

Advances in Computer Science and Engineering
Volume 6, Number 2, 2011, Pages 181-197
Published Online: April 8, 2011
This paper is available online at http://pphmj.com/journals/acse.htm
© 2011 Pushpa Publishing House

 :phrases and Keywords parallel and distributed computing, product matrix algorithms,
performance analysis.
Received November 22, 2010

SOME PERFORMANCE ISSUES ON LINEAR
ALGEBRA ALGORITHMS IN DISTRIBUTED
AND GRID COMPUTING ENVIRONMENTS

GIULIANO LACCETTI, MARCO LAPEGNA, VALERIA MELE and
DIEGO ROMANO

Department of Mathematics and Applications
University of Naples Federico II
via Cintia - Monte S. Angelo
80126 Naples, Italy
e-mail: giuliano.laccetti@unina.it

marco.lapegna@unina.it
valeria.mele@unina.it
diego.romano@unina.it

Abstract

Due to the dynamic and heterogeneous nature of grid infrastructures,
scientific applications with frequent and tight synchronizations among
the nodes are unable to achieve high efficiencies, so the client-server
paradigm is a programming model very often used in these environments.
According to this model, Data Grid applications are usually divided into
independent activities that are concurrently solved by the servers. On the
other hand, since many scientific applications are characterized by large
collections of input data and by dependencies between the tasks, the
development of efficient algorithms without unnecessary synchronizations
and data transfers is a difficult task. The present work addresses the
problem of implementing and assessing a strategy for efficient task
scheduling and data management in case of dependencies among tasks
in a numerical linear algebra problem. To this end, we used the Block

G. LACCETTI, M. LAPEGNA, V. MELE and D. ROMANO

182

Matrix Multiplication Algorithm implemented in the NetSolve distributed
computing environment as case study, and we introduced some efficiency
parameters to assess the algorithm.

1. Introduction and Motivation

A grid infrastructure aggregates scattered computing and data resources in
order to create a single computing system image [8]. The hardware of this single
computing system is often characterized by slow and non-dedicated Wide Area
Networks connecting very fast and powerful processing nodes (that can also
represent supercomputers or large clusters) scattered on a huge geographical
territory, whereas its operating system (the grid middleware) is responsible to find
and allocate resources for scientists applications, taking into account the status of the
whole grid. Many papers focus on this aspect of grid computing, addressing issues
such as resources brokering, e.g., [6, 17], performance contract definition and
monitoring, e.g., [5, 12, 14], and migration of the applications in case of contract
violations, e.g., [11, 16]. In any case, it is important to underline that distributed
computing environments are composed by heterogeneous computational resources,
both from the static (processors, operating systems, arithmetic, ...) and from the
dynamic (workload of the systems, effective bandwidth of the networks, ...) point of
view, such that an efficient synchronization among the nodes is very difficult. For
this reason, one of the main approaches to the development of distributed
applications is based on the client-server programming model where the application
is divided into a large number of essentially independent tasks that are dispatched to
several servers, and a “coordinator” task managed by the client module. In the
parallel computing community, problems that can be solved with this approach are
called “pleasingly” or “embarrassingly” parallel and one of the most significant
examples in this sense is the SETI@home project [15]. However, beyond such
example of mere networked computing, several common scientific applications are
characterized by a very large set of input data and dependencies among
subproblems, so that the choice of the most powerful computational resources made
by the middleware is not sufficient to achieve good performance, but the definition
of suitable methodologies is also essential to minimize synchronization among tasks
and to distribute application data onto the grid components in order to overlap
communication and computation. As a case study, we consider a Block Matrix
Multiplication (BMM) algorithm for a client-server distributed computing
environment, because it is a basic linear algebra computational kernel representative

SOME PERFORMANCE ISSUES ON LINEAR ALGEBRA …

183

of similar other computational kernels like LU, TLL and QR factorizations, and for
this reason often required by several applications. On the other hand, it encompasses
a large amount of data movements among CPUs and memories, and the task of
minimizing the synchronization overhead among the nodes by using effective data
caching strategies is challenging. Few papers are available in this research area, e.g.,
[3, 7]. In a previous work, we introduced a distributed client-server algorithm for
this problem [4], so that in this paper, we mainly introduce a performance evaluation
procedure aimed to assess the algorithms.

In this work, the algorithms are implemented in the computational environment
able to support a client-server programming model, and where the underlying
computing environment is in charge of the resources selection by means of its own
dynamic allocation strategies, and the computational information about the servers
(including their availability, load, processor speed) are hidden to the client. During
recent years, several computing environments have been developed with the scope
of addressing these topics, while allowing, at the same time, a friendly access to
remote resources. Among them, we mention NetSolve [1] and Condor [10].

Our work is structured as follows: In Section 2, we will shortly introduce
different distributed algorithms for the BMM problem; in Section 3, we introduce
our performance evaluation procedure based on some parameters aimed to asses
the algorithms on these environments; finally in Section 4, we describe the
computational experiments.

2. Distributed Algorithms for Block Matrix Multiplication

Consider the following matrix multiplications problem for two dense matrices A
and B:

.BAC ⋅= (1)

For the sake of simplicity, we will assume that each matrix { }CBAX ,,∈ is a

square nn × matrix, and it is block partitioned as follows:

.

,1,

,11,1

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

NBNBNB

NB

XX

XX

X (2)

G. LACCETTI, M. LAPEGNA, V. MELE and D. ROMANO

184

Blocks JIX , have dimension ,rr × with n divisible by r, so that rnNB = is

an integer. From previous definitions, we have that each block of the C matrix is
given by:

∑
=

=∀=
NB

K
JKKIJI NBJIBAC

1
,,,,,1,, (3)

From equation (3), we observe that blocks JIC , can be computed independently

each other, so that Figure 1 shows three parallel versions obtained by the
permutation of the loops indices in the standard BMM algorithm .BAC ⋅=

Figure 1. Three standard versions for the BMM algorithm.

Note that other versions, obtained by the permutation of indices I and J, are
equivalent to these ones and that all the versions are based on the same
computational kernel:

.,,,, JKKIJIJI BACC += (4)

In a client-server implementation, for given values of I, J and K, the client sends
to a server the three blocks JKKI BA ,, and ,, JIC so that the server can update the

block JIC , and send back the result to the client. It is important to remark that the

only possible parallelism is always on indices I and J, so that only the blocks JIC ,

can be computed independently among them. This is not possible using index K,
because of the risk of “race condition” on accessing to the blocks JIC , for different

values of K. As a consequence, in order to reduce the synchronization overhead
accessing these blocks in a client-server implementation, it is essential to define
which algorithm in Figure 1 must be used to compute the several matrix operations
involving blocks JKKI BA ,, and ., JIC For a more deep analysis, we observe that

in the ()KJI ,, ordering (Algorithm 1.a), the client generates 2NB independent

threads of computation, each of them managing the sum on index K in equation (3).

SOME PERFORMANCE ISSUES ON LINEAR ALGEBRA …

185

With the ()JKI ,, ordering (Algorithm 1.b), the client generates only NB

independent threads of computation, each of them generating NB parallel tasks at
every step of index K. Finally, with the ()JIK ,, ordering (Algorithm 1.c) at each

step of index K, the client generates 2NB parallel tasks that have to be completed
before the client can generate new tasks.

Figure 2. The client-server implementation of the BMM algorithm with ()KJI ,,

ordering.

In Figure 2, as an example, we report the distributed client-server
implementation of the ()KJI ,, ordering of the BMM algorithm. Now it is

important to remark that, in the client-server programming model, data are stored in
the client memory (or in a repository close to the client) and they are sent in chunks
to servers for the computations; once the computation has been completed, the
results are returned to the client. However, the data movement between client and
server in a computational grid is similar to the data transfer between memories and
processing unit in a single Non Uniform Memory Access (NUMA) machine. A
NUMA machine is characterized by a memories hierarchy where fast and small
memories (main memory and caches) are positioned at the higher level, whereas
slow and large memories (secondary and remote memories) are located at the lower
ones. Table 1 shows typical peak bandwidth, latency and size, for four different
memory levels when accessed from the server. The illustrated values refer to a
common workstation usually available in a distributed computing environment and
are not representative of leading edge technology.

Table 1. Typical values for bandwidth and latency for different memory levels
 Bandwidth Latency Size

Server main memory 10 GByte/sec 2-10 ns 4 GBytes
Server secondary storage 100 MByte/sec 5 ms 512 TBytes

Remote client (LAN) 12.5 MByte/sec 10 ms 10 TBytes
Remote client (WAN) < 1 MByte/sec 100 ms > 100 TBytes

G. LACCETTI, M. LAPEGNA, V. MELE and D. ROMANO

186

It is commonly acknowledged that the key strategy to achieve high
performances with a NUMA machine is an extensive use of caching methodologies
at each level of the memory hierarchy. In this model, the highest levels are usually
managed by the compilers or by some highly optimized mathematical software
library, but lowest levels must be managed by the application. Since scientific
applications rarely can be divided in totally independent tasks and some data
dependencies are always present among them, the definition of methodologies and
the development of software tools for an effective data distribution among the
components of a computational grid assume a key role in grid computing.

Figure 3. The distributed client-server implementation of the BMM algorithm with
()KJI ,, ordering and caching of intermediate results in the server secondary

storage.

The use of a server secondary storage as a cache for the intermediate results,
therefore allows to locate them to a higher level in the memory hierarchy and avoids
unnecessary data transfers toward the client memories. Furthermore, if the entire
sequence has to be repeated several times, then it is possible to overlap data
communication and stage computation by keeping intermediate data in higher level
memories. The following Algorithm 2 in Figure 3 implements the described caching
strategy for the ()KJI ,, ordering of the BMM algorithm. A similar approach to

data management in distributed environments is described in [7], where the server
main memory replaces the server secondary storage as cache. The main advantage of
the approach described in the current paper is the larger amount of space available
for caching the intermediate data, with a data access time still negligible compared to
the time for accessing the remote client memory.

3. Algorithms Analysis

For a complete performance analysis, we have to notice that in a distributed

SOME PERFORMANCE ISSUES ON LINEAR ALGEBRA …

187

environment, classical parameters like Speedup and Efficiency cannot be used since
the number of used nodes is not defined by the user through the applications, but
they are determined by the computational environment. Furthermore, the primary
goal for using these environments is the opportunity of aggregating scattered and
unused resources rather than simply reducing the execution time [9]. In any case, we
can study the behavior of the total execution time when the problem dimension n
changes, aiming at measuring the influence of the computational environment on the
BMM distributed algorithm.

We begin our study by comparing the computational cost of the three algorithms
in Figure 1. Firstly, denote 0>ijkt to be the execution time (computation and

communication) necessary to resolve the computational kernel (4) and (),NBTijk

(),NBTikj ()NBTkij to be, respectively, the total execution times to solve the problem

(1) with dimension rnNB = using the three algorithms in Figure 1. With the

previous definition:

Lemma 1. Given the total execution times:

() () (),,, NBTNBTNBT kijikjijk

then

() () ().NBTNBTNBT kijikjijk ≤≤ (5)

Proof. By the DAGs in Figure 2, it is easy to prove that:

() () ()∑ ∑ ∑===
k k k

ijk
ji

kijijk
ji

ikjijk
ji

ijk tNBTtNBTtNBT .max,maxmax,max
,,

So, the inequalities hold.

Therefore, the ()KJI ,, ordering described by Algorithm 1.a is more suitable to

a distributed client-server implementation compared to the other two orderings. The
least suitable one is the ()JIK ,, ordering. Furthermore, it is reasonable to suppose

() () ().111 kijikjijk TTT == This is justified because with only one block (),1=NB

the three algorithms are equivalent. Since the ()KJI ,, ordering exhibits the smaller

total execution time, in the following, we concentrate our attention only on this one,
but similar results hold for the other orderings.

G. LACCETTI, M. LAPEGNA, V. MELE and D. ROMANO

188

To assess the performance of the client-server implementation described in
Figure 2 in a distributed computing environment, let us examine before an ideal
case, where the environment is composed by homogeneous, dedicated and
unbounded resources (e.g., number of nodes and networks bandwidth). In this

environment, let () () ()NBTNBTNBT kijikjijk
∗∗∗ ,, be, respectively, the ideal total

execution times of the algorithms in Figure 1. From a theoretical point of view, we
can assume that when the number of blocks NB increases, there are always available
nodes and network bandwidth to perform the tasks. In this case, the execution time
of each task τ=ijkt is equal for all the values of I, J, K, and the ideal total execution

times in a distributed environment are

() () () .τ⋅=== ∗∗∗ NBNBTNBTNBT kijikjijk (6)

Now we consider the problem (1) of size ,rNBn ⋅⋅α=⋅α where 1≥α is a
scaling parameter, with the purpose of studying the influence of the computational

environment on the algorithm. Then we define ()NBTijk ⋅α∗ as the total execution

time to solve such larger problem in the ideal case, and we define the parameter

()
()
()

.,
NBT

NBT
NBR

ijk

ijk
ijk ∗

∗
∗ ⋅α

=α (7)

This parameter assesses the ideal growth factor for the total execution time
when an α-times larger problem is solved. Of course, it is easy to prove that:

() ., α=α∗ NBRijk (8)

Same results hold also for ()NBTikj ⋅α∗ and (),NBTkij ⋅α∗ so that equation (8)

shows a linear growth with NB for the ideal total execution time for all the
algorithms in Figure 1, when the matrix dimension grows and the block dimension

NBnr = is constant.

However, the number of nodes and the sustained network bandwidth are limited
and it is not possible to have a perfect parallelism. For such a reason, it is fully
reasonable to introduce the assumptions:

Heuristic 1.

() ().NBTNBT ijkijk
∗≥ (9)

SOME PERFORMANCE ISSUES ON LINEAR ALGEBRA …

189

Heuristic 2.

() ().NBTNBT ijkijk α≥⋅α (10)

These assumptions mean that the actual total execution time cannot be smaller
than the ideal one, and when we solve an α-times larger problem in a real
environment, we cannot achieve an actual growth factor smaller than the ideal one.
Therefore, we define the parameter

()
()
()NBT

NBT
NBR

ijk

ijk
ijk

⋅α
=α, (11)

as the measure of the actual growth factor for ()NBTijk when an α-times larger

problem is solved. It is easy to prove, by using Heuristic 2, that () ., α≥αNBRijk

By comparing parameters ()α,NBRijk and (),, NBRijk α∗ we can now evaluate

the influence of the computational environment on the distributed algorithm. Now
we define the parameter:

()
()
()

.
,

,
,

α

α
=α

∗ NBR

NBR
NBE

ijk

ijk
ijk (12)

This parameter evaluates how much ()α,NBRijk is larger than ()., α∗ NBRijk

Of course, by using (8) and Heuristic 2, we have

()
()
()

()
.1

,

,

,
, ≥

α
α

=
α

α
=α

∗

NBR

NBR

NBR
NBE ijk

ijk

ijk
ijk

Furthermore:

Lemma 2. Given the previous definitions, we have

() () ()., NBTNBENBT ijkijkijk αα=⋅α (13)

Proof. This is because

()
()

()

()
()

()

()

()
() ,

,

,
,

NBT
NBT

NBT

NBT
NBT

NBT

NBR

NBR
NBE

ijk

ijk

ijk

ijk

ijk

ijk

ijk

ijk
ijk α

⋅α
=

⋅α

⋅α
=

α

α
=α

∗

∗

∗

then the thesis.

G. LACCETTI, M. LAPEGNA, V. MELE and D. ROMANO

190

From (13), we observe that ()αα ,NBEijk is the actual growth factor for the

total execution time, so ()α,NBEijk can be taken as a measure of the influence of

the computational environment on the performance of the algorithm. Of course,

()α∗ ,NBRijk is a not decreasing function of α, so, by the Heuristic 2, we can assume

that the same property holds also for ()., αNBRijk Therefore, if ()α,NBEijk is

a constant or a moderately increasing function of α, then we can consider the
algorithm as suitable for a distributed execution and able to exploit the parallelism of
the computational environment. However, in general, a limitation in the resources
(number of nodes, networks bandwidth, …) prevents the parallel execution of a large
number of tasks, so we found that ()α,NBEijk is a significantly increasing function

of α. Therefore, in order to understand the actual gain obtained when using a
distributed environment in place of a sequential one, it can be useful to compare

()α,NBRijk not only with the scale factor α as in the definition of (),, αNBEijk

but also with other functions like () 2α=αf or () .3α=αf Actually, let us note

that () 3α=αf can be considered the worst growth factor for the total execution

time, because it is the growth factor of a BMM algorithm in a distributed
environment with only one server.

We define therefore:

()()
()

2
2 ,

,
α

α
=α

NBR
NBE ijk

ijk and () ()
()

.
,

, 3
3

α

α
=α

NBR
NBE ijk

ijk (14)

These parameters compare (),, αNBRijk respectively, with () 2α=αf and

() .3α=αf If ()()NBEijk ,2 α is a constant or moderately increasing function, then

we can yet consider as convenient to execute the algorithm in a distributed

environment; but a significant increasing function ()()NBEijk ,2 α means that we are

not able to gain any benefits from the execution in a distributed environment with
respect to the execution in a sequential environment.

Finally, we conclude this section with a comparison between Algorithm 1 in
Figure 3 (IJK ordering without data caching) and Algorithm 2 in Figure 6 (IJK
ordering with data caching). Let now Sτ and Rτ be, respectively, the access times

SOME PERFORMANCE ISSUES ON LINEAR ALGEBRA …

191

to the server secondary storage and to the remote client memories, and ()1∗
ijkC and

()2∗
ijkC be the ideal total communication costs for Algorithm 1 and Algorithm 2,

respectively. We concentrate our attention only on the communication cost because

the computation cost is equal in both algorithms and because it is the dominant part
in the total execution time. We firstly observe that, since the computation of the

kernel (4) requires the communication of 24r data among client and server, in (6),

we have ,4 2rRτ=τ so the ideal communication cost for the complete computation

of each block ()JIC , with Algorithm 1 is:

() () .4 21 rNBNBC Rijk τ=∗ (15)

Since SR γτ=τ with ,10010 <γ< the ideal communication cost of the

Algorithm 2 is () ,2 2rSR τ+τ=τ so that:

()() () ()().2 122 NBCrNBNBC ijkSRijk
∗∗ <τ+τ= (16)

We define:

()
()()
()()NBC

NBC
NBS

ijk

ijk
1

2

∗

∗
∗ = (17)

as the measure of the ideal reduction factor for the ()KJI ,, ordering when a

caching strategy is used. It is easy to prove:

Lemma 3. Given the definition of (),NBS∗ we have

()
()()
()()

() .2
1

4
2

2

2

1

2

γ
+γ=

τ

τ+τ
== ∗

∗
∗

rNB
rNB

NBC

NBC
NBS

R

SR

ijk

ijk (18)

Equation (18) shows the ideal value for the reduction factor when a caching
strategy is used. It should be compared with the actual reduction factor, that is with
the ratio:

()
()()
() ()

,1

2

NBC

NBC
NBS

ijk

ijk= (19)

where ()1
ijkC and ()2

ijkC are the actual communication costs of the two algorithms.

G. LACCETTI, M. LAPEGNA, V. MELE and D. ROMANO

192

4. Computational Experiments

In this section, we describe the results of several tests aimed to evaluate our
algorithms using the procedure described in Section 3. For our experiments, we used
NetSolve 2.0 distributed computing infrastructure [1]. This is a software
environment based on a client-agent-server paradigm that provides a transparent and
inexpensive access to remote hardware and software resources.

A first set of experiments is aimed to evaluate the effectiveness of Algorithm 1.a
when compared to Algorithm 1.b and Algorithm 1.c. Then on the basis of Equation
(5), we implement the ()KJI ,, ordering (Algorithm 1.a) and the ()JIK ,,

ordering (Algorithm 1.c), i.e., the best and the worst expected version. In this first
experiment, the servers are located at the University of Tennessee and the client is
located in our Department. This software infrastructure can be called Wide Area
System (WAS), because of the underlying geographical networks. In these
experiments, we evaluated the total execution times for calculations in problem (1),
considering square matrix of order ,250=n 500, 1000, 2000 and a fixed block size

.250=r With these values, the number of blocks ,1=NB 2, 4, 8.

Table 2. Timing results in seconds for Algorithm 1.a and Algorithm 1.c on a WAS

In Table 2, there are the total execution times for Algorithm 1.a and Algorithm
1.c on the WAS. In order to report realistically, the impact of the fluctuation in the
network traffic, the values are, respectively, the averages of ()NBTijk and ()NBTkij

over 10 executions. Furthermore, the table lists the minimum and maximum
achieved total execution times and the standard deviation over the 10 executions.
Best performance of Algorithm 1.a is evident with an average execution time lower
in each test. The high standard deviation values are motivated by the variability of
the workload in the geographic networks. Table 3 reports further results of the
comparison between the two algorithms on the basis of other parameters (11), (12)
and (14) defined in Section 3 with ,2=α that is doubling the size of the matrix in
each experiment. In this table we note that, even if the Algorithm 1.a typically shows

SOME PERFORMANCE ISSUES ON LINEAR ALGEBRA …

193

parameter values better than Algorithm 1.c, in both cases, we achieve increasing

values for () ()NBE ,22 and ()().,23 NBE More precisely, we observe a behavior of

the total execution times worse than the one of a sequential execution in a
environment with a single server, so the use of a WAS in this case is not feasible.

A second set of experiments is aimed to compare the execution times of
Algorithm 1.a on two different NetSolve systems: a WAS as previously described
and a Local Area System (LAS), where all resources are connected to the Local Area
Network of our Department at 100 Mbits. The results of the experiments on a LAS,
conducted with the same values of n and r used in previous experiments for a WAS,
are shown in Table 4.

Table 3. Performance analysis of Algorithm 1.a and Algorithm 1.c on a WAS

Algorithm 1.a Algorithm 1.c

1=NB 2=NB 4=NB 1=NB 2=NB 4=NB

()NBR ,2 2,05 2,23 2,23 2,23 3,15 7,10

()NBE ,2 1,03 1,11 1,11 1,11 1,57 3,55
()()NBE ,22 0,51 0,56 0,56 0,56 0,79 1,78

()()NBE ,23 0,26 0,28 0,28 0,28 0,39 0,89

Table 4. Timing results in seconds for Algorithm 1.a on two different systems

This table shows the average, the minimum, the maximum and the standard
deviation of ()NBTijk over 10 executions. Firstly, we observe for the Local Area

System an average execution time and a standard deviation much smaller than those
obtained in the Wide Area System, which is due to the smallest latency and the
higher bandwidth network. In order to quantify the performance gain that we
achieve using a Local Area Network System, in Table 5, we show the values of
the parameters for the assessment of the performance introduced in Section 3. We

G. LACCETTI, M. LAPEGNA, V. MELE and D. ROMANO

194

observe that, unlike WAS, the values of () ()NBE ,22 and ()()NBE ,23 are

descending. More precisely, we measured decreasing values for ()(),,22 NBE and

that means a growth factor included between () 2,2 =NBR (the ideal case) and

() 4,2 =NBR (a still convenient case). Then, the use of Algorithm 1.a on a Local

Area System produces a real gain on the total execution time, as compared to a
sequential execution in an environment with a single server.

Table 5. Performance analysis of Algorithm 1.a on two different infrastructures

Algorithm 1.a on a WAS Algorithm 1.a on a LAS

1=NB 2=NB 4=NB 1=NB 2=NB 4=NB

()NBR ,2 2,05 3,15 7,10 9,47 5,15 4,21

()NBE ,2 1,03 1,57 3,55 4,73 2,57 2,11
() ()NBE ,22 0,51 0,79 1,78 2,37 1,29 1,05

()()NBE ,23 0,26 0,39 0,89 1,18 0,64 0,53

A third set of experiments is aimed to test the data caching strategy described in
Section 2. In order to manage data efficiently, NetSolve includes two tools: the
Request Sequencing and the Data Storage Infrastructure (DSI), but they are unable
to implement the caching strategy previously described. Therefore, in order to fully
implement a caching methodology, it has been necessary to modify the NetSolve
DSI implementation to some extent, as described in [4]. The experiments have been
carried out on the LAS in our department, where the servers are workstations
running at 2.4 GHz, each of them provided with a Parallel ATA disk adapter with a
peak transfer rate of 100 MByte/sec. The secondary storage is used as a cache for the
intermediate results in each server. Then, we implemented Algorithm 1.a without
data caching as shown in Figure 1, and Algorithm 1.a with data caching as shown in
Figure 3. Table 6 shows the average, the minimum, the maximum and the standard
deviation of ()NBTijk over 10 executions. The matrix dimension ,250=n 500,

1000 and 2000 and the block size 250=r are the same in both tables. The results
show a significant reduction of the total execution time for the computation of the
entire matrix multiplication when a caching strategy is used.

SOME PERFORMANCE ISSUES ON LINEAR ALGEBRA …

195

Table 6. Timing results in seconds for Algorithm 1.a with different caching
strategies on a LAS

Furthermore, in Table 7, we report the values for the performance analysis
introduced in Section 3. We observe that for Algorithm 1.a with a caching strategy,
we achieve growth factors ()NBR ,2 smaller than the ones from the same algorithm

without data caching. Algorithm 1.a on a LAS without data caching.

Table 7. Performance analysis of two versions of Algorithm 1.a on a local area
system

Algorithm 1.a on a LAS without
data caching

Algorithm 1.a on a LAS with
data caching

1=NB 2=NB 4=NB 1=NB 2=NB 4=NB

()NBR ,2 9,47 5,15 4,21 5,71 4,67 3,97

()NBE ,2 4,73 2,57 2,11 2,85 2,33 1,99
() ()NBE ,22 2,37 1,29 1,05 1,43 1,17 0,99

()()NBE ,23 1,18 0,64 0,53 0,71 0,58 0,50

Table 8. Actual and ideal ratios among the communications costs of the two version
of Algorithm 1.a

 1=NB 2=NB 4=NB 8=NB

()NBS 1,24 0,75 0,68 0,64

()NBS∗ 0,55 0,55 0,55 0,55

Finally, the effectiveness of the changes in the IBP infrastructure described in
Section 4, is confirmed by Table 8, showing the achieved values for the actual and

ideal ratios among the communication costs ()NBS and ()NBS∗ introduced in

Section 3. Actually, mainly for large problems, we observe that the achieved values

for ()NBS are very close to the ideal values ().NBS∗

G. LACCETTI, M. LAPEGNA, V. MELE and D. ROMANO

196

5. Conclusions

This work mainly pursuits a double purpose. Firstly, it describes an effective
methodology for task scheduling and for data placement among resources related to
the implementation of a Block Matrix Multiplication in a client-server distributed
environment. Secondly, it introduces a procedure to assess the performance of
algorithms in a distributed client-server environment. The procedure is based on a
performance model that is validated with several experimental results in two
different distributed environments: a Local Area System based on computing nodes
connected by local networks and a Wide Area System based on geographical
networks. From the performance analysis, we achieve some interesting conclusions
reported in Section 4. In any case, the main result is the confirmation that the use of
suitable caching strategies for the implementation of a Block Matrix Multiplication
algorithm in a distributed system based on local area networks is competitive with
more expensive parallel system based on dedicated computing nodes or networks.
Even if the experiments refer only to the BMM problem, the general structure of the
algorithm is general enough, so we believe that similar results could be achieved also

on other linear algebra problems, like LU, TLL and QR factorizations.

References

 [1] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour, K. Sagi,
Z. Shi and S. Vadhiyar, User’s Guide to NetSolve V. 2.0, Univ. of Tennessee, 2004.
See also Net-Solve home page-URL: http://icl.cs.utk.edu/netsolve/index.html.

 [2] A. Bassi, M. Beck, T. Moore, J. S. Plank, M. Swany, R. Wolski and G. Fagg, The
internet backplane protocol: a study in resource sharing, Future Generation Computing
Systems 19 (2003), 551-561.

 [3] O. Beaumont, V. Boudet, F. Rastello and Y. Robert, Matrix multiplication on
heterogeneous platforms, IEEE Trans on Parallel and Distributed Systems 12 (2001),
1033-1051.

 [4] L. Carracciuolo, G. Laccetti and M. Lapegna, Implementation of effective data
management policies in distributed and grid computing environments-in PPAM07:
Parallel Processing and Applied Mathematics, Wyrzykowski et al., eds, LNCS 4967,
Springer-Verlag, 2008, pp. 902-911.

 [5] P. Caruso, G. Laccetti and M. Lapegna, A Performance Contract System in a Grid
Enabling, Component Based Programming Environment, EGC2005: Advances in Grid
Computing, P. M. A. Sloot et al., eds, LNCS 3470, Springer-Verlag, 2005, pp.
982-992.

SOME PERFORMANCE ISSUES ON LINEAR ALGEBRA …

197

 [6] K. Czajkowsky, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith and S.
Tuecke, A resource selection management architecture for metacomputing systems,
Proc. of PPS/SPDP’98 Workshop on Job Scheduling Strategies for parallel Proc.,
1998.

 [7] J. Dongarra, J. F. Pineau, Y. Robert, Z. Shi and F. Vivien, Revisiting matrix product
on master worker platforms, Parallel and Distributed Processing Symposium, 2007,
IPDPS 2007.

 [8] I. Foster and C. Kesselman, eds., Computational grid, The Grid: Blueprint for a Future
Generation Computing Infrastructure, Morgan Kaufman, 1998.

 [9] G. Fox, Message passing from parallel computing to the grid, IEEE Computing in
Science and Engineering 4 (2002), 70-73.

 [10] M. Litzkow, M. Livny and M. Mutka, Condor: a hunter of idle workstation, Proc. of
8th Int. Conf. Distributed Computing Systems, IEEE press, 1988, pp. 104-111. See
also URL www.cs.wisc.edu/condor.

 [11] A. Murli, V. Boccia, L. Carracciuolo, L. D’Amore, G. Laccetti and M. Lapegna,
Monitoring and Migration of a PETSc-based Parallel Application for Medical Imaging
in a Grid computing PSE, IFIP International Federation for Information Processing,
Vol. 239: Grid-based Problem Solving Environments: Implications for Development
and Deployment of Numerical Software, P. W. Gaffney and J. C. T. Pool, eds.,
Springer-Verlag, 2007, pp. 421-432.

 [12] F. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche and S. Vadhiyar,
Numerical Libraries and the Grid: The GrADS Experiment with ScaLAPACK, Univ.
of Tennessee Technical Report UT-CS-01-460, 2001.

 [13] J. Planck, M. Beck, W. Elwasif, T. Moore, M. Swany and R. Wolsky, IBP, The
Internet Backplane Protocol: Storage in the Network, NetStore 99: Network Storage
Symposium, Seattle, 1999.

 [14] R. Ribler, J. Vetter, H. Simitci and D. Reed, Autopilot: adaptive control of distributed
applications, Proc. of High Performance Distributed Computing Conference, 1998,
pp. 172-179.

 [15] Seti@home home page - URL: http://setiathome.ssl.berkeley.edu/

 [16] S. Vadhiar and J. Dongarra, A performance oriented migration framework for the grid,
3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003,
pp. 130-137.

 [17] S. Vadhiar and J. Dongarra, A meta scheduler for the grid, Proc. 11th IEEE
Symposium on High Performance Distributed Computing, 2002, pp. 343-351.

