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Abstract 

In this paper, we use some recently introduced multivariate stochastic 
volatility models to problems related to air pollution. The models 
considered here are commonly used in studies of financial time series. In 
this paper, they are used to analyse the weekly average volatility of five 
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pollutants affecting the inhabitants of the city of São Paulo, Brazil. Two 
different models are proposed to explain the behaviour of the weekly 
average measurements of those pollutants. Those models depend upon 
some parameters that are estimated using a Bayesian formulation via 
Markov chain Monte Carlo (MCMC) methods. 

1. Introduction 

Air pollution is a common problem affecting the inhabitants of large cities 
throughout the world and São Paulo-Brazil, is not an exception to that. Having an 
area of over than one million and a half square meters (IBGE [26]) and a population 
of over than 10 millions inhabitants (IBGE [27]), São Paulo is one of the largest 
cities in the world. Besides being the financial centre of the country, it has a large 
concentration of industries and an excessive number of cars and trucks circulating in 
the city. In São Paulo, as in Mexico City, motor vehicles are considered to be the 
main reason for the high levels of pollution. 

It is a well known fact that ambient levels of air pollution have been consistently 
associated with adverse health outcomes (see for instance, Ito and Thurston [28] and 
Ostro et al. [37]). Those problems are mostly due to respiratory and cardiovascular 
events (WHO [52]). Dose-response functions, relating increases in air pollutants to 
morbidity as well as mortality have been established on solid epidemiological 
grounds in studies performed in several locations (WHO [52]). Unfortunately, there 
is a lack of uniformity in the area of coverage of the air pollution monitoring 
networks across the globe. That hinders the possibility of performing 
epidemiological studies in regions such as Latin America, Asia and Africa, where 
the process of industrialization and the automotive fleet is growing fast, in a scenario 
of inadequate air pollution monitoring. Even in areas of the developed world, the 
proper determination of exposure is problematic. That is so, because conventional air 
pollution systems may experience periods of malfunctioning or inadequate spatial 
coverage, leading to a situation of exposure misclassification either in terms of time 
or spatial resolution (Ryan and LeMasters [46] and Chen et al. [12]). In this scenario, 
adequate pollution modeling is of pivotal importance in reducing exposure bias. That 
contributes to elaborate more robust dose-response functions and, thus, helps to 
establish public policies of air pollution control in more solid basis. 

Among the several pollutants affecting the air quality in São Paulo, we have 
sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter with diameter 
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smaller than 10 microns (PM10), ozone (O3) and carbon monoxide (CO). Those 

pollutants have different effects on the health of the population and on the 
environment. For instance, it is a well known fact that for ozone concentration above 
0.11 parts per million (0.11ppm), a very sensitive part of the population (e.g., elderly 
and newborn) in that environment may experience serious health deterioration (see 
for example, Bell et al. [8], Cifuentes et al. [13], Dockery et al. [16], Gauderman et 
al. [19], Gouveia and Fletcher [22] and Martins et al. [34]). The sulfur dioxide and 
the nitrogen oxides (NOx) are considered the main responsible for acid rain (see for 

instance, Mohnen [36] and Likens [33]). Those pollutants may suffer oxidation in 
the atmosphere and in combination with appropriate humidity they may produce acid 
rain. For instance, SO2 may react with water in the atmosphere to produce sulfuric 

acid and the nitrogen oxidises and in conjunction with water, may produce a reaction 
whose result is nitric acid (see for example, Likens [33]). We also have that 
exposure to carbon monoxide and PM10 during pregnancy may produce adverse 

effects on newborn (Ritz and Yu [41], Ritz et al. [42] and Ritz et al. [43]). 

The pollutants considered here are taken into account because, in general, they 
are the ones used by the environmental authorities in São Paulo to report the air 
quality in the city. Additionally, they are the ones that are emitted or whose 
precursors are emitted mainly by the burning of fossil fuel (see for instance, Likens 
[33]). However, there are other types of sources such as nitrogen fertilisers, confined 
animal feedlots, lightning and soil microbes (Likens [33]). 

There are many works using different methods to study problems related to air 
pollution. Among those works, we may quote Álvarez et al. [7], Brown et al. [10], 
Flaum et al. [18], Guardani et al. [23], Horowitz [25], Lanfredi and Macchiato [31], 
Leadbetter [32], Pan and Chen [38], Piegorsch et al. [39], Roberts [44, 45], Seigneur 
[47], Smith [48] and Zolghadri and Henry [55]. When the interest is centred in 
modeling the number of times, a pollutant concentration surpasses a given threshold, 
an alternative methodology is the use of Poisson models (see for example, Achcar et 
al. [1], Achcar et al. [3], Achcar et al. [4] and Raftery [40]). 

In this paper, the interest resides in analysing the behaviour of the variability of 
the weekly average measurements of pollutants instead of analysing their time series. 
Hence, we are going to use stochastic volatility (SV) models (see for example, 
Ghysels et al. [21], Kim et al. [29] and Meyer and Yu [35]). This family of models 
has been extensively used to analyse financial time series (see for example, 
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Danielsson [15] and Yu [53]), as a powerful alternative for the usual existing ARCH 
type models (autoregressive conditional heteroscedastic) introduced by Engle [17] 
and the generalized autoregressive conditional heteroscedastic (GARCH) models 
introduced by Bollerslev [9]. 

In the context of environmental problems, SV models have been used by Holan 
et al. [24] to predict spawning of shovelnose sturgeon; and in Achcar et al. [2, 5, 6], 
we have the use of SV models to study the weekly averaged ozone measurements in 
the different regions of Mexico City. In those works, either a univariate or bivariate 
SV model was used to analyse the weekly averaged ozone measurements in the five 
regions in which the Mexico City is divided. In here, we use two multivariate SV 
models to study the behaviour of five pollutants that affect the city of São Paulo, 
Brazil. The advantages of using SV-type models to analyse time series are that they 
assume the existence of two processes to model the series: one process describing 
the behaviour of the observations and another describing the latent volatility. 

This paper is organised as follows: Section 2 presents the multivariate stochastic 
volatility models considered here. In Section 3, a Bayesian formulation of the 
problems is given as well as the criterion used to select the best model to explain the 
data used. In Section 4, an application of the models is made to the data from the city 
of São Paulo. Finally, in Section 5, we discuss some of the results obtained. 

2. Multivariate Stochastic Volatility Models 

In this section, we consider some multivariate stochastic volatility models to 
study the behaviour of weekly average measurements of five pollutants present in 
the city of São Paulo. Several types of multivariate stochastic volatility models may 
be found in the literature (see for example, Yu and Meyer [54]). The ones considered 
here may be described as follows: Let 1≥N  be a fixed known integer number that 
records the amount of data used. (In here, N will represent the number of weeks       
in which we have the weekly average measurements of a pollutant of interest.)       
Let ( ),tZ j  ,...,,2,1 Kj =  ,...,,2,1 Nt =  be ( )1≥K  times series recording the 

results of K events. (In our case, ( )tZ j  is the weekly average measurement of a  

given pollutant j in the tth week, ,...,,2,1 Nt =  .)...,,2,1 Kj =  Denote by ( ),tY j  

Nt ...,,2,1=  the log-return series defined by [ ( ) ( )],1log −tZtZ jj  ....,,2,1 Kj =  
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Let ( ) ( ) ( ) ( )( ) ,...,,, 21
′= tYtYtYt KY  Nt ...,,2,1=  be a K-dimensional vector 

whose coordinates are the K times series ( ),tYi  ....,,2,1 Ki =  The set =Y  

( ) ( ) ( ){ }NYYY ...,,2,1  is the set of observed data. 

We assume that ( )tY  may be written in the following form: 

 ( ) ( ) ( ),ttHt εY =  (1) 

where ( ) ( ) ( ) ( )( )′εεε= tttt K...,,, 21ε  is an error vector and ( )tH  is a KK ×  

diagonal matrix given by 

 ( ) ( ( ) ( ) ( ) ),...,,,diag 222 21 ththth KeeetH =  (2) 

where ( ) ( ) ( ) ( )( ),...,,, 21 thththt K=h  Nt ...,,2,1=  is a vector of latent variables 

given as follows. We assume that ( ),th  Nt ...,,2,1=  is such that its coordinates 

follow an ( )1AR  model, i.e., for ,...,,2,1 Ki =  

 
( ) ( )
( ) ( )[ ] ( )⎩

⎨
⎧

=η+μ−−φ+μ=

η+μ=

,...,,3,2,1

,11

Nttthth

h

iiiiiii

iii  (3) 

where ,11 <φ<− ii  ,...,,2,1 Ki =  and ( ) ( ) ( ) ( )( )tttt Kηηη= ...,,, 21η  is assumed 

to have a multivariate Normal distribution with mean vector ( )0...,,0,0=0  and 

variance-covariance matrix the diagonal matrix ( )....,,,diag 222
21 Kηηη σσσ  

Remark. Note that by definition, we have for ,...,,2,1 Ki =  that ( )1ih  has 

Normal distribution ( )2, iiN ησμ  and that given ( ),1−thi  ,...,,3,2 Nt =  we have 

that ( )thi  has Normal distribution ( ( )[ ] ).,1 2
iiiiii thN ησμ+−φ+μ  Also, note that 

( ),tYi  ,...,,2,1 Ki =  may be written as 

 ( ) ( ) ( ) ....,,2,1,2 NttetY i
th

i i =ε=  (4) 

We also assume that ( )tε  has a multivariate Normal distribution with mean 

vector ( )0...,,0,0=0  and variance-covariance matrix ε∑  given by 
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where ijρ  is the covariance of ( )tiε  and ( ),tjε  ,...,,2,1, Kji =  ,ji ≠  

....,,2,1 Nt =  Note that the variance of ( ),tiε  Ki ...,,2,1=  is assumed to be 
equal to one, ....,,2,1 Nt =  

Therefore, by definition, we have that given ( ),th  the vector ( )tY  has a 

multivariate Normal distribution with mean vector 0 and variance-covariance matrix 
given by 
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Remark. Note that ( ) ( ) ( ) ( )( )thththt K...,,, 21=h  gives the volatility of the 

series studied. 

Two different models are going to be considered here to represent the volatility 
of the series. They are described as follows: 

1. Model I. In this model, we assume that the coordinates of the error vector 
( )tε  are independent, i.e., ,0=ρij  ,...,,2,1, Kji =  .ji ≠  Therefore, in this case, 

( )tY  will have a multivariate Normal distribution with mean vector 0 and variance-

covariance matrix given by (2). 

2. Model II. In this version of the model, we assume that the covariance 
functions ,ijρ  ,...,,2,1, Kji =  ji ≠  are unknown quantities that need to be 

estimated. Hence, ( )tY  will have a multivariate Normal distribution with mean 

vector 0 and variance-covariance matrix given by (6). 
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3. A Bayesian Analysis of the Problem 

The parameters of the model will be estimated using a Bayesian point of view 
via Markov chain Monte Carlo (MCMC) methods. Bayesian inference approach 
using MCMC methods (see for example, Gelfand and Smith [20] and Smith and 
Roberts [49]) has been used to estimate parameters of models applied to a wide 
range of areas. In here, we are going to use it to estimate parameters in SV models. 
The use of MCMC methods for analysing problems involving SV models applied to 
problems in ecology and environmental sciences can also been found in Achcar et al. 
[2, 5, 6], where an application to air pollution in Mexico City is given; and in Holan 
et al. [24], where an application to predicting spawning of shovelnose sturgeon is 
shown. The use of MCMC methods in this type of problems is justified by the 
presence of great difficulties such as high dimensionality of the vector of parameters, 
likelihood function with no closed form and high computational costs that make the 
use of standard classical inference approach very difficult. 

Inference will be performed using a sample drawn from the posterior 
distribution of the parameters of interest. Each model will be analysed separately. 

1. Model I. In this case, we assume that ( ) ( ) ( ) ( )( )′εεε= tttt K...,,, 21ε  has a 

Normal distribution with mean vector 0. We also assume that the correlation 
between two coordinates of the error vector is zero and that the variance of each 

coordinate is one. The vector of parameters in this model is ( ),,, 2 μσθ η= φI  where 

=φ  ( ),...,,, 2211 KKφφφ  ( )2222 ...,,, 21 Kηηηη σσσ=σ  and ( )....,,, 21 Kμμμ=μ  We 

assume that ,iiφ  iησ  and iμ  have as prior distributions a Normal, an Inverse 

Gamma and a Normal distributions, respectively, ....,,2,1 Ki =  That is, ,iiφ  iησ  

and iμ  have prior distributions ( ),, iiii baN  ( )ii dcIG ,  and ( ),, ii feN  respectively, 

,...,,2,1 Ki =  where the hyperparameters ,iia  ,iib  ,ic ,id  ,ie  if  are considered to 

be known and will be specified later. (In here, ( )dcIG ,  is the Inverse Gamma 

distribution with mean ( )1−cd  and variance [( ) ( )],21 22 −− ccd  with .)2>c  

2. Model II. When this model is taken into account, we have that the vector of 
parameters is ( ),, ρθθ III =  where ( )....,,...,,...,,, 11111312 KKKK −− ρρρρρ=ρ  We 

assume that ijρ  has as prior distribution a Normal distribution ( )ijij hgN ,  and that 
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Iθ  will have the same prior distributions as in Model I with possibly different 

hyperparameters. 

Note that, by hypothesis, in both models, the latent variables ( ) =th  

( ) ( ) ( )( ),...,,, 21 ththth k  Nt ...,,2,1=  are such that their prior distributions are 

given by 

 ( )( ) ( ) ( )( )∏
= η

−
η =
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⎣

⎡
μ−
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thg
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2

212 1,1
2

1exp1 θh  (7) 

and, for ,...,,3,2 Nt =  

( ) ( )( ) ( )∏∏
= =

−
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t
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ttg
1 2
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for ., III θθθ =  

Set IIθθ =  and take ( ),, hθφ =  where ( ) ( ) ( )( )....,,2,1 Nhhhh =  Hence, we 

have that the joint likelihood function of θ  and h, in Model II, is given by 

 ( ) ( ) ( )( )∏
=

|∝|
N

t

ttPL
1

,, θhYφY  (9) 

where ( ) ( )( )θhY ,ttP |  is the multivariate Normal distribution with mean vector zero 

and variance-covariance matrix Y∑  given by (6). When Model I is considered, we 

just take Iθθ =  and set 0=ρij  in (6). 

Considering either ( )hθφ ,I=  or ( ),, hθφ II=  we have that the joint 

posterior distribution of the vector of parameters and the latent variables is given by 

( )( ) ( )( ) ( ) ( )( )θhYθhYφ ,111 ||∝| PgtP  

( ) ( )( ) ( ) ( )( ) ( ),,,1
2

θPθhYθhh ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
|−|⋅ ∏

=

N

t

ttPttg  (10) 
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where ( )θP  is the prior distribution of the vector of parameters with ,, III θθθ =  

( ) ( )( )θhY ,ttP |  is as in (9) and ( )( ),1 θh |g  ( ) ( )( ),,1 θhh −| ttg  Nt ...,,3,2=  are 

given by the set of equations (7) and (8). 

A sample of the joint posterior distribution is generated using MCMC methods 
such as the Gibbs sampling and the Metropolis-Hastings algorithm (see for instance, 
Gelfand and Smith [20] and Smith and Roberts [49]). This task is simplified by 
using the software WinBugs (see Spiegelhalter et al. [50]). 

Different Bayesian discrimination methods are introduced in the literature to 
choose the best model to explain the behaviour of a given data set. In this paper, we 
are going to work with the Deviance Information Criterion (DIC). The DIC (see 
Spiegelhalter et al. [51]) is given by 

 ,2ˆ
DpDDIC +=  (11) 

where D̂  is the deviance evaluated in the posterior mean and Dp  is the effective 

number of parameters in the model, given by ,D̂DpD −=  with D  the posterior 

mean deviance. Smaller values of DIC indicate the best models. (Note that these 
values could be negative.) 

4. An Application to the Data of the City of São Paulo 

The data set used in this work is the weekly average measurements of                 
five pollutants ( )COandO,PM,NO,SO 31022  obtained by the Instituto de 

Astronomia, Geofísica e Ciências Atmosférica of the Universidade de São Paulo 
(http://www.iag.usp.br/) during the period ranging from May 1996 until December 
2006. Hence, we have that 555=N  and .5=K  

Figure 1 presents the plots of the weekly average measurements of each 
pollutants considered here versus time measured in weeks. 
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Figure 1. Weekly average measurement of the pollutants CO, NO2, SO2, O3 and 

PM10 versus time, measured in weeks, for the entire observational period. 

We may observe from Figure 1, that there is a consistent decrease of the weekly 
average measurements of CO, SO2 and PM10 during the period at which the data 

was collected. We may also observe that there is a cyclic behaviour of the plots. That 
could be an indication that the behaviour of those pollutants is different during 
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Summer and Winter, but are very similar from Summer to Summer and from Winter 
to Winter. When we consider the pollutant NO2, we may also observe a decreasing 

behaviour throughout the observational period with the exception of the period 
ranging from the 300th to the 400th and at the last weeks, where we observe a slight 
increase of the weekly average measurements. Regarding the pollutant O3, we may 

observe that throughout the observational period, there is not an indication of a 
decreasing behaviour in its measurements. 

It is worth mentioning that in 1996, the environmental authorities in the city of 
São Paulo implemented an environmental law similar to the one implemented in 
Mexico City in 1990. That law restricted the number of cars allowed to circulate in 
the Metropolitan Area. The use of cars during weekdays was controlled by the last 
number on the car’s registration number. It is possible to see that after the 
implementation of such measure, around the 150th week (i.e., a week around 
1999/2000), there was a decrease in the weekly average measurements of pollutants, 
mainly CO, NO2 and PM10. We may also observe from Figure 1, that after the 400th 

week (i.e., a week in the beginning of 2004), there is a stabilisation in a lower level 
of the weekly averages of the pollutants CO, NO2 and PM10. In the case of the 

pollutant SO2, that stabilisation occurs around the 460th week. We would like to call 

attention to the fact that in the year 2004, another environmental law was 
implemented. That law (CONAMA [14]), establishes the guidelines for the 
regulation of motorcycles and similar vehicles. However, it seems that in the case of 
ozone, some stronger measures should be taken in order to reduce its level. 

In Figure 2, we have the plots of the log-returns, ( ),tYi  centred at their means, 

,...,,2,1 Nt =  { }.PM,O,SO,NOCO, 10322∈i  
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Figure 2. Log-returns centred at their means for the pollutants CO, NO2, SO2, O3 

and PM10 versus time, measured in weeks, for the entire observational period. 

It is possible to observe from Figure 2 that there is a larger variability in the 
measurements from one week to the next for the pollutants CO, SO2 and O3. 

However, in the case of ozone, there is a decrease in the variability after a week 
around the 470th week. 
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In order to perform the estimation of the parameters of the models, we need to 
specify the values of their hyperparameters. 

Remark. We are going to use the following association between the pollutants 
and indices. The pollutants O3, CO, SO2, PM10 and NO2 are associated to the 

indices 1, 2, 3, 4 and 5, respectively. We also report the estimates of 21 ii ηη σ=τ  

instead of reporting those of ,2
iη

σ  ....,,2,1 Ki =  

1. Model I. The hyperparameters of the prior distributions of ,iiφ  2
iη

σ  and iμ  

are ,0=iia  ,1.0=iib  ,1== ii dc  0=ie  and ,100=if  .5,4,3,2,1=i  

Remark. The choice of the hyperparameters was made in order to have non- 
informative prior distributions and also to improve the convergence of the Gibbs 
sampling algorithm that is internally implemented in the software WinBugs. 

In Table 1, we have the summary of the estimated mean, standard deviation 
(indicated by SD) and the 95% credible interval of the quantities of interest when 
Model I is considered. 

Table 1. Estimated posterior mean, standard deviation (SD) and 95% credible 
interval of the quantities of interest when Model I is used 

Pollutant Parameter Mean SD 95% Credible Interval 
 1μ  –2.17 0.08 (–2.33; –2.03) 

O3 1φ  0.41 0.20 (0.01; 0.76) 
 

1ητ  4.97 1.47 (2.71; 8.50) 
 2μ  –2.78 0.11 (–3.00; –2.58) 

CO 2φ  0.70 0.10 (0.46; 0.85) 
 

2ητ  4.19 1.30 (2.13; 7.26) 
 3μ  –2.71 0.09 (–2.89; –2.55) 

SO2 3φ  0.46 0.13 (0.19; 0.68) 
 

3ητ  2.90 0.79 (1.67; 4.80) 
 4μ  –2.65 0.10 (–2.84; –2.46) 

PM10 4φ  0.66 0.13 (0.36; 0.84) 
 

4ητ  4.36 1.39 (2.08; 7.57) 
 5μ  –2.81 0.08 (–2.96; –2.66) 

NO2 5φ  0.31 0.17 (–0.03; 0.61) 
 

5ητ  4.26 1.34 (2.29; 7.37) 
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In Figure 3, we have the plots of the square roots of the estimated volatility of 
each pollutant when Model I is considered. 

 

Figure 3. Square roots of the volatility of the pollutants CO, NO2, SO2, O3 and 

PM10, when Model I is used. 

We may observe from Figure 3 that the volatility has more variation when we 
consider the pollutants CO and PM10. It has smaller range and similar behaviour for 

NO2 and O3. The case of SO2 is a middle term between those cases. 
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2. Model II. When we consider Model II, the hyperparameters of the prior 

distributions of ,iiφ  2
iη

σ  and ,iμ  ,5,4,3,2,1=i  are given in Table 2. 

Table 2. Hyperparameters of the prior distributions of the parameters ,iiφ  2
iη

σ  and 

,iμ  ,5,4,3,2,1=i  when Model II is considered 

 1=i  2=i  3=i  4=i  5=i  

iia  0.41 0.70 0.46 0.66 0.31 

iib  0.04 0.01 0.02 0.02 0.03 

ic  11.42 10.38 13.38 9.79 10.18 

id  2.30 2.48 4.61 2.24 2.39 

ie  –2.17 –2.78 –2.71 –2.65 –2.81 

if  0.01 0.01 0.01 0.01 0.01 

The hyperparameters of the prior distributions of ijρ  are 0=ijg  and ,1.0=ijh  

,5,4,3,2,1, =ji  .ji ≠  

Remark. It is important to call attention to the fact that the change in the values 

of the hyperparameters of the prior distributions of the parameters ,iiφ  2
iη

σ  and iμ  

from Model I to Model II is due to the fact that information provided by Model I was 
used when considering the values for the case of Model II. Therefore, we are using 
an empirical Bayesian approach (see Carlin and Louis [11]). 

In Table 3, we give the summary of the estimates of the quantities of interest. 
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Table 3. Estimated posterior mean, standard deviation (SD) and 95% credible 
interval of the quantities of interest when Model II is used 

Pollutant Parameter Media SD 95% Credible Interval 
 1μ  –2.18 0.06 (–2.30; –2.06) 

O3 1φ  0.56 0.10 (0.36; 0.74) 

 
1ητ  1.55 0.26 (1.12; 2.16) 

 2μ  –2.76 0.07 (–2.90; –2.64) 

CO 2φ  0.66 0.07 (0.52; 0.79) 

 
2ητ  5.48 1.15 (3.57; 7.92) 

 3μ  –2.72 0.07 (–2.85; –2.59) 

SO2 3φ  0.53 0.08 (0.37; 0.67) 

 
3ητ  1.31 0.19 (0.98; 1.76) 

 4μ  –2.63 0.07 (–2.77; –2.50) 

PM10 4φ  0.62 0.11 (0.39; 0.81) 

 
4ητ  2.01 0.40 (1.40; 2.94) 

 5μ  –2.82 0.05 (–2.92; –2.72) 

NO2 5φ  0.40 0.12 (0.16; 0.62) 

 
5ητ  5.58 1.20 (3.56; 8.26) 

 12ρ  0.24 0.04 (0.15; 0.32) 

 13ρ  0.59 0.03 (0.53; 0.64) 

 14ρ  0.76 0.02 (0.72; 0.80) 

 15ρ  0.69 0.02 (0.64; 0.73) 

 23ρ  0.53 0.03 (0.46; 0.59) 

 24ρ  0.66 0.03 (0.60; 0.71) 

 25ρ  0.54 0.03 (0.47; 0.60) 

 34ρ  0.79 0.02 (0.75; 0.83) 

 35ρ  0.68 0.02 (0.63; 0.73) 

 45ρ  0.72 0.02 (0.68; 0.76) 
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In Figure 4, we have similar plots of those shown in Figure 3, but now 
considering Model II. 

 

Figure 4. Square roots of the volatility of the pollutants CO, NO2, SO2, O3 and 

PM10, when Model II is used. 

It is possible to observe from Figure 4 that the behaviour of the volatility of the 
pollutant NO2 is very similar to that given by Model I. In the case of the pollutant 
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CO, we have a similar shape of the plot to the one given by Model I. However, the 
range at which the plot obtained by Model II varies, is smaller. When looking at the 
plots of the volatility for the remaining pollutants, we may see that the variability is 
very large and its behaviour is not as controlled as in the case of Model I. 

Model I and Model II have DIC equal to 928.3 and –873.54, respectively. 
Hence, Model II is the one that best explains the behaviour of the pollutants CO, 
SO2, NO2, PM10 and O3, present in the city of São Paulo. 

5. Conclusion 

Observing Figures 3 and 4, it is important to point out that there is no conclusive 
evidence of a consistent decrease and stabilisation of the levels of the volatility of 
the five pollutants throughout the observational period. However, we can observe a 
slight decrease in the volatility after the 470th week in the case of O3 and NO2 in 

both models and in the case of PM10 when Model II is considered. As mentioned 

earlier, in 1996, there was an environmental law regulating the amount of vehicles 
circulating in the Metropolitan Area of São Paulo. Additionally, in 2004, further 
measures were taken (in this case, regulating the use of motorcycles and similar 
vehicles). Hence, from the results presented here, we may notice that there is an 
indication that the environmental laws implemented in São Paulo by the 
environmental authorities have helped to decrease the levels of the volatility of some 
of the pollutants considered here. 

As we have seen, the model that best explains the pollution data of the city of 
São Paulo is Model II. In that model, we assume the presence of a non-zero 
correlation between two distinct coordinates of the error vector ( ),tε  ....,,2,1 Nt =  

That also produce an effect on the covariance between two different pollutants. It is 
possible to see that the error coordinate associated to the pollutant ozone has the 
largest correlation with the error coordinate associated to the pollutant PM10, 

followed by the pollutants NO2 and SO2. The correlation between ozone and PM10 

may be explained by the fact that when there is a large concentration of particulate 
matter in the atmosphere, we have that the concentration of ozone will be smaller. 
That may be explained by the fact that in the presence of particulate matter, ozone 
oxidises and therefore there might be a decrease in its concentration. We may also 
see that the error coordinate associated to PM10 has the largest correlation with that 

related to SO2. 
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The non-zero correlation of the error coordinates provides a perturbation in the 
contribution given by the square roots of the volatility of the pollutants to the 
covariance between those pollutants. We may also see that the largest perturbation 
occurs when we take into account pollutants PM10 and SO2, followed by the case of 

O3 and PM10. The third largest perturbation occurs when we consider the possible 

interaction between PM10 and NO2. The fourth largest correlation is that related to 

O3 and NO2. The latter could be explained by the fact that O3 forms in the 

atmosphere due to photolysis of NO2 (Kumar et al. [30]). 

Observing the values of ,μ  φ and 2σ  given by Tables 1 and 3, we have that 

both models produce very similar values for the estimated mean μ and the parameter         

φ. However, estimated values of the variance 2σ  are substantially different. The 

estimated value of 2σ  determines the variance associated to the latent variables 
related to the volatility of the series of log-returns. In this way, we observe that 
Model I produces a larger variance in the volatility of the pollutants O3 and PM10 

and produce smaller variance in the remaining pollutants. This is reflected in the 
plots given in Figures 3 and 4. 
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