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Abstract 

Under certain circumstances, such as with various credit scoring models, 
the model’s performance in the tails is especially important. Standard two-
sample tests statistics can be improved when the concerned difference is 
on the tails. A new methodology is developed, which splits the combined 
samples in half using the overall sample median of the s’ŷ  as the cut 

point in order to place more focus on the tails. This new methodology can 
be used to aid in model selection for credit scoring models. Simulation 
results of the new methodology yield higher power when the population 
mean and standard deviation are the same for the two populations. Thus 
another application is to test if standardized scores have the same 
distribution. 

1. Introduction 

Credit scoring models are basically models that use credit data. These models 
can be used to estimate the probability of default on the re-payment of credit (risk), 
fraud and even the probability of a response to marketing campaigns. For risk, fraud 
and response models, the dependent variable can be broken out into two groups, one 
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group comprised of the successes and the second group of the failures. For a risk 
model, successes are considered good loans and failures bad loans, and similarly for 
fraud and response models. There has been research comparing modeling techniques 
within credit scoring (e.g., Reichert et al. [10], Hand and Henley [7], Srinivasan and 
Kim [13], Doumpos and Pasiouras [3], Galindo and Tamayo [5], Mo and Yau [9]). 
A subject of equal importance is how to validate the model, as different test statistics 
can lead to different conclusions on model performance. In a general sense, a good 
model will produce scores for the successes and failures that differ significantly. In 
order to determine, if the model is good or not, then often goodness-of-fit tests are 
used. 

Goodness-of-fit tests in the two-sample case are concerned with whether or not 
the two-samples are from the same probability distribution function. For this case, 
the tests determine if the scores of the successes and failures come from the same 
distribution or not. If the scores for the successes and failures have a similar 
distribution, then the scores cannot be used to differentiate between the successes 
and failures. Thus the concept in using a goodness-of-fit test is that the more 
different the distribution of scores is the better for using the scores to differentiate 
between the successes and failures. One such goodness-of-fit test statistic that is 
commonly used (Dryver and Sukkasem [4]) is the two-sample Kolmogorov-Smirnov 
statistic (K-S statistic), which was introduced by Smirnov [12] to test the equality 
between two c.d.f.s. The two-sample K-S statistic is simply the maximum difference 
between the two empirical distribution functions (e.d.f.s). 

Unfortunately, the K-S statistic lacks sensitivity when the difference in the true 
probability distributions is in the tails of the c.d.f.s (Mason and Schuenemeyer [8]). 
This can be seen in Tables 1 and 2, where the K-S statistic is the same for the two 
models, model A and model B, but the models perform differently in the tails. The 
Anderson-Darling test statistic (A-D) is sensitive to differences in the tails (Scholz 
and Stephens [11]), but when the tails of the distribution are of interest, there is room 
for improvement. In the credit scoring arena, the modeler expects the distributions of 
scores for “goods” and “bads” to differ but the focus in terms of K-S statistic is for 
model comparison. Thus this short coming can yield misleading results when the 
K-S statistic is used for model selection. 

The purpose of the new methodology proposed, leveraging the standard two-
sample A-D or K-S statistic, is to propose a more powerful test than the standard 
statistics when two distributions are similar but differ in the tails. This new test not 
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only aids in the comparison of credit scoring models, but also in the comparison of 
standardized test scores. Standardized test scores such as CEEB scores (Hanania and 
Shikhani [6]) will have the same mean and standard deviation, as they are 
standardized but may not have the same distribution. It may be of concern if the 
distributions of two standardized scores are the same for various reasons. In this 
case, the proposed new methodology is more powerful and should perform better 
than the standard K-S and A-D statistics, as shown in Section 5. 

The new methodology proposed can be thought of as a partitioning technique, 
which ultimately yields two A-D or K-S statistics for testing the equality of 
distributions. The sample median of the combined scores for “goods” and “bads” is 
used to partition the two-samples into essentially four samples. Then the A-D or K-S 
statistic is calculated for below the sample median and above the sample median. In 
this manner, each individual test on the partitioned samples is more sensitive to the 
difference in the tails. Unfortunately, the statistics from the partitioned samples are 
dependent, as shown in Section 3, but from the simulation, as shown in Section 5, it 
can be seen that the correlation is very small. Due to the fact that there are now two 
hypothesis tests as opposed to a single test, the significance level for the individual 
tests must be adjusted in order to obtain the desired overall significance level, α. The 
adjustment used to α for the individual tests is straightforward, as shown in Section 
3. Throughout this paper, we will set the overall 05.0=α  for rejection of the null 
hypothesis. 

In addition, it may be more beneficial to merely do a single hypothesis test on 
the partitioned samples as opposed to two hypothesis tests. For example, with a 
fraud detection model, only a small percentage of the applicants will be rejected due 
to risk of fraud. Thus for a fraud detection model, the only concern is the low 
scoring individuals with the highest potential of fraud. For example, model A in 
Table 1 performs better than model B in Table 2 when focusing on the bottom 20% 
and 10%, but the K-S is equal for both models. The A-D statistic shows that the 
model A is better than model B in terms of differentiating between goods and frauds 
as it does better when the difference is in the tails. The A-D statistic also shows that 
the model A is better than model C, see Tables 1 and 3, but when focusing on the 
bottom 20% and 10%, we can see the models actually perform the same. For this 
situation, the test statistic on the partitioned sample would be more informative (see 
Section 4) and in fact, a single test statistic would suffice. For this reason, a single 
hypothesis is also investigated in Section 5, using an adjusted pα  set equal to the 
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desired α, as it is a single test. The limiting distribution of the test statistics is only 
known under the null hypothesis and is unknown under the alternative hypothesis 
(Capon [2], Scholz and Stephens [11]). Thus the power of this new testing 
methodology compared to the standard two-sample test statistics is investigated 
through simulation under various alternatives in Section 5. 

Table 1. Validation of fraud model A 

 

Table 2. Validation of fraud model B 
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Table 3. Validation of fraud model C 

 

2. Two-sample Statistics 

The K-S and A-D statistic tests if two independent random samples from 
unknown continuous cumulative distribution functions (c.d.f.s), XF  and ,YF  

actually are from the same c.d.f.s (Smirnov [12], Scholz and Stephens [11]). For this 
paper, the two distributions are the distribution of scores for the successes, X, and 
the scores for the failures, Y. A very good model will produce very different scores 
for the successes and failures. Another way to view this is that the scores for the 
successes come from a different distribution than the failures. This is one reason 
why the K-S statistics are used to determine the strength of the credit scoring model. 
The A-D and K-S statistic tests null hypothesis 

 YX FFH =:0  versus .: YXA FFH ≠  (1) 

2.1. The two-sample K-S statistic 

The K-S statistic equals 

 ( ) ( ) ,ˆˆmax tFtFKS YnXm
t

mn −=  (2) 

where ( )tFXm
ˆ  and ( )tFYn

ˆ  are the e.d.f.s of XF  and YF  evaluated at t from samples 

of size m and n, respectively. The limiting distribution of mnKS
nm

mn
+

 under the 
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null hypothesis (Capon [2]) is 
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from which the p-value can be calculated for large m and n. 

2.2. The two-sample A-D statistic 

The A-D statistic can test if two independent random samples from unknown 
continuous cumulative distribution functions (c.d.f.s), XF  and ,YF  actually are 

from the same c.d.f.s (Scholz and Stephens [11]). The A-D statistic can be used in 
the same manner as the K-S statistic in Subsection 2.1 to test null hypothesis 1. The 
following formula and general notation are from Scholz and Stephens [11], adjusted 
for the fact there are only two samples considered in this paper whereas the original 
formula allows for multiple, k, samples 
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Let ∗∗∗ <<< LZZZ 21  represent the ordered combined sample after removing 

duplicates and ijf  equals the number of observations in the ith sample equal to .∗jZ  

Thus L is the number of unique observations and .mnN +=  

3. Split Sample Statistics 

The new methodology stems from the following concept: 

( ) ( )MYFMXFH YX ≤=≤:0  and ( ) ( )MYFMXFH YX >=>:0  

versus 

( ) ( )MYFMXFH YXA ≤≠≤:  and/or ( ) ( ),: MYFMXFH YXA >≠>  (5) 

where M is the population median, which is the same under the null hypothesis. In 
addition, the new methodology can be used to focus on a more important part of the 
distribution, as in credit scoring near the cutoff. In short, it is possible to investigate 
either 

( ) ( )MYFMXFH YX ≤=≤:0  versus ( ) ( )MYFMXFH YXA ≤≠≤:  

or 

( ) ( )MYFMXFH YX >=>:0  versus ( ) ( ).: MYFMXFH YXA >≠>  (6) 

Null hypothesis 5 is false if and only if null hypothesis 1 is false. Thus a test on 
null hypothesis 5 can be used to test null hypothesis 1. In order to test null 
hypothesis 5, the data are split in half using the sample median of all the scores for 
successes and failures combined resulting from the credit scoring model. After 
splitting the sample scores in this manner, four e.d.f.s are created. There are two 
e.d.f.s created for scores above the sample median, one for successes and one for 
failures. In addition, two e.d.f.s are created for scores below the sample median. 
Finally, two K-S or A-D statistics are calculated, one using the top half scoring 
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observations, 1KS  or ,1AD  and another for the bottom half of the scoring 

individuals, 2KS  or .2AD  In the rare case, when the smallest data point in one 

sample is larger than the largest data point in the other data point, technically the 
statistics cannot be calculated. In this case, the p-values for all ∗AD  and ∗KS  are set 

to zero and 1KS  and 2KS  will be set to 100%. Assuming sufficient data, if one 

sample’s minimum is larger than the other sample’s maximum, then the latter is a 
reasonable approach as it is expected to reject null hypothesis 1. 

In practice, n and m are known, but the values of ,1n  ,1m  2n  and 2m  are 

obtained after the partitioning of the data by the sample median, ,m̂  of the entire 

dataset. From Table 4, it can be seen that if 1n  is given, then the values of ,2n  1m  

and 2m  can be determined. 

Table 4. The breakout of the data, where ( )iZ  represents the ordered data points 

 

From equation (3), it can be seen that the distribution of the two-sample K-S 
statistic depends upon the values of the sample sizes. Under null hypothesis 1, all of 
the observations were generated independently and were identically distributed 
(i.i.d.). Unfortunately, ,1n  ,2n  1m  and 2m  are not independent (see Table 4). Thus 

the probability distribution functions for sample statistics, which rely on ,1n  ,2n  

1m  and 2m  are not independent. Knowing m, n and ,1n  then ,1m  2n  and 2m  can 

be solved. Finally, under the null hypothesis, the distribution of 1n  before any data 

observed, is 
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⎟
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3.1. The split sample K-S statistics 

The split sample K-S statistics are defined using the sample sizes obtained after 
the sample is split. The e.d.f.s are used to investigate the c.d.f.s split at the 
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population median. The 1KS  statistic equals 

 ( ) ( ) ,ˆˆmax 11 111 tFtFKS YnXm
t

−=  (8) 

where ( )tF Xm11̂  and ( )tF Yn11̂  are the e.d.f.s to investigate ( )MXFX ≤  and 

( )MYFY ≤  evaluated at t from samples of sizes 1m  and ,1n  respectively. The 

2KS  statistic is defined similarly and equals 

 ( ) ( ) ,ˆˆmax 22 222 tFtFKS YnXm
t

−=  (9) 

where ( )tF Xm22
ˆ  and ( )tF Yn22

ˆ  are the e.d.f.s to investigate ( )MXFX >  and 

( )MYFY >  evaluated at t from samples of sizes 2m  and ,2n  respectively. The 
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and for 
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from which the p-values can be calculated for large ,1n  ,1m  2n  and .2m  

3.2. The split sample A-D statistics 

The split sample Anderson-Darling statistics work in the same manner as the 
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split K-S statistics in Subsection 3.1. The calculations of 1AD  and :2AD  
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where mZZZ L ˆ11
2

1
1 1

≤<<< ∗∗∗  represents the ordered combined sample less than 

or equal to the sample median after removing duplicates and 1ijf  equals the number 

of observations in the ith sample equal to .1∗
jZ  Similarly, ∗∗∗ <<<< 22

2
2
1 2

ˆ LZZZm  

represents the ordered combined sample greater than the sample median after 
removing duplicates and 2ijf  equals the number of observations in the ith sample 

equal to .2∗
jZ  Thus 1L  is the number of unique observations less than or equal to 

the sample median, ,111 mnN +=  2L  is the number of unique observations greater 

than the sample median, and .222 mnN +=  

3.3. Adjusted alpha levels 

For the split K-S statistics and split A-D statistics, when testing both 1KS  and 

2KS  or 1AD  and ,2AD  an adjusted rejection region is used. This is done in order 
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to obtain an overall approximate 05.0=α  for null hypothesis 5. The adjusted α, 

pα  used in the simulation are 

( ) ,11 2
pα−−=α  

( ) ,11 2
pα−=α−  

( ) ,95.111 −=α−−=α p  

.02532.0=α p  

Note that for certain values of ,1n  it may be impossible to obtain the desired 

level of significance. For example, it is possible for ,01 =n  under which the null 

hypothesis is automatically rejected, as the probability of 01 =n  is very small under 

null hypothesis 5, where the distribution of 1n  under the null hypothesis is given by 

equation (7) in Section 3. In the case that 01 =n  or ,1 nn =  all of the scores of one 

sample are greater than all of the scores of the other sample, which would lead one 
to believe that even without a statistical test, the scores of the successes and failures 
do not come from the same distribution. Thus, for a sufficiently large n and m 
setting, 02532.0=α p  yields an approximate level of significance of 0.05, as shown 

in Section 5. In addition, it is investigated when the researcher is only interested in 
either scores less than or equal to the median or above the median, but not concerned 
with both, for example, using 2KS  or 2AD  to test only .: 220 YX FFH =  Under 

this circumstance, it is not necessary to adjust the rejection in order to obtain the 
desired significance level, as only a single test statistic is used. 

3.4. Theoretical limitations 

The newly proposed methodology has some limitations. For starters, the null 
hypothesis 5 splits the distributions by the population median, whereas the sample 
median is used to calculate the statistics proposed in this paper. This affects the 
breakout of m and n into ,1n  ,1m  2n  and ,2m  which are used to calculate the 

statistics. Also, there is a lack of independence of the split sample statistics resulting 
from the split sample sizes (see Table 4). For larger samples, the sample median 
converges to the population median and making the latter concerns for sufficiently 



ARTHUR L. DRYVER 36 

large sample sizes minor concerns to non-issues. For example, within credit scoring 
and model selection, often sample sizes are in the thousands and thus using the split 
K-S for model selection, the latter concerns are very minor. Finally, a small note is 
taken that the statistics are on e.d.f.s but the null hypothesis 5 merely splits the 
c.d.f.s. 

4. Illustrative Example 

Tables 5 and 7 are from model A in Table 1, partitioned by the sample median, 
from which the K-S statistic and A-D statistic were calculated for the upper 50% 
scoring individuals and separately for the bottom 50% scoring individuals. Tables 6 
and 8 are from model B in Table 2, partitioned by the sample median; and the same 
calculations are performed for Tables 5 and 7. Table 3 produces results that mimic 
the top half of Table 2 and the bottom half of Table 1 and thus Tables 6 and 7 are the 
split samples for Table 3 as well. 

As mentioned earlier, the K-S statistic is the same for both models A and B, 
even though model A performs better when looking at a bottom 20% and 10% cutoff 
point for rejecting applicants. The split sample K-S for the model A bottom scoring 
individuals is higher than that of the bottom scoring individuals for model B (Tables 
7 and 8), indicating that model A is better than model B, breaking the tie that 
occurred with the standard K-S. This is an example of one major advantage of the 
split sample K-S statistic, in that it is more sensitive to the tails, where it is often 
more important to concentrate upon for credit scoring models, and it can distinguish 
between two models of similar overall performance. The benefit for the A-D statistic 
of splitting the samples is that it makes model A evidently better than model B in the 
bottom half, as 2AD  in Table 7 is slightly over 50% higher than 2AD  in Table 8. 

Finally, the split samples clarify the fact that model C performs the same as model A 
in the bottom half as shown in Tables 7 and 8. 

 

 

 

 

 



FOCUSING ON THE LOWER SCORING DATA … 37 

Table 5. Validation of fraud model A, top scoring half 

 

Table 6. Validation of fraud models B and C, their top scoring halves 

 

Table 7. Validation of fraud models A and C, their bottom scoring halves 
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Table 8. Validation of fraud model B, bottom scoring half 

 

5. Simulation Results 

There are 24 simulations under the null hypothesis in Table 9, and 24 
simulations under various alternative hypotheses in Table 10, with varying sample 
sizes for m and n. The cut-off for when a single K-S, either the standard K-S or a 
split sample K-S, is .05.0=α  For testing null hypothesis 5, if the p-value of either 

1KS  or 2KS  was below ,02532.0=α  then the null was rejected. Ten thousand 

iterations were performed under each scenario in order to estimate the power of the 
test under the various sample sizes and alternatives. The results given are the number 
of iterations rejected divided by the number of iterations, 10,000. In addition, the 
sample correlation of 1KS  and ,2KS  and the sample correlation of the p-value of 

1AD  and p-value of ,2AD  are calculated1. 

Table 9. Simulation results under the null hypothesis with various distributions 

 

                                                      
1The correlation was set to NA when there was no variation in the p-value of 1AD  or 2AD  
and correlation was undefined as a result. The p-value was used to calculate correlation for 

1AD  and 2AD  because 1AD  and 2AD  are undefined when nn =1  and ,01 =n  but their 
p-values are set to zero and thus defined under those circumstances. 
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Table 10. Simulation results under the alternative hypothesis with various 
distributions 

 

6. Discussion 

The split sample test statistics yield the desired α under the null hypothesis, 
Table 9, even for smaller sample sizes despite some of the concerns expressed in 
Subsection 3.4. The split sample test statistics are consistently more powerful than 
their standard two-sample counterparts for testing null hypothesis 1 under the 
investigated alternative distributions and sample sizes, as shown in Table 10. Even 
in the case, where only a single split sample test statistic was used to reject null 
hypothesis 1, it was consistently considerably more powerful, with the only 
exception being under the lognormal distribution when compared to a normal 
distribution with the same mean and variance. When comparing a lognormal to a 
normal distribution, 1KS  and 1AD  outperformed the standard two-sample 

counterparts and 2KS  and 2AD  underperformed the standard two-sample statistics. 

It should be noted that under the alternative hypothesis, where the distributions were 
a lognormal and a normal distribution, the power was greatest for the old and the 
new methodology when compared to all other investigated alternatives. From the 
simulation results, it is believed that this methodology is more powerful in general 
when the mean and variances of the two distributions are the same but the c.d.f.s 
differ in the tails. Thus, from the simulation results, it is believed that it can be used 
for comparing the c.d.f.s of standardized scores from various situations where the 
means and variances are known to be the same but the distribution is believed to be 
different such as CEEB scores (Hanania and Shikhani [6]). In addition, this 
methodology can be very useful when developing credit scoring models where the 
difference in the tails can be of great importance (see Section 4). 

One of the benefits of the K-S statistic is the relative ease in explaining it to 
non-statisticians. Ease of understanding can be an attractive feature for choosing 
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which statistic to use within the finance arena, such as with value at risk (Beder [1]). 
Thus another benefit of the splitting the sample and then taking the K-S statistic on 
only the lower scoring individuals is its relative ease of understanding especially to 
those already familiar with the K-S statistic within the context of credit scoring. 
Also, within the credit scoring context, the real question is not if the score 
distribution of goods and bads are the same, but which model performs best. That is 
the K-S statistic and other statistics are used for model comparison and selection 
rather than as a test of significance. There is never really one statistic that tells the 
entire story in model selection, but given the findings in this paper the split sample 
K-S should definitely be considered as another tool used for credit scoring model 
selection. 

For future research, it is possible that a more powerful test statistic can be 
derived that incorporates the information in count, ,1n  under the same circumstances, 
especially for smaller sample sizes. 
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