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Abstract 

In this short note, we prove that the following three conditions are 
equivalent for a complete lattice L: (1) L is a completely distributive 
lattice, (2)  is the smallest approximating auxiliary on L, and (3) L is a 
Heyting algebra and there is a smallest approximating auxiliary relation 
on L. 

1. Introduction and Preliminaries 

The theory of continuous lattices arose independently in a variety of 
mathematical contexts. Due to their strong connections to computer science, general 
topology and topological algebra, continuous lattices have been extensively studied 
by people coming from various areas [1, 2]. There are several different equivalent 
ways to define continuous lattices, the most straightforward one is formulated by 
using the way below relation. For x and y in a complete lattice L, we say that x is 
way below y, in symbols ,yx   iff for each directed subset ,LD ⊆  Dy ∨≤  
implies dx ≤  for some .Dd ∈  A complete lattice L is continuous if 

{ }xyLyx :∈= ∨  for every .Lx ∈  In order to take a closer look at the way 
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below relation and detect how it fits into a more general framework, Smyth [4] 
introduced the concept of auxiliary relation and located the way below relation 
within ( ).LAux  Taking arbitrary subsets instead of directed ones leads to the strong 

way below relation ,�  where yx �  if for any nonempty set S, Sy ∨≤  implies 

sx ≤  for some .Ss ∈  Raney [3] proved that a complete lattice L is a completely 
distributive lattice iff { }xyLyx �:∈= ∨  for all .Lx ∈  A natural question is 

how to locate the strong way below relation �  within ( ).LAux  In this note, we will 

discuss this question. 

The following definitions and propositions are cited from [1, 2]. 

Definition 1.1. We say that a binary relation ≺  on a poset L is an auxiliary 
relation or an auxiliary order, if it satisfies the following conditions for all u, x, y, z: 

  (i) yx ≺  implies ;yx ≤  

 (ii) zyxu ≤≤ ≺  implies ;zu ≺  

(iii) if a smallest element 0 exists, then .0 x≺  

The set of all auxiliary relations on L is denoted by ( ).LAux  As ( )LAux  is 

closed under arbitrary intersections in ,2 LL×  ( )( )⊆,LAux  is a complete lattice. 

For a poset L, let Low L denote the set of all lower sets in L. 

Proposition 1.2. Let L be a poset and let M be the set of all monotone functions 

LLowLs →:  satisfying ( ) xxs ↓⊆  for all Lx∈ - considered as a poset relative 

to the ordering ts ≤  iff  ( ) ( )xtxs ⊆  for all .Lx ∈  Then the mapping 

( ) ( ) { }( )xyyxsMLAux ≺≺ ≺ :,: 6==φ→φ  

is an order isomorphism between ( )LAux  and M, whose inverse associates to each 

function Ms ∈  the relation s≺  given by 

( )., ysxyxMs s ∈⇔∈∀ ≺  

Definition 1.3. An auxiliary relation ≺  on a complete lattice L is called 
approximating iff we have ( ) { }xuLuxsx ≺≺ :∈== ∨∨  for all .Lx ∈  The set of 

all such relations is denoted by ( ).LApp  
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Proposition 1.4. Let L be a complete lattice. Then the following conditions are 
equivalent: 

(1)  L is a continuous lattice; 

(2)   is the smallest approximating auxiliary relation on L; 

(3) L is meet-continuous and there is a smallest approximating auxiliary 
relation on L. 

2. Main Results 

From the definition of strong way below relation ,�  

( ) { }TxLLowTxs ∨≤∈= :∩�  
for all .Lx ∈  

Lemma 2.1. Let L be a complete lattice. For every ,LLowT ∈  we define the 

function LLowTmT →:  by 

( )
⎪⎩

⎪
⎨
⎧

↓

≤↓
=

.,

;,

otherwisex

TxifTx
xmT

∨∩
 

Then MmT ∈  for all LLowT ∈  and { }.: LLowTTm ∈= ≺� ∩  

Proof. It is obvious that MmT ∈  for all .LLowT ∈  From Proposition 1.2, we 
need only to prove that ( { }) ( ) .: ��≺ sLLowTTm =φ=∈φ ∩  Since φ is an 

isomorphism, ( { }) ( ) .:
TmTT sLLowT LLowTmLLowTm ≺≺≺ ∈∈ =φ=∈φ ∧∧∩  From 

the definitions of T≺  and ( ) ,xs≺  ( ) ( ).xmxs TTm =≺  Now, we prove that 

( ( ) ( )xsxs
TmLLowT �≺ =∈ )∧  for all .Lx ∈  In fact, 

( ( ) { ( ) }LLowTxsxs
TmTmLLowT ∈=∈ :) ≺≺ ∧∧  

( ){ }LLowTxmT ∈= :∩  

( { }) ( { })TxxTxTx ∨∨ ≰:: ↓≤↓= ∩∩ ∩∩  

{ }TxLLowT ∨≤∈= :∩  

( ).xs�=  
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Lemma 2.2. In a complete Heyting algebra L, all relations Tm≺  belong to the 

functions Tm  for LLowT ∈  are approximating. 

Proof. Note that for every ,Lx ∈  

( ) ( )
⎩
⎨
⎧

↓

≤↓
==

.otherwise,
;if,

x
TxTx

xmxs TTm

∨∩
≺  

If ,Tx ∨≤  then ( ) ( ) ( ) ( ) xTxTxTxxmxs TTm =∧=∧=↓== ∨∨∨∨∨ ∩≺  since 

L is Heyting algebra; if ,Tx ∨≰  then ( ) .xxxs
Tm =↓= ∨∨ ≺  Therefore, Tm≺  are 

approximating for all .LLowT ∈  

Lemma 2.3. In a complete lattice L, the strong below relation �  is contained 
in all approximating auxiliary relations, and is equal to their intersection, if L is a 
Heyting algebra. 

Proof. Suppose that ,xy �  and ≺  is an approximating relation. Then =x  

( ) { }.: xuLuxs ≺≺ ∈= ∨∨  It follows from the definition of �  that uy ≤  for 

some ,xu ≺  thus xy ≺  since ≺  is an auxiliary relation. Therefore, ≺� ⊆  and 

( ){ }.: LApp∈⊆ ≺≺� ∩  If L is a Heyting algebra, then ( )LAppTm ∈≺  by Lemma 

2.2, and ( ){ } { }.:: LLowTLApp Tm ∈⊆∈ ≺≺≺ ∩∩  By Lemma 2.1,  { TTm :≺� ∩=  

}.LLow∈  

Thus ( ){ } .: �≺≺ ⊆∈ LApp∩  Therefore, ( ){ }.: LApp∈= ≺≺� ∩  

Now we have the main results which are analogous to Proposition 1.4. 

Proposition 2.4. Let L be a complete lattice and consider the following 
conditions: 

(1) L is a completely distributive lattice; 

(2) �  is the smallest approximating auxiliary relation on L; 

(3) there is a smallest approximating auxiliary relation on L. 

Then (1) ⇔ (2) ⇒ (3). Moreover, if L is a Heyting algebra, then these three 

conditions are equivalent. 
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Proof. (1) ⇔ (2) Since L is a completely distributive lattice iff ,Lx ∈∀  =x  

( ) { },: xyLyxs �� ∈= ∨∨  �  is an approximating. Thus the equivalence of (1) 

and (2) follows from the first part in Lemma 2.3. 

(2) ⇒ (3) Trivial. 

(3) ⇒ (1) If L is a Heyting algebra, then �  is the intersection of all 

approximating auxiliary relations by Lemma 2.3. Thus, if there is a smallest 
approximating auxiliary relation, then this has to be ,�  and we see that (3) implies 
(1). 
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