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Abstract 

Particle Swarm Optimization is a well established optimization technique. 
Nevertheless, one of its main drawbacks comes from the fact that it is 
difficult to maintain acceptable levels of population diversity and to 
balance local and global searches. In this paper, we describe a discrete 
variant of PSO with increased diversity whose performance is initially 
investigated by applying it to a discrete, real-world problem: the design of 
Water Distribution Systems. Two traditional benchmark problems in the 
Hydraulic Engineering literature are considered: the Hanoi new water 
distribution network and the New York Tunnel water supply system. The 
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obtained results exhibit considerable improvements regarding both 
convergence characteristics and the quality of the final solutions. A really 
important conclusion is that a small representative sample of the 
algorithm’s runs can be used to consistently achieve near optimal results 
at a much reduced computational cost. This is of paramount importance 
from an engineering perspective. Finally, to show the scalability of the 
model, we have applied the algorithm to a real-world water distribution 
network. 

1. Introduction 

Particle Swarm Optimization (PSO) is an Evolutionary Algorithm that has 
shown great potential and good perspective for the solution of various optimization 
problems [1-10]. The PSO algorithm is a multi-agent optimization system inspired 
by the social behaviour of a group of migrating birds trying to reach an unknown 
destination. Like other evolutionary algorithms, PSO does not guarantee the global 
optimum and has premature convergence to local optima, especially in complex 
multi-modal search problems. Nevertheless, PSO can be easily implemented, and it 
is computationally inexpensive, since memory and CPU speed requirements are low. 
Another advantage is that PSO does not require specific operators, as particles 
update themselves with internal velocity. PSO algorithms also have memory and 
receive information only from the best particle in the history, which is a simpler 
mechanism of information transmission than those used in Genetic Algorithms (GA) 
or Ant Colony Optimization (ACO), for example. The evolution only looks for the 
best solution, and particles tend to converge to the best solution quickly. 
Nevertheless, PSO’s main drawback is that it is difficult to maintain acceptable 
levels of population diversity and to balance local and global searches and hence 
suboptimal solutions are prematurely obtained [1]. 

Some evolutionary techniques maintain population diversity by using certain 
more or less sophisticated operators or parameters, such as the mutation parameter in 
the case of GAs. Several other mechanisms for forcing diversity can be found in the 
literature. There are many examples coming from different areas, such as artificial 
immune systems [11-13] or genetic programming [14, 15]. Regarding PSO, the 
literature is abundant. In [16], PSO is endowed with an explicit selection mechanism 
similar to that used in more traditional evolutionary computations. In [17], a hybrid 
PSO that combines the traditional velocity and position update rules with the ideas 
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of breeding and subpopulations is proposed. Function ‘‘stretching’’ to PSO for the 
alleviation of the local minima problem is introduced in [18, 19]. Proposed in [20], 
IPSO is a method in which the population is partitioned into several sub-swarms that 
are made to evolve based on PSO; the algorithm shuffles the population at periodic 
stages in the evolution, each time reassigning new sub-swarms to ensure information 
sharing. The DPSO version [21] introduces random mutations on the particles with 
small probability, which is hard to determine along with the evolution. The same 
authors introduce DEPSO in [22], which provides bell-shaped mutations with 
consensus on the population diversity, while keeping the particle swarm dynamics. 
Finally, several hybrid techniques using rationales not specifically belonging to PSO 
have been proposed. The study in [23] employs the technique of initializing the 
particle swarm optimizer using the nonlinear simplex method to explore the search 
space more efficiently and to detect better solutions. PSO with a Gaussian mutation 
is presented in [24]. Inspired by the GAs theory, [25] presents a hybrid evolutionary 
algorithm by crossing PSO and GAs, which possesses better ability to find the global 
optimum than that of the standard PSO algorithm. In [26], PSO and simulated 
annealing are integrated. 

The random character typical of evolutionary algorithm’s features adds, in 
general, a degree of diversity to their genotypes, phenotypes, or individuals 
integrating the manipulated populations. Nevertheless, in PSO, those random 
components are generally unable to add a sufficient amount of diversity. Regarding 
the discrete PSO performance, the authors have detected frequent collisions of 
particles in the search space, which can also be theoretically justified. This, in fact, 
caused the effective population size to be lower and the algorithm effectiveness to be 
consequently impaired. The proposed PSO derivative we propose, which is a 
theoretically and experimentally founded extension of [27], greatly increases the 
ability of simultaneous exploration and exploitation and is a kind of affordable 
action to effectively limit particles’ collisions. 

To show its performance, it is applied to two discrete problems in hydraulic 
engineering. The results show that it remarkably improves the calculation efficiency 
and is an effective global optimization tool for the design of water supply systems. 
The scalability of the problem has been demonstrated after applying the model with 
success to various district metered areas of a Latin-American capital within a joint 
project with a multi-national water company. 
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After the introduction, first, the new feature is presented within the framework 
of PSO. Next, the application to two discrete standard benchmarking problems in 
Hydraulic Engineering is presented. It includes a comparison with the results 
obtained by other authors and discussions about the representativeness of samples of 
algorithm executions and the consistency with which near optimal results are 
achieved at a much reduced computational cost. Finally, the application to a real-
world problem is presented and a conclusion section closes the paper. 

2. Injecting Diversity into Standard PSO 

The original idea of Kennedy and Eberhart [28] was to simulate the social 
behaviour of a flock of birds (agents) in their endeavour to reach their unknown 
destination (fitness function) when flying through the field (search space), for 
example, in search of the location of food resources. In PSO, each bird of the flock 
is a potential solution and is referred to as a particle. Initially, a number of particles 
are randomly generated. Then, particles evolve in terms of their individual and social 
behaviour, and mutually coordinate their movement towards their destination [29]. 

The ith particle represents a solution of the optimization problem and is 
characterized by its location in a D-dimensional space, where D corresponds to the 
number of variables of the problem. During the process, each particle i is associated 

with three vectors, ( ) ,1
D
=jiji xX =  ( )D=jiji pP 1=  and ( ) ,1

D
=jiji vV =  representing its 

current location, the best location it has reached so far, which is updated in each 
iteration, and its velocity, which enables it to evolve to a new location. Also, in each 
cycle (iteration), the particle that best fits the objective function is obtained; its 

location, ( ) ,1
D
=jiji gG =  plays an important role in the calculation of the movement 

evolution of every other bird. 

In a coordinated way, each bird evolves by changing its location 

,iii V+X=X  (1) 

with updated new velocity 

( ) ( ),2211 iiiiii XGrcXPrcVV −+−+ω=  (2) 

so that it accelerates towards both its best position, ,iP  and the best position 

obtained so far by any bird in the flock (best global position), G. This enables each 
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bird to explore the search space from its new location. The process is repeated until 
the best bird reaches a certain desired location. The elements in equation (2) are as 
follows: ,ic  ,2,1=i  are the acceleration constants and represent the weighting of 

the stochastic acceleration terms that pull each particle simultaneously towards its 
best position and the best global position; these constants are also sometimes 
referred to as learning rates or factors; ,ir  ,2,1=i  are uniform independent 

pseudo-random numbers between 0 and 1; and ω is an inertia term proposed in [29] 
that controls the impact of the velocity history into the new velocity and can be 
suitably adapted during the calculation process. This operator allows a balance 
between local and global searches and typically decreases with time so that though a 
global search is initially favoured, the trend shifts towards a local search as the 
solution process evolves, resulting in less iteration on average to find an optimal 
solution. 

It is worth noting here that, according to the description, the process involves 
not only intelligent behaviour but also social interaction. This way, birds learn both 
from their own experience (local search) and from the group experience (global 
search). 

In addition, on each dimension, particle velocities are clamped to minimum and 
maximum velocities, which are user defined parameters 

,maxmin VVV j ≤≤  (3) 

to control excessive roaming of particles outside the search space. These are very 
important parameters that are problem dependent. They determine the resolution 
with which regions between the present position and the target (best so far) positions 
are searched. If maxV  is too big, then particles might fly through good solutions. If 

maxV  is too small, on the other hand, particles may not explore sufficiently beyond 

locally good regions and could easily be trapped in local optima, unable to move far 
enough to reach a better position in the problem space. 

Increasing diversity 

Several researchers have analyzed PSO empirically [21, 30, 31] and 
theoretically [32-35], and have shown that particles evolve in different oscillating 
waves and converge quickly, sometimes prematurely, especially for small values of 
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ω [21]. This is particularly evident for any particle X whose best value P is too close 
to G. According to (2), those particles become inactive at certain stages of evolution 
[21, 24, 36]. 

The analysis can be reduced, without loss of generality, to the one-dimensional 
case: 

( ) ( ).2211 xgrcxprcvv −+−+ω=  (4) 

Equation (4) shows that if v becomes small, it will not be able to take on large values 
again if xp −  and xg −  are both small, too. This fact is especially critical in 

the discrete case, where xp −  and xg −  can be effectively zero. This will 

represent a loss of exploration capability for the particle in some generations, since v 
will be damped quickly with the ratio ω. Such a circumstance can occur even at early 
stages for the best particle, for which xp −  and xg −  are zero. In the long 

run, however, it is expected that ,gp =  for a number of particles as all the particles 

in the population “agree” upon a single best point which becomes the unique 
attractor; this represents a clear lost of diversity. 

Effectively, by writing ,2211 rcrcc +=  the equivalent attraction point h can be 

given by 

.2211 g
c
rcp

c
rch +=  (5) 

As a result, equation (4) can be re-written as 

( ).xhcvv −+ω=  (6) 

If p and g are different, h changes from iteration to iteration even if no better 
solutions are discovered, that is to say, even if p and g remain constants; as a 
consequence, v will change suitably. However, if p equals g, then equation (5) 
implies that, irrespective of the generated random numbers, .gph ==  With 

xh −  small, which typically occurs in the latter stage of the evolution process, 

then v, according to (6), is damped with small ω values and as a result, the particle is 
clearly inactive and has no chance to improve. 

In effect, after conducting a specific study (not included in this work) on the 
discrete PSO performance, the authors detected frequent collisions of birds in the 
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search space, especially with the leader [27]. This, in fact, caused the effective 
population size to be (much) lower; consequently, the algorithm effectiveness was 
impaired. This led us to try to devise some kind of affordable action to effectively 
limit bird collisions. To check all of the birds for all possible collisions was deemed 
extravagant and unnecessary. Therefore, only a few of the best birds were selected to 
check collision, and a new bird was randomly regenerated if a collision occurred. 
The random regeneration of the many birds that tended to collide with the best birds 
was shown to avoid premature convergence, as it prevented clone populations from 
dominating the search. The inclusion of this procedure into the discrete PSO 
produces greatly increased diversity and, according to the results shown in the next 
paragraph, improved convergence characteristics and the quality of the final 
solutions. 

The modified algorithm can be given by the following pseudo-code, with k as 
iteration number. 

Let .1=k  

Generate a random population of M particles: ( ){ } .1
M
ii kX =  

Evaluate the fitness of the particles. 

Record the local best locations ( ){ } .1
M
ii kP =  

Record the global best location, ( ),kG  and the list of the m best particles to check 

collisions. 

While (not termination-condition) do 

- Determine the inertia parameter ( )kω  

- Begin cycle from 1 to number of particles M 

Start 

Calculate new velocity, ( ),1+kVi  for particle i according to (2), and 

take its integer part (for discrete optimization) 

Update position, ( ),1+kX i  of particle i according to (1) 

Calculate fitness function for particle i  
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If particle i has better fitness value than the fitness value of the best 
particle in history, then set particle i as the new best particle in 
history and update the list of the m best particles 

If particle i is not currently one of the m best particles but coincides 
with one of the selected m best particles, then re-generate particle i 
randomly 

End 

- Let .1+= kk  

Show the solution given by the best particle 

The parameters used by this algorithm have been selected after preliminary 
tuning experiments following a number of suggestions [4, 5, 29, 37]: ,31 =c  

,22 =c  ( ) ,
1ln2

15.0
+

+=ω
k

 %50max =V  of variable range, ;maxmin VV −=  

Number of particles ( ) .100sizepopulation =  

Different termination conditions may be stated [37]. In this paper, the process is 
stopped if no improvement in the solution had been obtained after 800 iterations. 

The performance of the approach introduced herein to avoid collisions with the 
best particles (different values of m have been tried), can be observed from the 
results obtained for the two benchmark problems studied in the next paragraph. 

3. WDS Benchmarking Problems and a Real-world Case Study 

WDS design is a wide problem in hydraulic engineering that consists in 
determining the values of all involved variables in such a way that the investment 
and maintenance costs of the system are minimal, subject to a number of constraints 
[38]. A general strategy for solving the optimal design problem of a WDS involves 
the balancing of several factors: finding the lowest costs for layout and sizing using 
new components, reusing or substituting existing components, creating a working 
system configuration that fulfils all water demands, adhering to the design 
constraints, and guaranteeing a certain degree of reliability for the system [39, 40]. 
The benchmark cases we address here have been used traditionally in the literature 
and are standard examples used to demonstrate the application of a wide range of 
tests and analyses. The fitness function that has traditionally been used only takes 
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pipeline costs into account. Nevertheless, a generalization to broader classes of 
fitness functions is straightforward. Hence, in order to facilitate comparisons with 
results obtained by other authors, we use the following objective function to estimate 
the costs: 

( ) ( )∑
=

⋅=
P

i
ii LDCDF

1
,  (7) 

where P is the number of pipes in the network, ( )iDD =  is the vector of pipe 

diameters (which is P-dimensional and its components belong to a discrete set of 
commercially available diameters), ( )iDC  is the unit cost of diameter ,iD  and iL  is 

the length of the ith pipe. It has to be noted that C is a non-linear function of 
diameter. Also, in order to restrict ourselves to the same rules used in the literature to 
deal with the benchmark problems, only three kinds of constraints are considered 
here: continuity equations, energy equations (strongly nonlinear), and lack of 
satisfaction of minimum pressures at demand nodes. As a consequence, the total cost 
of the network is considered as the sum of the network cost (7) and a penalty cost, 
defined as 

( )∑ ∑
= =

⋅+⋅=
P

i

K

j
jjii vpLDCF

1 1

2 ,  (8) 

where K is the number of constraints, jv  is the jth constraint violation, and jp  

represents the penalty parameter corresponding to constraint j with a large value to 
ensure that infeasible solutions will have a cost greater than any feasible solution. 

The problems faced in the optimal design of WDSs are great. Furthermore, this 
simple variant for the design of a water supply system is NP-hard. For instance, one 
of the networks considered in this paper, with 21 pipes and 15 potential commercial 

pipe diameters, has 2116  possible pipe diameter combinations (including a null 
option) that constitute the search space of the problem. This modest network would 
require a considerable amount of time for an exhaustive search algorithm to navigate 

the entire search space of almost 25102 ⋅  potential solutions. 

Hanoi water supply system 

The Hanoi pipe network has been considered several times in the literature [41-
45]. This network consists of a single fixed head source at an elevation of 100m, 34 
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pipes and 31 demand nodes organized in three loops, and two ramified branches. 
The problem is to find the diameters (from a set of six commercially available 
diameters) for the 34 pipes such that the total cost of the network is minimal and the 
pressure at each node of consumption is at least 30m. The complete setting can be 
found in [46]. 

New York tunnel supply system 

The second case is the New York Tunnel water supply network, which, similar 
to the Hanoi water distribution problem, has been studied extensively by various 
researchers [42, 43, 47]. A complete detailed description of the case can be seen in 
[48]. The system has a fixed head reservoir, 21 tunnels, and 19 nodes. The objective 
of the New York Tunnel (NYT) problem is to determine the most economically 
effective design for adding to the existing system of tunnels that constituted the 
primary water distribution system of the city of New York. Because of age and 
increased demands, the existing gravity flow tunnels were found to be inadequate to 
meet the pressure requirements for the projected consumption level. The 
construction of additional gravity flow tunnels parallel to the existing ones is 
considered. All 21 tunnels are considered for duplication. There are 15 available 
discrete diameters and one extra possible decision, which is the “do nothing” option. 

Sample representativeness 

For the WDSs under consideration, designs were optimized 100 times initially, 
then 1000 times, and finally, 2000 times. This way, three independent samples of 
different size were obtained. The final minimal fitness values were analyzed using 
the Kruskal-Wallis test (K-W test) [49] for nonparametric analysis. The test statistic 
T is defined as: 

( ) ,4
11

1

22

2 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +−= ∑
=

k

i i
i NNn

R
S

T  (9) 

being 

( ) ( ) ,4
1

1
1

ranksall

2
22

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +−
−

= ∑ NNXRNS ij  (10) 

where k is the number of groups (three, in this case), N is the total number of runs 
(here 3100), in  is the sample size for group i (100, 1000, and 2000, respectively), 

iR  is the sum of the ranks for group i, and ( )ijXR  is the rank of all samples. 
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The null hypothesis (no difference between statistical measures for the samples) 
was not rejected after obtaining p-values of 0.703 and 0.6448 for the Hanoi and New 
York problems, respectively. Box plots of the distribution of the fitness values for 
both cases are given in Figure 1. 

 

Figure 1. Box plots of the distribution of the fitness values for each sample on the 
two WDSs considered. 

As a consequence, the samples of the first 100 runs will be considered hereafter. 

Obtained results and different comparisons 

The best solution found after the inclusion of the re-generation option with 
1=m  is shown in Table 1 for both networks together with other best solutions 

found in the literature. 

Table 1. Optimal design cost (million dollars) for the Hanoi and the New York 
networks 

Hanoi network New York tunnel system 
Reference Method Cost Reference Method Cost 

[42] GA 6.093 [42] GA 38.64 
[46] GA 6.182 [48] GA 38.8 
[43] GA 6.195 [47] ACO 38.64 
[45] ACO 6.367 [43] GA 40.42 
[9] PSO 6.133 [9] PSO 38.64 

This work PSO 6.081 This work PSO 38.64 

The final minimal fitness values for the 100 runs were compared with the ones 
obtained in [9] by standard discrete PSO (that is, without performing the re-
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generation-on-collision feature herein described) by using the Mann-Whitney U-test 
[49] for nonparametric analysis. The statistic U is essentially the same as the T of 
Kruskal-Wallis, but is used for only two groups. The null hypothesis (no difference 
between central statistical measures for the PSO versions) was rejected after 
obtaining a p-value of 0. Box plots of the distribution of fitness values for both 
versions of PSO are given in Figure 2 for the two WDSs considered here. It can be 
observed that the inclusion of the re-generation option (group 2), clearly outperforms 
the standard PSO (group 1). 

 

Figure 2. Box plots of the distribution of the fitness values for the conventional PSO 
(1) and the derivative presented here (2) for the Hanoi and New York systems. 

It is also worthwhile to observe that the average cost was 6.297 million dollars, 
only 3.56% higher than the best known solution, for the Hanoi system. In the case of 
the New York system, the result is 39.738 million dollars, or 2.91% over the best 
known solution. These figures do not need further explanation regarding the quality 
of the algorithm described in this paper. 

Cost and probability of suboptimal designs 

Many ‘best’ solutions found in the literature regarding these two problems have 
been obtained after never-ending computer dedication and, as a consequence, with a 
huge computational effort. This is a significant drawback for the application of 
evolutionary algorithms to the solution of ‘real-world’ problems where cost and time 
constraints prohibit repeated runs of the algorithm and evaluations of the network. 

The average number of generations needed to obtain the best solution for the 
Hanoi system is 700, with 105 being the minimum number of generations to obtain 
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the best solution. Regarding the New York system, these figures are 230 generations 
for the best solutions and 16 for the minimum number of generations to obtain the 
best solution. These figures make it clear that the algorithm is quite inexpensive. For 
example, the solution for the New York system of 45.73 million dollars obtained in 
[50] was found after 80,000 evaluation trials. In [51], two sets of solutions based on 
different hydraulic coefficients are reported. The number of generations allowed for 
their Genetic Algorithm was 10,000. Genetic Algorithms, where the population size 
of 20 and the maximum number of generations was set to 2,000, were used in [52]. 
This improvement in the efficiency is mainly due to the self-adaptive fitness 
formulation for evolutionary constraint optimization they propose. 

Using the obtained results, the probability for a single run of obtaining a 
solution differing by less than a certain percent from the best known solution was 
obtained. Different conclusion can be obtained. For example, by running the re-
generation PSO algorithm (described in this paper) only once, the probability of 
obtaining the best known solution is almost 30% for the NYT system and 5% for the 
Hanoi system. However, from a practical point of view in which ‘early’ almost-
optimal solutions are much better than ‘too late’ best solutions, other pieces of 
important information are also outstanding. For example, one single run of our 
algorithm guarantees a solution that is less expensive than 5.5% of the best known 
solution with a probability of 86%, for both studied problems. Additionally, there is 
an almost complete guarantee that in only one single run of the algorithm, we will 
obtain a solution with a cost under 1.1 times the best known solution cost. 

These probabilities can be shown to be strongly problem dependent. As a 
consequence, these results cannot be directly extrapolated to other problems. 
However, it is seen that the algorithm presented in this paper was able to find the 
optimum or near-optimum solution with considerably low computational effort. 

Application to a real-world water distribution system 

In the real-world case study [53], we consider here the minimum pressure 
allowed is 15m and the available commercial diameters are given in Table 2. This 
table also includes the Hazen-Williams coefficient, C, used in the hydraulic model, 
and the unit cost of the pipes of available diameters. 
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Table 2. Commercially available diameters 

Diameter (mm) CH-W Cost ($units)
100 140 117.14 
150 140 145.16 
200 140 191.42 
250 140 241.09 
300 140 333.16 

The problem is solved by using two fitness functions, namely, F, defined in (8), 
and FR, defined as 

( )∑ ∑ ∑
= = =

−⋅⋅+⋅+⋅=
P

i

K

j

P

i

u
iiijjii DLwvpLDCFR

1 1 1

2 ,  (11) 

which, following [54], adds reliability to the design from an economic point of view, 
by considering the costs of the water not delivered due to problems in the system. 
Here, iw  is a coefficient associated to each pipe, of the form ( );faff Vccta ⋅+⋅⋅  

uDLa −⋅⋅  gives the number of expected failures per year of one pipe, as a function 
of diameter, ,iD  and length, ,il  (a and u are known constants); ft  is the average 

number of days required to repair the pipe; fc  is the daily repairing average cost; 

ac  is the average cost of the water supplied to affected consumers, in monetary units 

per unit volume; and break86400 QV f ⋅=  is the daily volume of water that should 

be supplied to the affected consumer due to the loss of water of breakQ  in cubic 

meters per second. 

The scenarios considered in (11) follow the approach of ‘breaking’ by turn all 
the pipes of a specific design to check if all the constraints are fulfilled by the design 
subjected to this circumstance. If the test is negative, then the design is suitably 
penalized. This way, designs will develop increasing reliability. To undergo those 
tests, the system must be analyzed for any of those specific ‘breakages’. Taking into 
account, the expensiveness of the algorithm presented in this paper, all these runs 
have been performed in a much reduced time, and performing a very low number of 
function evaluations. 

The layout of the network can be seen in Figure 3. For the understanding of the 
results, a code for colors has been used. Regarding pipes, blue, green, yellow and red 
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colors represent 100, 150, 200 and 250mm pipes, respectively. Regarding nodes, 
dark blue represents pressure above 15m; light blue, between 14 and 15m; green, 
between 12 and 14m; yellow, between 10 and 12m; and, finally, nodes having a 
pressure under 10m are represented in red. 

This network, which is fed by a tank, has 294 lines amounting to 18.337km of 
pipes and 240 nodes consuming 81.53l/s in total. Figure 3 (left) presents the solution 
obtained by using FR (including reliability). This solution is only a mere 3.65% 
more expensive than the one obtained by using F (no reliability consideration). The 
diameters for this case can be observed in Figure 3 (right). Table 3 presents a 
comparison between the initial investment costs for both solutions. 

The effect of closing the pipe pointed by the arrow can be observed in Figure 3 
(right) for the solution without reliability. It shows the great impact produced by a 
closed pipe. It can be shown that this does not happen for the more reliable design 
obtained from FR (left), no matter which pipe is out of service. 

Table 3. Comparison between costs for both solutions 

Without reliability With reliability 
Diameter (mm) 

Length (m) Cost ($units) Length (m) Cost ($units) 
100 17731.10 2077021.41 15822.31 1853425.63 
150 606.39 88023.28 2077.69 301597.04 
200 0.00 0.00 328.79 62937.56 
250 0.00 0.00 108.70 26206.24 
300 0.00 0.00 0.00 0.00 

Total cost ($units) 2165044.69 2244166.47 

 

Figure 3. Designs with and without reliability consideration. 
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Table 4 shows the pressure values at the most critical nodes when pipe indicated in 
Figure 3 is closed. 

Table 4. Pressure at most critical nodes 

Node Without reliability With reliability 
ID Pressure (m) Pressure (m) 

1111345 18.81 3.21 
1102108 18.77 3.24 
1112395 18.85 3.24 
1106799 18.90 3.33 
1098891 18.75 3.35 
1103578 19.19 3.59 
1113234 19.21 3.59 
1107987 19.26 3.64 
1100151 19.04 3.65 
1099662 19.14 3.75 
1094132 19.33 4.02 
1062222 19.23 4.52 
1049416 19.30 4.89 
1047213 19.32 4.97 

4. Conclusions 

In this paper, discrete PSO is endowed with a re-generation-on-collision 
formulation, which greatly improves the performance of standard discrete PSO for 
water systems design. The performance of the formulation introduced in this paper 
has been illustrated by application to two benchmark networks, and the results have 
been compared with those obtained using other evolutionary algorithms. 
Comparison of the results shows that this formulation is able to find optimum or 
near-optimum solutions much more efficiently, with considerably less computational 
effort. The improved performance of the algorithm described here is due to the 
richer population diversity it introduces. The main advantages of the method are that 
it does not require sophisticated operators or parameters and is thus simpler than 
other evolutionary techniques; it does not need initial feasible particles, nor do the 
re-generated particles need to be feasible; and finally, it is robust in handling diverse 
fitness functions and different constraints. Furthermore, having a low number of 
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generations is a major advantage in real water distribution systems where cost and 
time constraints prohibit repeated runs of the algorithm and hydraulic evaluations. 
From the studied benchmark problems, it can be inferred that obtaining ‘good’ 
solutions with the proposed algorithm is quite inexpensive. Therefore, the algorithm 
is desirable when one aims at quickly obtaining good solutions that are not 
necessarily very close to the optimum. 

Investigating new abilities, as the one introduced in this paper, of these particles 
to decide, as a group, how to move inside the search space, and change their 
behaviour during the search processes, as well as finding very good solutions in a 
relatively short period of time, constitutes an open-door environment that could be 
perfectly exploited to address multi-objective formulations regarding optimization 
problems in different fields. 
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