condition (i) of Theorem 1, and the derivative of ( )tV1  

is 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ).1 tztxktzgtxgtzftxftztxKtV −−<−+−+−−=  

Also, we define a similar functional as 

( ) ( ) ( ) ( ) ( )( ) ( )( )( )∫ τ−
−+−==

t

t
tt dsszgsygtztyzyVtV ,,22  

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ).2 tztyktzgtygtzftyftztyKtV −−<−+−+−−=  

By Theorem 1, synchronization motions ( ) ( ){ }tztx =  and ( ) ( ){ }tzty =  are 

uniformly asymptotically stable, therefore synchronization motion ( ) ( ){ }tytx =  is 

also uniformly asymptotically stable. 
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Consider other coupled chaotic systems: 

( ) ( )( ) ( )( ) ( )( ),τ−+= txgtxhtxftx  (9) 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ),tytxKtygtxhtyfty −+τ−+=  (10) 

where ( ),,,, RRChgf ∈  .0>K  

Denote a function ( )xH  which satisfies ( ) ( ).1 xhxH −=  

Theorem 3. Assume that there exist Kamke-type functions ( ),xa  ( )xb  and ( ),xc  

positive scalars L and r such that 

( ) ( ) ,yxLygxg −<−    ( ) ( ) ( ) ( ),yxbyHxHyxa −≤−≤−  

( ) ( )( ) ( ( ) ( ) ( ) ( )) ( ) ( )( ) ( )yxyHxHKyfyhxfxhyHxH −−−−− −− 11  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ).4
1 22 tytxcygxgyHxH −−≤−+−+  

Then the complete synchronization between system (9) and (10) is uniformly 
asymptotically stable. 

Proof. Define a functional as 

( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )∫ τ−
−+−==

t

t
tt dssygsxgtyHtxHyxVtV .2

1, 22
33  

Then ( )tt yxV ,3  satisfies the condition (i) of Theorem 1, and the derivative of 

( )tV3  is 

( ) ( )( ) ( )( )( ) ( ( )( ) ( )( ) ( )( ) ( )( ))tyftyhtxftxhtyHtxHtV 11
3

−− −−=  

( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( )( txHKtygtxgtyHtxH −τ−−τ−−+  

( )( )) ( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )22 τ−−τ−−−+−− tygtxgtygtxgtytxtyH  

( )( ) ( )( )( )( ( )( ) ( )( ) ( )( ) ( )( )) ( )( )( txHKtyftyhtxftxhtyHtxH −−−≤ −− 11  

( )( )) ( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )22
4
1 tygtxgtyHtxHtytxtyH −+−+−−  

( ) ( )( ).tytxc −−≤  
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Applied Theorem 1, synchronization motions ( ) ( ){ }tytx =  is uniformly 

asymptotically stable. 

4. Conclusion 

In this paper, the issue of complete synchronization in a class of unidirectional 
coupled chaotic systems has been discussed. By means of some similar Lipschitz 
condition, a new criterion for the asymptotically stability of complete 
synchronization motion is obtained. Our method is constructing a Lyapunov 
functional in terms of the master-slave system directly, not with the error systems. 
Although the Lipschitz condition of the master system is not satisfied, complete 
synchronization in coupled chaotic systems can also be showed. 
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