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Abstract 

Due to the dynamic and heterogeneous nature of grid infrastructures, 
scientific applications with frequent and tight synchronizations among    
the nodes are unable to achieve high efficiencies, so the client-server 
paradigm is a programming model very often used in these environments. 
According to this model, Data Grid applications are usually divided into 
independent activities that are concurrently solved by the servers. On the 
other hand, since many scientific applications are characterized by large 
collections of input data and by dependencies between the tasks, the 
development of efficient algorithms without unnecessary synchronizations 
and data transfers is a difficult task. The present work addresses the 
problem of implementing and assessing a strategy for efficient task 
scheduling and data management in case of dependencies among tasks     
in a numerical linear algebra problem. To this end, we used the Block 
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Matrix Multiplication Algorithm implemented in the NetSolve distributed 
computing environment as case study, and we introduced some efficiency 
parameters to assess the algorithm. 

1. Introduction and Motivation 

A grid infrastructure aggregates scattered computing and data resources in    
order to create a single computing system image [8]. The hardware of this single 
computing system is often characterized by slow and non-dedicated Wide Area 
Networks connecting very fast and powerful processing nodes (that can also 
represent supercomputers or large clusters) scattered on a huge geographical 
territory, whereas its operating system (the grid middleware) is responsible to find 
and allocate resources for scientists applications, taking into account the status of the 
whole grid. Many papers focus on this aspect of grid computing, addressing issues 
such as resources brokering, e.g., [6, 17], performance contract definition and 
monitoring, e.g., [5, 12, 14], and migration of the applications in case of contract 
violations, e.g., [11, 16]. In any case, it is important to underline that distributed 
computing environments are composed by heterogeneous computational resources, 
both from the static (processors, operating systems, arithmetic, ...) and from the 
dynamic (workload of the systems, effective bandwidth of the networks, ...) point of 
view, such that an efficient synchronization among the nodes is very difficult. For 
this reason, one of the main approaches to the development of distributed 
applications is based on the client-server programming model where the application 
is divided into a large number of essentially independent tasks that are dispatched to 
several servers, and a “coordinator” task managed by the client module. In the 
parallel computing community, problems that can be solved with this approach are 
called “pleasingly” or “embarrassingly” parallel and one of the most significant 
examples in this sense is the SETI@home project [15]. However, beyond such 
example of mere networked computing, several common scientific applications are 
characterized by a very large set of input data and dependencies among 
subproblems, so that the choice of the most powerful computational resources made 
by the middleware is not sufficient to achieve good performance, but the definition 
of suitable methodologies is also essential to minimize synchronization among tasks  
and to distribute application data onto the grid components in order to overlap 
communication and computation. As a case study, we consider a Block Matrix 
Multiplication (BMM) algorithm for a client-server distributed computing 
environment, because it is a basic linear algebra computational kernel representative 
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of similar other computational kernels like LU, TLL  and QR factorizations, and for 
this reason often required by several applications. On the other hand, it encompasses 
a large amount of data movements among CPUs and memories, and the task of 
minimizing the synchronization overhead among the nodes by using effective data 
caching strategies is challenging. Few papers are available in this research area, e.g., 
[3, 7]. In a previous work, we introduced a distributed client-server algorithm for 
this problem [4], so that in this paper, we mainly introduce a performance evaluation 
procedure aimed to assess the algorithms. 

In this work, the algorithms are implemented in the computational environment 
able to support a client-server programming model, and where the underlying 
computing environment is in charge of the resources selection by means of its own 
dynamic allocation strategies, and the computational information about the servers 
(including their availability, load, processor speed) are hidden to the client. During 
recent years, several computing environments have been developed with the scope 
of addressing these topics, while allowing, at the same time, a friendly access to 
remote resources. Among them, we mention NetSolve [1] and Condor [10]. 

Our work is structured as follows: In Section 2, we will shortly introduce 
different distributed algorithms for the BMM problem; in Section 3, we introduce 
our performance evaluation procedure based on some parameters aimed to asses 
the  algorithms on these environments; finally in Section 4, we describe the 
computational experiments. 

2. Distributed Algorithms for Block Matrix Multiplication 

Consider the following matrix multiplications problem for two dense matrices A 
and B: 

.BAC ⋅=  (1) 

For the sake of simplicity, we will assume that each matrix { }CBAX ,,∈  is a 

square nn ×  matrix, and it is block partitioned as follows: 
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Blocks JIX ,  have dimension ,rr ×  with n divisible by r, so that rnNB =  is 

an integer. From previous definitions, we have that each block of the C matrix is 
given by: 

∑
=

=∀=
NB

K
JKKIJI NBJIBAC

1
,,, ....,,1,,  (3) 

From equation (3), we observe that blocks JIC ,  can be computed independently 

each other, so that Figure 1 shows three parallel versions obtained by the 
permutation of the loops indices in the standard BMM algorithm .BAC ⋅=  

 
Figure 1. Three standard versions for the BMM algorithm. 

Note that other versions, obtained by the permutation of indices I and J, are 
equivalent to these ones and that all the versions are based on the same 
computational kernel: 

.,,,, JKKIJIJI BACC +=  (4) 

In a client-server implementation, for given values of I, J and K, the client sends 
to a server the three blocks JKKI BA ,,  and ,, JIC  so that the server can update the 

block JIC ,  and send back the result to the client. It is important to remark that the 

only possible parallelism is always on indices I and J, so that only the blocks JIC ,  

can be computed independently among them. This is not possible using index K, 
because of the risk of “race condition” on accessing to the blocks JIC ,  for different 

values of K. As a consequence, in order to reduce the synchronization overhead 
accessing these blocks in a client-server implementation, it is essential to define 
which algorithm in Figure 1 must be used to compute the several matrix operations 
involving blocks JKKI BA ,,  and ., JIC  For a more deep analysis, we observe that 

in the ( )KJI ,,  ordering (Algorithm 1.a), the client generates 2NB  independent 

threads of computation, each of them managing the sum on index K in equation (3). 
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With the ( )JKI ,,  ordering (Algorithm 1.b), the client generates only NB 

independent threads of computation, each of them generating NB parallel tasks at 
every step of index K. Finally, with the ( )JIK ,,  ordering (Algorithm 1.c) at each 

step of index K, the client generates 2NB  parallel tasks that have to be completed 
before the client can generate new tasks. 

 
Figure 2. The client-server implementation of the BMM algorithm with ( )KJI ,,  

ordering. 

In Figure 2, as an example, we report the distributed client-server 
implementation of the ( )KJI ,,  ordering of the BMM algorithm. Now it is 

important to remark that, in the client-server programming model, data are stored in 
the client memory (or in a repository close to the client) and they are sent in chunks 
to servers for the computations; once the computation has been completed, the 
results are returned to the client. However, the data movement between client and 
server in a computational grid is similar to the data transfer between memories and 
processing unit in a single Non Uniform Memory Access (NUMA) machine. A 
NUMA machine is characterized by a memories hierarchy where fast and small 
memories (main memory and caches) are positioned at the higher level, whereas 
slow and large memories (secondary and remote memories) are located at the lower 
ones. Table 1 shows typical peak bandwidth, latency and size, for four different 
memory levels when accessed from the server. The illustrated values refer to a 
common workstation usually available in a distributed computing environment and 
are not representative of leading edge technology. 

Table 1. Typical values for bandwidth and latency for different memory levels 
 Bandwidth Latency Size 

Server main memory 10 GByte/sec 2-10 ns 4 GBytes 
Server secondary storage 100 MByte/sec 5 ms 512 TBytes 

Remote client (LAN) 12.5 MByte/sec 10 ms 10 TBytes 
Remote client (WAN) < 1 MByte/sec 100 ms > 100 TBytes 
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It is commonly acknowledged that the key strategy to achieve high 
performances with a NUMA machine is an extensive use of caching methodologies 
at each level of the memory hierarchy. In this model, the highest levels are usually 
managed by the compilers or by some highly optimized mathematical software 
library, but lowest levels must be managed by the application. Since scientific 
applications rarely can be divided in totally independent tasks and some data 
dependencies are always present among them, the definition of methodologies and 
the development of software tools for an effective data distribution among the 
components of a computational grid assume a key role in grid computing. 

 

Figure 3. The distributed client-server implementation of the BMM algorithm with 
( )KJI ,,  ordering and caching of intermediate results in the server secondary 

storage. 

The use of a server secondary storage as a cache for the intermediate results, 
therefore allows to locate them to a higher level in the memory hierarchy and avoids 
unnecessary data transfers toward the client memories. Furthermore, if the entire 
sequence has to be repeated several times, then it is possible to overlap data 
communication and stage computation by keeping intermediate data in higher level 
memories. The following Algorithm 2 in Figure 3 implements the described caching 
strategy for the ( )KJI ,,  ordering of the BMM algorithm. A similar approach to 

data management in distributed environments is described in [7], where the server 
main memory replaces the server secondary storage as cache. The main advantage of 
the approach described in the current paper is the larger amount of space available 
for caching the intermediate data, with a data access time still negligible compared to 
the time for accessing the remote client memory. 

3. Algorithms Analysis 

For a complete performance analysis, we have to notice that in a distributed 
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environment, classical parameters like Speedup and Efficiency cannot be used since 
the number of used nodes is not defined by the user through the applications, but 
they are determined by the computational environment. Furthermore, the primary 
goal for using these environments is the opportunity of aggregating scattered and 
unused resources rather than simply reducing the execution time [9]. In any case, we 
can study the behavior of the total execution time when the problem dimension n 
changes, aiming at measuring the influence of the computational environment on the 
BMM distributed algorithm. 

We begin our study by comparing the computational cost of the three algorithms 
in Figure 1. Firstly, denote 0>ijkt  to be the execution time (computation and 

communication) necessary to resolve the computational kernel (4) and ( ),NBTijk  

( ),NBTikj  ( )NBTkij  to be, respectively, the total execution times to solve the problem 

(1) with dimension rnNB =  using the three algorithms in Figure 1. With the 

previous definition: 

Lemma 1. Given the total execution times: 

( ) ( ) ( ),,, NBTNBTNBT kijikjijk  

then 

( ) ( ) ( ).NBTNBTNBT kijikjijk ≤≤  (5) 

Proof. By the DAGs in Figure 2, it is easy to prove that: 

( ) ( ) ( )∑ ∑ ∑===
k k k

ijk
ji

kijijk
ji

ikjijk
ji

ijk tNBTtNBTtNBT .max,maxmax,max
,,

 

So, the inequalities hold. 

Therefore, the ( )KJI ,,  ordering described by Algorithm 1.a is more suitable to 

a distributed client-server implementation compared to the other two orderings. The 
least suitable one is the ( )JIK ,,  ordering. Furthermore, it is reasonable to suppose 

( ) ( ) ( ).111 kijikjijk TTT ==  This is justified because with only one block ( ),1=NB  

the three algorithms are equivalent. Since the ( )KJI ,,  ordering exhibits the smaller 

total execution time, in the following, we concentrate our attention only on this one, 
but similar results hold for the other orderings. 



G. LACCETTI, M. LAPEGNA, V. MELE and D. ROMANO 

 

188 

To assess the performance of the client-server implementation described in 
Figure 2 in a distributed computing environment, let us examine before an ideal 
case, where the environment is composed by homogeneous, dedicated and 
unbounded resources (e.g., number of nodes and networks bandwidth). In this 

environment, let ( ) ( ) ( )NBTNBTNBT kijikjijk
∗∗∗ ,,  be, respectively, the ideal total 

execution times of the algorithms in Figure 1. From a theoretical point of view, we 
can assume that when the number of blocks NB increases, there are always available 
nodes and network bandwidth to perform the tasks. In this case, the execution time 
of each task τ=ijkt  is equal for all the values of I, J, K, and the ideal total execution 

times in a distributed environment are 

( ) ( ) ( ) .τ⋅=== ∗∗∗ NBNBTNBTNBT kijikjijk  (6) 

Now we consider the problem (1) of size ,rNBn ⋅⋅α=⋅α  where 1≥α  is a 
scaling parameter, with the purpose of studying the influence of the computational 

environment on the algorithm. Then we define ( )NBTijk ⋅α∗  as the total execution 

time to solve such larger problem in the ideal case, and we define the parameter 

( )
( )
( )

.,
NBT

NBT
NBR

ijk

ijk
ijk ∗

∗
∗ ⋅α

=α  (7) 

This parameter assesses the ideal growth factor for the total execution time 
when an α-times larger problem is solved. Of course, it is easy to prove that: 

( ) ., α=α∗ NBRijk  (8) 

Same results hold also for ( )NBTikj ⋅α∗  and ( ),NBTkij ⋅α∗  so that equation (8) 

shows a linear growth with NB for the ideal total execution time for all the 
algorithms in Figure 1, when the matrix dimension grows and the block dimension 

NBnr =  is constant. 

However, the number of nodes and the sustained network bandwidth are limited 
and it is not possible to have a perfect parallelism. For such a reason, it is fully 
reasonable to introduce the assumptions: 

Heuristic 1. 

( ) ( ).NBTNBT ijkijk
∗≥  (9) 
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Heuristic 2. 

( ) ( ).NBTNBT ijkijk α≥⋅α  (10) 

These assumptions mean that the actual total execution time cannot be smaller 
than the ideal one, and when we solve an α-times larger problem in a real 
environment, we cannot achieve an actual growth factor smaller than the ideal one. 
Therefore, we define the parameter 

( )
( )
( )NBT

NBT
NBR

ijk

ijk
ijk

⋅α
=α,  (11) 

as the measure of the actual growth factor for ( )NBTijk  when an α-times larger 

problem is solved. It is easy to prove, by using Heuristic 2, that ( ) ., α≥αNBRijk  

By comparing parameters ( )α,NBRijk  and ( ),, NBRijk α∗  we can now evaluate 

the influence of the computational environment on the distributed algorithm. Now 
we define the parameter: 

( )
( )
( )

.
,

,
,

α

α
=α

∗ NBR

NBR
NBE

ijk

ijk
ijk  (12) 

This parameter evaluates how much ( )α,NBRijk  is larger than ( )., α∗ NBRijk  

Of course, by using (8) and Heuristic 2, we have 

( )
( )
( )

( )
.1

,

,

,
, ≥

α
α

=
α

α
=α

∗

NBR

NBR

NBR
NBE ijk

ijk

ijk
ijk  

Furthermore: 

Lemma 2. Given the previous definitions, we have 

( ) ( ) ( )., NBTNBENBT ijkijkijk αα=⋅α  (13) 

Proof. This is because 

( )
( )

( )

( )
( )

( )

( )

( )
( ) ,

,

,
,

NBT
NBT

NBT

NBT
NBT

NBT

NBR

NBR
NBE

ijk

ijk

ijk

ijk

ijk

ijk

ijk

ijk
ijk α

⋅α
=

⋅α

⋅α
=

α

α
=α

∗

∗

∗
 

then the thesis. 
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From (13), we observe that ( )αα ,NBEijk  is the actual growth factor for the 

total execution time, so ( )α,NBEijk  can be taken as a measure of the influence of 

the computational environment on the performance of the algorithm. Of course, 

( )α∗ ,NBRijk  is a not decreasing function of α, so, by the Heuristic 2, we can assume 

that the same property holds also for ( )., αNBRijk  Therefore, if ( )α,NBEijk  is       

a constant or a moderately increasing function of α, then we can consider the 
algorithm as suitable for a distributed execution and able to exploit the parallelism of 
the computational environment. However, in general, a limitation in the resources 
(number of nodes, networks bandwidth, …) prevents the parallel execution of a large 
number of tasks, so we found that ( )α,NBEijk  is a significantly increasing function 

of α. Therefore, in order to understand the actual gain obtained when using a 
distributed environment in place of a sequential one, it can be useful to compare 

( )α,NBRijk  not only with the scale factor α as in the definition of ( ),, αNBEijk  

but also with other functions like ( ) 2α=αf  or ( ) .3α=αf  Actually, let us note 

that ( ) 3α=αf  can be considered the worst growth factor for the total execution 

time, because it is the growth factor of a BMM algorithm in a distributed 
environment with only one server. 

We define therefore: 

( )( )
( )

2
2 ,

,
α

α
=α

NBR
NBE ijk

ijk    and   ( ) ( )
( )

.
,

, 3
3

α

α
=α

NBR
NBE ijk

ijk  (14) 

These parameters compare ( ),, αNBRijk  respectively, with ( ) 2α=αf  and 

( ) .3α=αf  If ( )( )NBEijk ,2 α  is a constant or moderately increasing function, then 

we can yet consider as convenient to execute the algorithm in a distributed 

environment; but a significant increasing function ( )( )NBEijk ,2 α  means that we are 

not able to gain any benefits from the execution in a distributed environment with 
respect to the execution in a sequential environment. 

Finally, we conclude this section with a comparison between Algorithm 1 in 
Figure 3 (IJK ordering without data caching) and Algorithm 2 in Figure 6 (IJK 
ordering with data caching). Let now Sτ  and Rτ  be, respectively, the access times 
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to the server secondary storage and to the remote client memories, and ( )1∗
ijkC  and 

( )2∗
ijkC  be the ideal total communication costs for Algorithm 1 and Algorithm 2, 

respectively. We concentrate our attention only on the communication cost because 

the computation cost is equal in both algorithms and because it is the dominant part 
in the total execution time. We firstly observe that, since the computation of the 

kernel (4) requires the communication of 24r  data among client and server, in (6), 

we have ,4 2rRτ=τ  so the ideal communication cost for the complete computation 

of each block ( )JIC ,  with Algorithm 1 is: 

( ) ( ) .4 21 rNBNBC Rijk τ=∗  (15) 

Since SR γτ=τ  with ,10010 <γ<  the ideal communication cost of the 

Algorithm 2 is ( ) ,2 2rSR τ+τ=τ  so that: 

( )( ) ( ) ( )( ).2 122 NBCrNBNBC ijkSRijk
∗∗ <τ+τ=  (16) 

We define: 

( )
( )( )
( )( )NBC

NBC
NBS

ijk

ijk
1

2

∗

∗
∗ =  (17) 

as the measure of the ideal reduction factor for the ( )KJI ,,  ordering when a 

caching strategy is used. It is easy to prove: 

Lemma 3. Given the definition of ( ),NBS∗  we have 

( )
( )( )
( )( )

( ) .2
1

4
2

2

2

1

2

γ
+γ=

τ

τ+τ
== ∗

∗
∗

rNB
rNB

NBC

NBC
NBS

R

SR

ijk

ijk  (18) 

Equation (18) shows the ideal value for the reduction factor when a caching 
strategy is used. It should be compared with the actual reduction factor, that is with 
the ratio: 

( )
( )( )
( ) ( )

,1

2

NBC

NBC
NBS

ijk

ijk=  (19) 

where ( )1
ijkC  and ( )2

ijkC  are the actual communication costs of the two algorithms. 
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4. Computational Experiments 

In this section, we describe the results of several tests aimed to evaluate our 
algorithms using the procedure described in Section 3. For our experiments, we used 
NetSolve 2.0 distributed computing infrastructure [1]. This is a software 
environment based on a client-agent-server paradigm that provides a transparent and 
inexpensive access to remote hardware and software resources. 

A first set of experiments is aimed to evaluate the effectiveness of Algorithm 1.a 
when compared to Algorithm 1.b and Algorithm 1.c. Then on the basis of Equation 
(5), we implement the ( )KJI ,,  ordering (Algorithm 1.a) and the ( )JIK ,,  

ordering (Algorithm 1.c), i.e., the best and the worst expected version. In this first 
experiment, the servers are located at the University of Tennessee and the client is 
located in our Department. This software infrastructure can be called Wide Area 
System (WAS), because of the underlying geographical networks. In these 
experiments, we evaluated the total execution times for calculations in problem (1), 
considering square matrix of order ,250=n  500, 1000, 2000 and a fixed block size 

.250=r  With these values, the number of blocks ,1=NB  2, 4, 8. 

Table 2. Timing results in seconds for Algorithm 1.a and Algorithm 1.c on a WAS 

 

In Table 2, there are the total execution times for Algorithm 1.a and Algorithm 
1.c on the WAS. In order to report realistically, the impact of the fluctuation in the 
network traffic, the values are, respectively, the averages of ( )NBTijk  and ( )NBTkij  

over 10 executions. Furthermore, the table lists the minimum and maximum 
achieved total execution times and the standard deviation over the 10 executions. 
Best performance of Algorithm 1.a is evident with an average execution time lower 
in each test. The high standard deviation values are motivated by the variability of 
the workload in the geographic networks. Table 3 reports further results of the 
comparison between the two algorithms on the basis of other parameters (11), (12) 
and (14) defined in Section 3 with ,2=α  that is doubling the size of the matrix in 
each experiment. In this table we note that, even if the Algorithm 1.a typically shows 
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parameter values better than Algorithm 1.c, in both cases, we achieve increasing 

values for ( ) ( )NBE ,22  and ( )( ).,23 NBE  More precisely, we observe a behavior of 

the total execution times worse than the one of a sequential execution in a 
environment with a single server, so the use of a WAS in this case is not feasible. 

A second set of experiments is aimed to compare the execution times of 
Algorithm 1.a on two different NetSolve systems: a WAS as previously described 
and a Local Area System (LAS), where all resources are connected to the Local Area 
Network of our Department at 100 Mbits. The results of the experiments on a LAS, 
conducted with the same values of n and r used in previous experiments for a WAS, 
are shown in Table 4. 

Table 3. Performance analysis of Algorithm 1.a and Algorithm 1.c on a WAS 

Algorithm 1.a Algorithm 1.c 
 

1=NB  2=NB 4=NB  1=NB  2=NB  4=NB  

( )NBR ,2  2,05 2,23 2,23 2,23 3,15 7,10 

( )NBE ,2  1,03 1,11 1,11 1,11 1,57 3,55 
( )( )NBE ,22  0,51 0,56 0,56 0,56 0,79 1,78 

( )( )NBE ,23  0,26 0,28 0,28 0,28 0,39 0,89 

Table 4. Timing results in seconds for Algorithm 1.a on two different systems 

 

This table shows the average, the minimum, the maximum and the standard 
deviation of ( )NBTijk  over 10 executions. Firstly, we observe for the Local Area 

System an average execution time and a standard deviation much smaller than those 
obtained in the Wide Area System, which is due to the smallest latency and the 
higher bandwidth network. In order to quantify the performance gain that we 
achieve using a Local Area Network System, in Table 5, we show the values of 
the  parameters for the assessment of the performance introduced in Section 3. We 
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observe that, unlike WAS, the values of ( ) ( )NBE ,22  and ( )( )NBE ,23  are 

descending. More precisely, we measured decreasing values for ( )( ),,22 NBE  and 

that means a growth factor included between ( ) 2,2 =NBR  (the ideal case) and 

( ) 4,2 =NBR  (a still convenient case). Then, the use of Algorithm 1.a on a Local 

Area System produces a real gain on the total execution time, as compared to a 
sequential execution in an environment with a single server. 

Table 5. Performance analysis of Algorithm 1.a on two different infrastructures 

Algorithm 1.a on a WAS Algorithm 1.a on a LAS 
 

1=NB  2=NB  4=NB  1=NB  2=NB 4=NB  

( )NBR ,2  2,05 3,15 7,10 9,47 5,15 4,21 

( )NBE ,2  1,03 1,57 3,55 4,73 2,57 2,11 
( ) ( )NBE ,22  0,51 0,79 1,78 2,37 1,29 1,05 

( )( )NBE ,23  0,26 0,39 0,89 1,18 0,64 0,53 

A third set of experiments is aimed to test the data caching strategy described in 
Section 2. In order to manage data efficiently, NetSolve includes two tools: the 
Request Sequencing and the Data Storage Infrastructure (DSI), but they are unable 
to implement the caching strategy previously described. Therefore, in order to fully 
implement a caching methodology, it has been necessary to modify the NetSolve 
DSI implementation to some extent, as described in [4]. The experiments have been 
carried out on the LAS in our department, where the servers are workstations 
running at 2.4 GHz, each of them provided with a Parallel ATA disk adapter with a 
peak transfer rate of 100 MByte/sec. The secondary storage is used as a cache for the 
intermediate results in each server. Then, we implemented Algorithm 1.a without 
data caching as shown in Figure 1, and Algorithm 1.a with data caching as shown in 
Figure 3. Table 6 shows the average, the minimum, the maximum and the standard 
deviation of ( )NBTijk  over 10 executions. The matrix dimension ,250=n  500, 

1000 and 2000 and the block size 250=r  are the same in both tables. The results 
show a significant reduction of the total execution time for the computation of the 
entire matrix multiplication when a caching strategy is used. 
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Table 6. Timing results in seconds for Algorithm 1.a with different caching 
strategies on a LAS 

 

Furthermore, in Table 7, we report the values for the performance analysis 
introduced in Section 3. We observe that for Algorithm 1.a with a caching strategy, 
we achieve growth factors ( )NBR ,2  smaller than the ones from the same algorithm 

without data caching. Algorithm 1.a on a LAS without data caching. 

Table 7. Performance analysis of two versions of Algorithm 1.a on a local area 
system 

Algorithm 1.a on a LAS without 
data caching 

Algorithm 1.a on a LAS with 
data caching  

1=NB  2=NB  4=NB  1=NB  2=NB 4=NB  

( )NBR ,2  9,47 5,15 4,21 5,71 4,67 3,97 

( )NBE ,2  4,73 2,57 2,11 2,85 2,33 1,99 
( ) ( )NBE ,22  2,37 1,29 1,05 1,43 1,17 0,99 

( )( )NBE ,23  1,18 0,64 0,53 0,71 0,58 0,50 

Table 8. Actual and ideal ratios among the communications costs of the two version 
of Algorithm 1.a 

 1=NB  2=NB  4=NB  8=NB  

( )NBS  1,24 0,75 0,68 0,64 

( )NBS∗  0,55 0,55 0,55 0,55 

Finally, the effectiveness of the changes in the IBP infrastructure described in 
Section 4, is confirmed by Table 8, showing the achieved values for the actual and 

ideal ratios among the communication costs ( )NBS  and ( )NBS∗  introduced in 

Section 3. Actually, mainly for large problems, we observe that the achieved values 

for ( )NBS  are very close to the ideal values ( ).NBS∗  



G. LACCETTI, M. LAPEGNA, V. MELE and D. ROMANO 

 

196 

5. Conclusions 

This work mainly pursuits a double purpose. Firstly, it describes an effective 
methodology for task scheduling and for data placement among resources related to 
the implementation of a Block Matrix Multiplication in a client-server distributed 
environment. Secondly, it introduces a procedure to assess the performance of 
algorithms in a distributed client-server environment. The procedure is based on a 
performance model that is validated with several experimental results in two 
different distributed environments: a Local Area System based on computing nodes 
connected by local networks and a Wide Area System based on geographical 
networks. From the performance analysis, we achieve some interesting conclusions 
reported in Section 4. In any case, the main result is the confirmation that the use of 
suitable caching strategies for the implementation of a Block Matrix Multiplication 
algorithm in a distributed system based on local area networks is competitive with 
more expensive parallel system based on dedicated computing nodes or networks. 
Even if the experiments refer only to the BMM problem, the general structure of the 
algorithm is general enough, so we believe that similar results could be achieved also 

on other linear algebra problems, like LU, TLL  and QR factorizations. 
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