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Abstract

An estimate for the Perron roots of nonnegative matrices is obtained.

The results generalize or improve the bounds found in the related

literature.

1. Introduction

This paper is concerned with the estimation for the Perron root of a

nonnegative matrix. Let ( )ijaA =  be a nonnegative matrix of order n

with the Perron root r, and denote by ( )Ari  and ( ) ( )niAci ...,,2,1=  the

ith row sum and ith column sum of the matrix A, respectively. Let I be

the identity matrix.
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For the bounds for the Perron root of a nonnegative matrix, it is well

known that the Perron root satisfies the Frobenius’ inequality [2]

( ) ( ).maxmin ArrAr i
i

i
i

≤≤ (1)

An analogous result holds for column sums ....,,, 21 nccc  For

nonnegative matrices without zero row sums, eq. (1) was improved by

Minc [5]. For positive matrices, we have the results of Ledermann [3],

Ostrowski [6] and Brauer [1]. These results improved bound in (1).

Recently, Liu [4] and Yin [7] extended these results further.

In this paper, we investigate estimation for the Perron root of a

nonnegative matrix further, the results generalize or improve the bounds

obtained in the related literature.

2. Estimation for Perron Root

Lemma 1 [5]. Let α be a characteristic root of a matrix A of order n,

and let ( )nxxx ...,,, 21  and ( )nyyy ...,,, 21  be characteristic vectors

corresponding to α of TA  and A, respectively. Then

( )∑ ∑
= =

=α
n

i

n

t
tti Arxx

1 1

, (2)

( )∑ ∑
= =

=α
n

j

n

t
ttj Acyy

1 1

. (3)

Lemma 2 [5]. If nqqq ...,,, 21  are positive numbers for any real

numbers ,...,,, 21 nppp  then

.maxmin
21

21
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i
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n
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p
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q
p

≤
+++
+++

≤ (4)

Lemma 3 [4]. Let A be an arbitrary matrix of order n, and denote by
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( )k
i Ar  and ( ) ( )niAc k

i ...,,2,1=  the ith row sum and ith column sum of

the matrix ,kA  respectively. Then

( ) ( )∑
=

+ =
n
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k
tit

k
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1

1 , (5)

( ) ( )∑
=
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1 . (6)

Lemma 4. Let A be a nonnegative matrix of order n, and define

.0, >αα+= IAB  And let m and k be positive integers. Then
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( )
( )
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(7)

Proof. We prove the right inequality of (7) by induction. The left

inequality can be proved similarly. The middle inequality is obvious.

When ,1=m  the right inequality of (7) becomes an equality.

When ,2=m  by (5), we have
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So,
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Hence the right inequality of (7) is valid when .2=m  Suppose

inductively that (7) holds for .hm =  Then, by (5), we have
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Further, by the inductive hypothesis, we have
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Hence the right inequality of (7) holds for .1+= hm

Remark 1. A result similar to (7) holds for column sums ....,,, 21 nccc

Theorem 1. Let A be a nonnegative matrix of order n, and define

.0, >αα+= IAB  Then for arbitrary positive integers m, k and r,
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(8)
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Proof. Assume that, without loss of generality, ( )nxxx ...,,, 21  is a

nonnegative characteristic vector of TA  corresponding to r such that

∑
=

=
n

i
ix

1
.1  Hence, for any positive integers m and k, ( )nxxx ...,,, 21  is a

characteristic vector of ( )TkmBA  and ( )TkB  corresponding to ( )km rr α+

and ( ) ,kr α+  respectively. By the above statements, applying (2) to

( )TkmBA  and ( ) ,TkB  we have
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Further, by (4), we get
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Hence the inequality of (8) holds. The column sums case can be proved
similarly.

Corollary 2. Let A be a nonnegative matrix of order n, and define

.IAB +=  Then for any positive integers m, k and r,
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Proof. By taking 1=α  in Theorem 1, we obtain (10) and (11).

Remark 2. By (7) in Lemma 4 and (10) in Corollary 2, we have
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Hence the estimation in Corollary 2 improves the bound given by Yin in
[7].

Remark 3. If we take 1=m  in Corollary 2, then we get the bound

given by Yin.

Corollary 3. Let A be a nonnegative matrix of order n, and define

.IAB +=  Then for any positive integers m and r,
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Proof. By taking 1=k  in Corollary 2, we obtain (12) and (13).

Theorem 4. Let A be a nonnegative matrix of order n, and define

.0, >αα+= IAB  And let m and k be any positive integers. Then the

limits 
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fixed numbers α, m and r, and
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Proof. Let ( ).ijbB =  By (4) in Lemma 2 and (5) in Lemma 3, for any

positive integer k, the following inequality holds:
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For any ( ),1 nii ≤≤  we have
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Thus the sequence 
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 decreases monotonically and

has lower bound r. Similarly, we can deduce that the sequence
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 increases monotonically and has upper bound r.

Then, we finish the proof of Theorem 4.

Remark 4. For any nonnegative matrix A of order n, if we take

1=m  and 0=k  in Theorem 1 and assume ,0 IA =  then Theorem 1
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yields the Frobenius’ bounds, i.e., (1). And by the proof of Theorem 4, we
have
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Thus the estimation in Theorem 1 improves the bound given by
Frobenius [2].

Remark 5. Assume that A has nonzero row sums, and if we take

0=α  in Theorem 1, then we get the bound given by Liu [4]. Moreover,

by Lemma 4 and Theorem 4, the above bound improves the Minc’s
bounds [5].

Example. Let

.

114

332

211
















=A

The accurate value ....74165738.5=r  If we take ,1=α  ,3=m  ,4=k

then by Theorem 1, bounds for the Perron root of A are shown in the

following table.

Row Column

Frobenius 84 ≤≤ r 75 ≤≤ r

Minc 25.65 ≤≤ r 8572.56.5 ≤≤ r

Ledermann 8661.71547.4 ≤≤ r 9259.6080.5 ≤≤ r

Ostrowski 6547.75275.4 ≤≤ r 8165.62247.5 ≤≤ r

Brauer 4642.78284.4 ≤≤ r 7016.63722.5 ≤≤ r

Yin [7] 7564.57297.5 ≤≤ r 7484.57349.5 ≤≤ r

Theorem 1 of this paper 74759.57368.5 ≤≤ r 74438.573897.5 ≤≤ r

The choice of the optimal α in estimations is difficult and
investigation on it is interesting.
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