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Abstract 

In this paper, we investigate that the concepts of compatible mappings, 
compatible mappings of ( )αtype  and weak compatible mappings of 

( )αtype  are equivalent under some conditions on intuitionistic fuzzy 

metric spaces. 

1. Introduction and Preliminaries 

Grabiec [2] obtained the Banach contraction principle in setting of fuzzy metric 
spaces, and Jungck et al. [3] introduced the concept of compatible maps of ( )αtype  

in metric space. Also, Mishra [4] and Cho [1] introduced the concept of compatible 
maps of ( )αtype  on Menger spaces and fuzzy metric spaces. Furthermore, Park et 

al. [5, 6] defined the intuitionistic fuzzy metric space and introduced the some 
properties. Recently, Pathak et al. [7] proved properties for the compatible maps in 
Menger spaces. 
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In this paper, we investigate that the concepts of compatible mappings, 
compatible mappings of ( )αtype  and weak compatible mappings of ( )αtype  are 

equivalent under some conditions on intuitionistic fuzzy metric space. 

Let us recall (see [8]) that a continuous t-norm is a operation [ ] ×∗ 1,0:  

[ ] [ ]1,01,0 →  which satisfies the following conditions: (a) ∗  is commutative and 

associative, (b) ∗  is continuous, (c) aa =∗1  for all [ ],1,0∈a  (d) dcba ∗≤∗  

whenever ca ≤  and db ≤  [ ]( ).1,0,,, ∈dcba  Also, a continuous t-conorm is a 

operation [ ] [ ] [ ]1,01,01,0: →×◊  which satisfies the following conditions: (a) ◊  

is commutative and associative, (b) ◊  is continuous, (c) aa =0◊  for all [ ],1,0∈a  

(d) dcba ◊◊ ≥  whenever ca ≤  and db ≤  [ ]( ).1,0,,, ∈dcba  

Definition 1.1 [5]. The 5-tuple ( )◊,,,, ∗NMX  is said to be an intuitionistic 

fuzzy metric space if X is an arbitrary set, ∗  is a continuous t-norm, ◊  is a 

continuous t-conorm, and M, N are fuzzy sets on ( )∞× ,02X  satisfying the 

following conditions; for all ,,, Xzyx ∈  such that 

(a) ( ) ,0,, >tyxM  

(b) ( ) ,1,, yxtyxM =⇔=  

(c) ( ) ( ),,,,, txyMtyxM =  

(d) ( ) ( ) ( ),,,,,,, stzxMszyMtyxM +≤∗  

(e) ( ) ( ) ( ]1,0,0:,, →∞⋅yxM  is continuous, 

(f) ( ) ,0,, >tyxN  

(g) ( ) ,0,, yxtyxN =⇔=  

(h) ( ) ( ),,,,, txyNtyxN =  

(i) ( ) ( ) ( ),,,,,,, stzxNszyNtyxN +≥◊  

(j) ( ) ( ) ( ]1,0,0:,, →∞⋅yxN  is continuous. 

Note that ( )NM ,  is called an intuitionistic fuzzy metric on X. The functions 

( )tyxM ,,  and ( )tyxN ,,  denote the degree of nearness and the degree of non-

nearness between x and y with respect to t, respectively. 
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In this paper, X is considered to be the intuitionistic fuzzy metric space with the 
following condition: 

( ) ,1,,lim =
∞→

tyxM
t

   ( ) 0,,lim =
∞→

tyxN
t

 (1.1) 

for all Xyx ∈,  and .0>t  

Definition 1.2 [6]. Let A, B be mappings from intuitionistic fuzzy metric space 
X into itself. Then the mappings are said to be compatible if 

( ) ,1,,lim =
∞→

tBAxABxM nn
n

   ( ) 0,,lim =
∞→

tBAxABxN nn
n

 

for all ,0>t  whenever { } Xxn ⊂  such that xBxAx nnnn == ∞→∞→ limlim  for 

some .Xx ∈  

Definition 1.3 [6]. Let A, B be mappings from intuitionistic fuzzy metric space 
X into itself. Then the mappings are said to be compatible of ( )αtype  if 

( ) 1,,lim =
∞→

tBBxABxM nn
n

   and   ( ) ,1,,lim =
∞→

tAAxBAxM nnn
 

( ) 0,,lim =
∞→

tBBxABxN nnn
    and   ( ) 0,,lim =

∞→
tAAxBAxN nn

n
 

for all ,0>t  whenever { } Xxn ⊂  such that xBxAx nnnn == ∞→∞→ limlim  for 

some .Xx ∈  

Definition 1.4. Let A, B be mappings from intuitionistic fuzzy metric space X 
into itself. Then the mappings are said to be weak compatible of ( )αtype  if 

( ) ( ),,,lim,,lim tBBxBAxMtBBxABxM nn
n

nn
n ∞→∞→

≥  

( ) ( )tBBxBAxNtBBxABxN nn
n

nn
n

,,lim,,lim
∞→∞→

≤  

and 

( ) ( ),,,lim,,lim tAAxABxMtAAxBAxM nn
n

nn
n ∞→∞→

≥  

( ) ( )tAAxABxNtAAxBAxN nn
n

nn
n

,,lim,,lim
∞→∞→

≤  

for all ,0>t  whenever { } Xxn ⊂  such that xBxAx nnnn == ∞→∞→ limlim  for 

some .Xx ∈  



JONG SEO PARK 

 

82 

2. Some Properties of Compatible Mappings 

Proposition 2.1 [6]. Let X be an intuitionistic fuzzy metric space and A, B be 
continuous mappings from X into itself. Then A and B are compatible mappings iff 
they are compatible mappings of ( ).αtype  

Proposition 2.2. Let X be an intuitionistic fuzzy metric space and A, B be 
continuous mappings from X into itself. Then A, B are weak compatible mappings of 

( )αtype  if they are compatible mappings of ( ).αtype  

Proof. Suppose that A, B are compatible mappings of ( ).type α  Then, we have, 

for all ,0>t  

( )tBBxABxM nn
n

,,lim1
∞→

=  

⎟
⎠
⎞⎜

⎝
⎛∗⎟

⎠
⎞⎜

⎝
⎛≥

∞→∞→ 2
,,lim

2
,,lim tBBxBAxMtBAxABxM nn

n
nn

n
 

⎟
⎠
⎞⎜

⎝
⎛=

∞→ 2,,lim tBBxBAxM nn
n

 

( ),,,lim tBBxBAxM nn
n ∞→

≥  

( )tBBxABxN nn
n

,,lim0
∞→

=  

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛≤

∞→∞→ 2,,lim2,,lim tBBxBAxNtBAxABxN nnnnnn
◊  

⎟
⎠
⎞⎜

⎝
⎛=

∞→ 2,,lim tBBxBAxN nn
n

 

( ).,,lim tBBxBAxN nn
n ∞→

≤  

Also, we establish with same methods for another condition of definition. Hence, 
A, B are weak compatible of ( ).type α   

Proposition 2.3. Let X be an intuitionistic fuzzy metric space and A, B be 
continuous mappings from X into itself. If A, B are weak compatible mappings of 

( ),αtype  then they are compatible mappings of ( ).αtype  
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Proof. Let { }nx  be a sequence in intuitionistic fuzzy metric space such that 

xBxAx nnnn == ∞→∞→ limlim  for some .Xx ∈  Since A and B are continuous, 

we have, for all ( ),1,0∈t  

( ) ( )tBBxBAxMtBBxABxM nn
n

nn
n

,,lim,,lim
∞→∞→

≥  

( ) ,1,, == tBxBxM  

( ) ( )tBBxBAxNtBBxABxN nn
n

nn
n

,,lim,,lim
∞→∞→

≤  

( ) .0,, == tBxBxN  

Also, 

( ) ( )tAAxABxMtAAxBAxM nn
n

nn
n

,,lim,,lim
∞→∞→

≥  

( ) ,1,, == tAxAxM  

( ) ( )tAAxABxNtAAxBAxN nn
n

nn
n

,,lim,,lim
∞→∞→

≤  

( ) .0,, == tAxAxN  

Therefore, A and B are compatible mappings of ( ).type α   

Proposition 2.4. Let X be an intuitionistic fuzzy metric space and A, B be weak 
compatible mappings of ( )αtype  from X into itself. If one of A, B is continuous, then 

they are compatible mappings. 

Proof. Let { } Xxn ⊂  such that xBxAx nnnn == ∞→∞→ limlim  for some 

.Xx ∈  Suppose that A and B are weak compatible mappings of ( )αtype  and A is 

continuous without loss of generality. Then nnnn AAxAxABx ∞→∞→ == limlim  

and so, for ,0, >λt  there exists an integer ( )λ,tU  such that 

,12,, λ−>⎟
⎠
⎞⎜

⎝
⎛ tAxABxM n    ,2,, λ<⎟

⎠
⎞⎜

⎝
⎛ tAxABxN n  

,12,, λ−>⎟
⎠
⎞⎜

⎝
⎛ tAxAAxM n    λ<⎟

⎠
⎞⎜

⎝
⎛

2,, tAxAAxN n  
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for all ( )., λ≥ tUn  Further, since A, B are weak compatible mappings of ( ),type α  

we have 

,1
2

,,lim
2

,,lim =⎟
⎠
⎞⎜

⎝
⎛≥⎟

⎠
⎞⎜

⎝
⎛

∞→∞→

tAAxABxMtAAxBAxM nn
n

nn
n

 

.0
2

,,lim
2

,,lim =⎟
⎠
⎞⎜

⎝
⎛≤⎟

⎠
⎞⎜

⎝
⎛

∞→∞→

tAAxABxNtAAxBAxN nn
n

nn
n

 

By (c), (d), (h) and (i) of Definition 1.1, it follows that 

( ) ,1,,lim =
∞→

tBAxABxM nn
n

   ( ) .0,,lim =
∞→

tBAxABxN nn
n

 

This completes the proof.  

Proposition 2.5. Let X be an intuitionistic fuzzy metric space and :, BA  

XX →  be continuous mappings. Then A and B are compatible mappings if and 
only if they are weak compatible mappings of ( ).αtype  

Proof. This proof is following from Propositions 2.1, 2.2, 2.3 and 2.4.  

Proposition 2.6. Let X be an intuitionistic fuzzy metric space and A, B be 
mappings from X into itself. If A, B are weak compatible mappings of ( )αtype  and 

BxAx =  for some ,Xx ∈  then .BBxBAxABxAAx ===  

Proof. Suppose that { } Xxn ⊂  defined by ,xxn =  ...,2,1=n  for some Xx ∈  

and .BxAx =  Then we have ,lim AxAxnn =∞→  .lim AxBxnn =∞→  Since A, B 

are weak compatible mappings of ( )αtype  for every ,0>t  

( ) ( )tBBxABxMtBBxABxM nn
n

,,lim,,
∞→

=  

( )tBBxBAxM nn
n

,,lim
∞→

≥  

( ) ,1,, == tBBxBAxM  

( ) ( )tBBxABxNtBBxABxN nn
n

,,lim,,
∞→

=  

( )tBBxBAxN nnn
,,lim

∞→
≤  

( ) .0,, == tBBxBAxN  
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Hence, we have .BBxABx =  Therefore, we have BAxBBxAAxABx ===  since 
.BxAx =  This completes the proof.  

Proposition 2.7. Let X be an intuitionistic fuzzy metric space and A, B be 
mappings from X into itself. Also, let A, B be weak compatible mappings of ( )αtype  

and xBxAx nnnn == ∞→∞→ limlim  for some .Xx ∈  Then 

(a) AxBAxnn =∞→lim  if A is continuous at ,Xx ∈  

(b) BxABxnn =∞→lim  if B is continuous at ,Xx ∈  

(c) BAxABx =  and BxAx =  if A and B are continuous at .Xx ∈  

Proof. (a) Suppose that A is continuous at .Xx ∈  Since =∞→ nn Axlim  

xBxnn =∞→lim  for some ,Xx ∈  we have ,lim AxAAxnn =∞→  or equivalently, 

for any ,0, >λt  there exists an integer ( )λ,tU  such that ,12,, λ−>⎟
⎠
⎞⎜

⎝
⎛ tAxAAxM n  

λ<⎟
⎠
⎞⎜

⎝
⎛

2
,, tAxAAxN n  for all ( )., λ≥ tUn  Since A, B are weak compatible 

mappings of ( ),type α  for every ,0>t  

( ) ,2,,lim,,lim ⎟
⎠
⎞⎜

⎝
⎛≥

∞→∞→

tAAxABxMtAAxBAxM nn
n

nn
n

 

( ) ⎟
⎠
⎞⎜

⎝
⎛≤

∞→∞→ 2
,,lim,,lim tAAxABxNtAAxBAxN nn

n
nn

n
 

and we have 

( ) ,1
2

,,
2

,,,, λ−>⎟
⎠
⎞⎜

⎝
⎛∗⎟

⎠
⎞⎜

⎝
⎛≥ tAxAAxMtAAxBAxMtAxBAxM nnnn  

( ) λ<⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛≤ 2,,2,,,, tAxAAxNtAAxBAxNtAxBAxN nnnn ◊  

for all ( )., λ≥ tUn  Now, we have 

( ) ⎟
⎠
⎞⎜

⎝
⎛∗⎟

⎠
⎞⎜

⎝
⎛≥

∞→∞→∞→ 2,,lim2,,lim,,lim tAxAAxMtAAxBAxMtAxBAxM n
n

nn
n

n
n

 

⎟
⎠
⎞⎜

⎝
⎛∗⎟

⎠
⎞⎜

⎝
⎛≥

∞→∞→ 2
,,lim

2
,,lim tAxAAxMtAAxABxM n

n
nn

n
 

,1
2

,,
2

,, =⎟
⎠
⎞⎜

⎝
⎛∗⎟

⎠
⎞⎜

⎝
⎛= tAxAxMtAxAxM  
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( ) ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛≤

∞→∞→∞→ 2,,lim2,,lim,,lim tAxAAxNtAAxBAxNtAxBAxN n
n

nn
n

n
n

◊  

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛≤

∞→∞→ 2
,,lim

2
,,lim tAxAAxNtAAxABxN n

n
nn

n
◊  

.0
2

,,
2

,, =⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛= tAxAxNtAxAxN ◊  

Therefore, .lim AxBAxnn =∞→  

(b) This proof is following on the similar lines as argued in (a). 

(c) Suppose that XXBA →:,  are continuous at .Xx ∈  Since =∞→ nn Bxlim  

x  and A is continuous at ,Xx ∈  AxBAxnn =∞→lim  from (a). On the other hand, 

since xAxnn =∞→lim  and B is continuous at ,Xx ∈  .lim BxBAxnn =∞→  Thus, 

we have BxAx =  from the uniqueness of the limit and so, by Proposition 2.6, 
.BAxABx =   
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