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Abstract 

Tukey’s method provided simultaneous inference for all-pairwise 
comparisons (MCA) under balanced design, usual normality and equality 
of variances assumptions. Under the unbalanced design, the Tukey-
Kramer method assumes the variances are equal across all treatment 
groups. It provides a set of conservative simultaneous confidence intervals 
for all-pairwise differences and has been widely used. In practice, 
however, homogeneity of variances is seldom satisfied. In this article, an 
approximate approach is proposed when the equality of variances cannot 
be assumed and the ratios of population variances among treatments are 
known from previous experience. The results from a simulation study 
show that the error rate of the Tukey-Kramer method is excessive, while 
the error rate of the proposed method is within the nominal level when  
the variances are different. In addition, an approximate approach is 
proposed to provide the simultaneous confidence intervals for all-pairwise 
differences when the ratios of variances are unknown. 

1. Introduction 

For the problem of comparing means of two normal populations with unequal 
variances, a large number of approximate tests and exact tests are available in the 
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literature. Welch [13, 14] proposed an approximate t test when the variances of two 
samples are different. Tsui and Weerahandi [12] considered a generalized test to the 
Behrens-Fisher problem. There have been only a few attempts to extend these results 
to the problem of testing the equality of a number of means when the population 
variances are not homogeneous. For instance, Tamhane [10] proposed two 
approximate approaches for multiple comparisons with a control and all-pairwise 
comparisons when the variances are unequal; Games and Howell [4] provided the 
approximate simultaneous confidence intervals for all-pairwise differences under 
heteroscedasticity. 

In some circumstances, when the assumption of homogeneity of variances is 
unreasonable, while knowledge of ratios of population variances is available from 
prior experience, we propose an approximate simultaneous confidence interval 
method for MCA in Section 2. An example to illustrate our method is given in 
Section 3. A simulation study is preformed to compare the error rate of the proposed 
method and the Tukey-Kramer method, the result is given in Section 4. In Section 5, 
we propose an approximate approach to estimate the critical value that provides the 
simultaneous confidence intervals for all-pairwise differences when the ratios of 
variances are unknown. We conduct Monte Carlo studies to compare the error rate 
between the proposed approach and Tamhane’s [10] approach, the results are given 
in Section 6. Finally, a discussion is given in Section 7. 

2. All-pairwise Comparisons when the Ratios of Variances are Known 

Many well established methods on all-pairwise comparisons assume 
homogeneity of variances across all treatment groups, such as Tukey’s method and 
Tukey-Kramer method [5, 6]. In practice, however, equality of variances is seldom 
satisfied. We are motivated to consider a simultaneous confidence interval method 
for all-pairwise comparisons when the condition of equal variances is not satisfied. 
In this section, we assume the ratios of population variances among treatments are 
known from previous experience. 

Suppose the ijY  is the observed measurement of the jth subject in the ith 

treatment, and the ijY ’s are independently distributed as ( )., 2
iiN σμ  Consider the 

unbalanced one-way model, 

ijiijY ε+μ=  
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with ,...,,1 ki =  ,...,,2,1 inj =  where ijε ’s follow ( ).,0 2
iN σ  Denote the sample 

mean measurement by ,iY  it is a least square estimate for .iμ  Denote the sample 

variance by ,2
iS  it is known as an unbiased estimate of ,2

iσ  and given by 
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iS  is independent of .iY  Denote the ratios 

of population variance of responses from the first treatment group to that of the ith 

group by ,1iλ  for ,...,,1 ki =  i.e., ,22
11 ii σσ=λ  and .111 =λ  They are assumed 

known from prior experience or pilot studies. 

Consider testing the pairwise differences among k population means, iiH μ:0  

δ=μ− j  for all ji ≠  vs. δ≠μ−μ jiaiH :  for at least one ,ji ≠  with =ji,  

,...,,1 k  where δ is a prespecified threshold. The test statistic is considered as 
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where ijz  has a standard normal distribution, 1σ  is the population standard deviation 

for the first treatment group. We derive a pooled estimate for ,1σ  which is given by 
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Let .ˆ 11 σσ=r  Then it is a v
v
2χ  random variable with density 
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Hence, the test statistic can be written as 
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where ijt  has a student t distribution with v degrees of freedom. 

Therefore, the ( )%1100 α−  simultaneous confidence intervals for ji μ−μ  are 

given by 

( ) ( )jjiijiji nnh 111 11ˆˆˆ λ+λσ±μ−μ∈μ−μ ∗   for all ,ji ≠  

where ∗h  is the solution to the equation 
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( ) ( )
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In general, it is difficult to compute the exact value of ∗h  especially when the 

number of treatments is large. We suggest an approximate solution based on Sidak’s 
inequality [6, 8], which is stated in the following theorem: 

Theorem 2.1 [6, 8]. Let ( )kXXXX ...,,, 21=  be the vector of random 

variables having the k-dimensional normal distribution with zero means, arbitrary 

variances ,...,,, 22
2

2
1 kσσσ  and an arbitrary correlation matrix .ijR ρ=  Then, for 

any positive numbers ,...,,1 kcc  

{ } { }∏
=

≤≥=≤
k

i
iiii cXPkiforcXP

1

....,,1  

Applying the inequality, an approximate solution of ∗h  can be obtained by 

solving the following equation: 
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( ) ( ) ,1 α−=φ⋅ drdzzrp  (1) 

where Φ is the c.d.f. of the standard normal random variable, ( )zφ  is the density 

function of standard normal distribution, 11ˆ σσ=r  is a v
v
2χ  random variable. 

Another approximation is based on the Bonferroni’s procedure. The critical 

value can be replaced by ,2q
vt
α  where ( ) ,21−= kkq  and ∑ =

−=
k
i i knv 1 .  Thus, 

the conservative ( )%1100 α−  simultaneous confidence intervals for ji μ−μ  are 

given by 

( )
( ) ( )jjiivkk

jiji nnt 111,1
11ˆˆˆ λ+λσ±μ−μ∈μ−μ

−
α  for all .ji ≠  

Sidak’s inequality is known to be less conservative and yields sharper inference 
than the Bonferroni’s procedure. 

3. An Example 

We give an example to illustrate the method, we proposed for all-pairwise 
comparisons under unequal variances. This is an example from the textbook of Hsu 
([6, Subsection 4.1.2, pp. 86-87]). The presence of harmful insects in farm fields can 
be detected by examining insects trapped in boards covered with a sticky material 
and erected in the fields. According to [6], Wilson and Shade reported on the 
number of cereal leaf beetles trapped when six boards of each of three colors were 
placed in a field of oats in July 1967. A hypothetical data set, patterned after their 
experiment, was used to illustrate the multiple comparisons with the best methods in 
[6]. Summary statistics of the number of beetles trapped are given in Table 1. The 
Levenue test for equality of variances yields a significant result ( ,79.21=F  

),0001.0value- <p  it indicates that the variances of numbers of beetles trapped 
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among colors are different. The test can be set up as 0:0 =μ−μ jiiH  vs. 

,0: ≠μ−μ jiaiH  for .3,2,1, =ji  Assume the ratios of variances are known 

from prior experience, and given by ,5.012 =λ  .6.113 =λ  Let us first consider the 

method we proposed in the previous section. The pooled estimate for the variance of 

the first group .944.46ˆ 2
1 =σ  Based on the proposed approach, a set of 95% 

simultaneous confidence intervals on the difference of mean numbers is given by 

,11ˆ 111 jjiiji nnhyy λ+λσ−− ∗  for .3,2,1, =ji  

For ,05.0=α  ,15=v  the critical value ∗h  is 2.687 by solving equation (1), it 

infers 

,685.28655.2 21 <μ−μ<  

,919.41761.22 31 <μ−μ<  

.844.28496.4 32 <μ−μ<  

It indicates that yellow is more attractive than all other colors; red is more 
attractive than blue. Assume the variances are equal, the common standard deviation 
is estimated as 597.7ˆ =σ  based on Tukey’s method. The 95% confidence intervals 
are given as 

,2ˆ nqyy ji σ−− ∗  for .3,2,1, =ji  

For 3 treatments and 15 degrees of freedom, we have ,598.2=∗q  it infers 

,065.27275.4 21 <μ−μ<  

,735.43945.20 31 <μ−μ<  

.065.28275.5 32 <μ−μ<  

Tukey’s method gives the same conclusion as above, while the simultaneous 
confidence lower limits and upper limits are different from those of the proposed 
approach. Without loss of generality, suppose .5=δ  Then we conduct the test again 
and conclude that red is not more attractive than blue based on the proposed 



ALL-PAIRWISE COMPARISONS FOR POPULATIONS … 7 

approach, while the opposite conclusion is obtained using Tukey’s method. It 
indicates that Tukey’s method may provide erroneous inference when the equality of 
variance assumption is not satisfied. 

Table 1. Summary statistics of the number of beetles trapped 

Color Treatment Sample Sample Sample 
 label size mean Std. dev. 

Yellow 1 6 47.17 6.79 
Red 2 6 31.5 9.91 
Blue 3 6 14.83 5.34 

4. A Simulation Study on Error Rate 

Under unbalanced design and unequal variances, Tukey and Kramer proposed 
what we call the Tukey-Kramer method [6]. It gives approximate simultaneous 
confidence intervals for all-pairwise differences: 

jijiji nnq 11ˆˆˆ +σ±μ−μ∈μ−μ ∗  for all ,ji ≠  

where ∗q  is the same critical value as given in Tukey’s method. According to [6], 

Tukey stated that ‘the approximation ... is apparently in the conservative direction’. 

For all-pairwise comparisons, the Tukey-Kramer procedure has been widely 
used when the sample size is unequal for the convenience of the available tables of 

∗q  and the availability in some statistical packages. We perform a simulation 

study in this section to show that the Tukey-Kramer method can have inflated error 
rate under certain conditions. Three groups of data with the same mean are generated 

from ( ),,2 iN σ  with ,401 =n  ,502 =n  .103 =n  ,22
1 =σ  ,42

2 =σ  and let 2
3σ  

increase from 2 to 15. Thus, the variances ( )2
iσ  and sample size ( )in  are inversely 

paired. The larger the variance of the third groups, the larger the ratio of ( ),3
2
3 nσ  

the larger the imbalance among ( )ii n2σ ’s. We compute the error rate, the 

probability of rejecting at least one null hypothesis given all the hypotheses are true 
under significance level 0.05. We can see from Table 2 that the error rate of the 

Tukey-Kramer method is within 0.05 only when ,2.03
2
3 =σ n  it increases to 0.2228 
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as the ratio increases to 1.5, it is more than four times the nominal level α. In 
contrast, all the values of the error rate for the proposed approach are within 0.05, 
and a little conservative as we expect. When the heterogeneous variances are present 

and the imbalance among the ( )ii n2σ ’s is large, the Tukey-Kramer method is found 

to have excessive error rate, and it is well known that the Tukey-Kramer procedure 
is inherently conservative. The proposed method is a little conservative, while it 
controls the family-wise error rate. When the prior knowledge of the ratios of 
variances is available and equality of variances cannot be assumed, the proposed 
approach may be considered for inference on all-pairwise differences. 

Table 2. Estimated error rate for ,3=k  05.0=α  

3
2
3 nσ  Tukey-Kramer method 

error rate (standard error)
Proposed method 

error rate (standard error) 
 

0.2 0.0241 (0.00153) 0.0472 (0.00213) 
0.4 0.0596 (0.00240) 0.0405 (0.00197) 
0.6 0.0992 (0.00291) 0.0409 (0.00198) 
0.8 0.1333 (0.00342) 0.0408 (0.00197) 
1.0 0.1644 (0.00375) 0.0401 (0.00196) 
1.5 0.2228 (0.00420) 0.0380 (0.00191) 

5. All-pairwise Comparisons when the Ratios of Variances are Unknown 

When prior knowledge on the ratios of variances is unavailable, we propose an 
approximate procedure to estimate the critical value that provides the confidence 
intervals for all-pairwise differences in this section. Under the unbalanced one-way 
model, consider testing the pairwise differences among k population means when the 
ratios of variance are unknown, δ=μ−μ jiiH :0  for all ji ≠  vs. δ≠μ−μ jiaiH :  

for at least one ,ji ≠  with ,...,,1, kji =  where δ is a given threshold constant. Let 

1iλ  denote the ratio of variances of the ith treatment to that of the first group, that is, 

,2
1

2
1 σσ=λ ii  which are unknown. The ratios can be estimated by ,ˆ 2

1
2

1 ScSii =λ  

,...,,1 ki =  where ( ) ( )13 11 −−= nnc  and 1ˆ
1 =λi  for .1=i  1

ˆ
iλ  is an unbiased 

estimator of 1iλ  according to Lehmann and Casella [7]. The test statistic is 

considered as 
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where ,ˆ 11 S=σ  the sample standard deviation of the first treatment. 2
iS  and 2

jS  are 

the sample estimates of variances of the ith and the jth treatment groups. 

The ( )%1100 α−  simultaneous confidence intervals for ji μ−μ  are given by 
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where 1h  is the solution to the equation 
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in order to guarantee the overall coverage probability to be .1 α−  

Based on Welch’s [13] method and the test statistic given in (3), Tamhane’s 
[10] method provides the approximate ( )%1100 α−  simultaneous confidence 

intervals for ,ji μ−μ  ,ji ≠  which are given by 
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( ) ( ),11 12 −α−−=β kk  
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ijv̂  is given by 
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Tamhane’s method has joint confidence level less than α−1  in some cases, it will 
result in inflated family-wise error rate. We estimate the error rate by Monte Carlo 
studies in the next section. Here, we propose to estimate the critical value based on 
the test statistic given in (2). The probability given in (4) can be written as 
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distribution with ijf̂  and 1v  degrees of freedom based on Welch’s [13] method and 

ijf̂  is given by 
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Since the correlation among ijz  for ji <  depends on the unknown ,2
iσ  we propose 

an approximate solution for the critical value by applying Sidak’s inequality 
introduced in Section 2. The approximate solution for 1h  can be obtained by 

solving the following equation: 

 [ ( ( ) )] ( ) ( )∏ ∫ ∫
≤<≤

∞ ∞
α−=−Φ−

kji
ijijij drdbbfrpbrh

1
0 0

1 ,121  (6) 
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where ,ˆ 11 σσ=r  Φ is the c.d.f of the standard normal distribution. ( )rp  is the 

density function of r, and ( )ijbf  is the density function of .ijb  

6. Monte Carlo Studies on Error Rate 

We carry out two simulation studies to compare the error rate for the proposed 
method based on Sidak’s inequality and Tamhane’s [10] method. We generate three 
random samples from a normal distribution with mean equal 2. The variances are 

different and given as ,22
1 =σ  ,42

2 =σ  and 2
3σ  increases from 2 to 8. We compute 

the error rate under significance level 0.05. The results are given in Tables 3 and 4. 

Table 3. Estimated error rate for ( )2005.0,3 321 ====α= nnnk  

( )2
3

2
2

2
1 ,, σσσ  

Proposed method 
error rate (standard error)

Tamhane’s method 
error rate (standard error) 

 

(2, 4, 2) 0.041 (0.0032) 0.091 (0.0064) 

(2, 4, 4) 0.045 (0.0032) 0.079 (0.0060) 

(2, 4, 6) 0.038 (0.0032) 0.093 (0.0064) 

(2, 4, 8) 0.039 (0.0038) 0.096 (0.0065) 

Table 4. Estimated error rate for ( )10,40,3005.0,3 321 ====α= nnnk  

( )2
3

2
2

2
1 ,, σσσ  

Proposed method 
error rate (standard error)

Tamhane’s method 
error rate (standard error) 

 

(2, 4, 2) 0.037 (0.0046) 0.091 (0.0064) 

(2, 4, 4) 0.043 (0.0038) 0.084 (0.0082) 

(2, 4, 6) 0.039 (0.0041) 0.076 (0.0059) 

(2, 4, 8) 0.028 (0.0042) 0.081 (0.0086) 

We can see that all the values of error rate for the proposed approach are within 
nominal level 0.05. It is relatively conservative since some confidence intervals for 
the estimated error rate fall below 0.05. While all the error rates for Tamhane’s 
method are beyond 0.05, and all the confidence intervals for the estimated error rate 
fall above 0.05. It indicates that Tamhane’s method cannot control the family-wise 
error rate. 
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7. Discussion 

In this article, we proposed an approximate method for the all-pairwise 
comparisons without the equal variance assumption. It provides approximate 
simultaneous confidence intervals for all-pairwise differences when the ratios of 
variances are known. Simulation results indicate that the proposed method always 
controls the family-wise error rate, while the Tukey-Kramer method has inflated 
error rate especially when the small size is paired with large variance. Thus, it may 
lead to erroneous inference when the equal variance assumption is not satisfied. 

In practice, the ratios of the variances may not be known sometimes. To handle 
such a situation, we provide another approximate approach for MCA to estimate the 
critical value. Compared to Tamhane’s approximation, our approximation with 
Sidak’s inequality controls the family-wise error rate for different sample sizes and 
variances but slightly conservative. Instead, Tamhane’s method has excessive error 
rate for different sizes and variances, therefore cannot control the error rate. The 
advantage of Tamhane’s method is that it is easy to apply. The proposed procedure 
using Sidak’s inequality to find an approximated critical value through the numerical 
integration, which may be involved with a large amount of calculations. Therefore, 
to improve our methods to get a set of sharper confidence intervals will be the topic 
in our future research. 

In summary, how to control the family-wise error rate is a central issue in the 
area of multiple comparisons. The plausibility of equal variance condition should 
always be considered and verified. When the assumption of the equal variances is 
not satisfied, the methods with more flexible restrictions, such as the approximate 
approaches proposed in the article, may be considered as a more reasonable 
candidate for MCA. 

References 

 [1] P. Bauer, A note on multiple testing procedures in dose finding, Biometrics 53 (1997), 
1125-1128. 

 [2] C. W. Dunnett, A multiple comparison procedure for comparing several treatments 
with a control, J. Amer. Statist. Assoc. 50 (1955), 482-491. 

 [3] C. W. Dunnett and A. C. Tamhane, A step-up multiple test procedure, J. Amer. Statist. 
Assoc. 87 (1992), 162-170. 



ALL-PAIRWISE COMPARISONS FOR POPULATIONS … 13 

 [4] P. A. Games and J. F. Howell, Pairwise multiple comparison procedures with unequal 
N’s and/or variances, J. Edu. Statist. 1 (1976), 113-125. 

 [5] Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedure, Wiley, New York, 
1987. 

 [6] J. C. Hsu, Multiple Comparisons: Theory and Methods, Chapman and Hall, London, 
1996. 

 [7] E. L. Lehmann and G. C. Casella, Theory of Point Estimation, Springer, 1998. 

 [8] Z. Sidak, Rectangular confidence regions for the means of multivariate normal 
distributions, J. Amer. Statist. Assoc. 62 (1967), 626-633. 

 [9] W. Y. Tan and M. A. Tabatabi, A robust procedure for comparing several means under 
heteroscedasticity and nonnormality, Comm. Statist. Simulation Comput. 15 (1986), 
733-745. 

 [10] A. C. Tamhane, Multiple comparisons in model I one-way Anova with unequal 
variances, Comm. Statist. Theory Methods A 6(1) (1977), 15-32. 

 [11] A. C. Tamhane, A comparison of procedures for multiple comparisons of means with 
unequal variances, J. Amer. Statist. Assoc. 74 (1979), 471-480. 

 [12] K. W. Tsui and S. Weerahandi, Generalized p values in significance testing of 
hypotheses in the presence of nuisance parameters, J. Amer. Statist. Assoc. 84 (1989), 
602-607. 

 [13] B. L. Welch, The significance of the difference between two means when the 
population variance are unequal, Biometrika 29 (1938), 350-362. 

 [14] B. L. Welch, The generalization of student’s’ problem when several population 
variance are involved, Biometrika 34 (1947), 28-35. 



HONG LI 14 

Appendix 

In the appendix, we give the details of derivations of equations (5) and (6), and 
the distribution of ijb  in Section 5. 

Derivation of equations (5) and (6). 
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is approximately ijf fij
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