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Abstract

An estimate for the Perron roots of nonnegative matrices is obtained.
The results generalize or improve the bounds found in the related

literature.
1. Introduction

This paper is concerned with the estimation for the Perron root of a

nonnegative matrix. Let A = (aij) be a nonnegative matrix of order n
with the Perron root r, and denote by r;(A) and ¢;(A) ( =1, 2, ..., n) the

ith row sum and ith column sum of the matrix A, respectively. Let I be

the identity matrix.
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For the bounds for the Perron root of a nonnegative matrix, it is well

known that the Perron root satisfies the Frobenius’ inequality [2]

min r;(A) < r < max r;(A). (1)
l l

An analogous result holds for column sums ¢, cg, ..., ¢,. For
nonnegative matrices without zero row sums, eq. (1) was improved by
Minc [5]. For positive matrices, we have the results of Ledermann [3],
Ostrowski [6] and Brauer [1]. These results improved bound in (1).
Recently, Liu [4] and Yin [7] extended these results further.

In this paper, we investigate estimation for the Perron root of a
nonnegative matrix further, the results generalize or improve the bounds

obtained in the related literature.

2. Estimation for Perron Root

Lemma 1 [5]. Let a be a characteristic root of a matrix A of order n,

and let (xq, xg, ..., x,) and (y1, Y9, ..., ¥,) be characteristic vectors

corresponding to o. of AT and A, respectively. Then

=1 t=1

J

oci Yj = i yicy (A). 3
=1 t=1

Lemma 2 [5]. If q1, g9, ..., q,, are positive numbers for any real
numbers py, ps, ..., P, then
. D; + pg + -+ ;
m}n&Spl P2 p"Smax&. 4)
L q; g1 +qg +--tqy, L q;

Lemma 3 [4]. Let A be an arbitrary matrix of order n, and denote by
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rL-(Ak) and ¢; (A%) (i =1, 2, ..., n) the ith row sum and ith column sum of

the matrix Ak, respectively. Then

n

(AR =Y an(ab), 5)
t=1

¢(AF1) =Y ajic (4%). ©)
t=1

Lemma 4. Let A be a nonnegative matrix of order n, and define
B =A+al, a>0. And let m and k be positive integers. Then

1 1
m m k
[ri(AmBk)Jm S max[ri(AmBk)Jm < oy 1ABY)
i i

n(AB) _
r(B*) r(B*) n(B*)

i)

(7

Proof. We prove the right inequality of (7) by induction. The left

inequality can be proved similarly. The middle inequality is obvious.

When m = 1, the right inequality of (7) becomes an equality.

When m = 2, by (5), we have

n(A’BY) 1 N[ gk rt(ABk)} oy iABY) | ri(AB")
(B _ri<Bk>;1{al”(B) AT LY L

12

So,
A2k anky )2
max—r’(A f )S max —r‘(AB;: ) .
i r(BY) i\ n(BY)
Hence the right inequality of (7) is valid when m =2. Suppose
inductively that (7) holds for m = h. Then, by (5), we have
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n(AMBY) 1 2{ o, (B LA"BY) )}_m [ (Ath>]r,-(AB’*>_
nBY  RBHEL n(B") i(B%) ) r(8")

Further, by the inductive hypothesis, we have
h+1
max LA (Ah+1Bk) < max (ABk)
; k - T pky )
! T (B ) i r (B )
Hence the right inequality of (7) holds for m = h + 1.
Remark 1. A result similar to (7) holds for column sums ¢;, cg, ..., ¢,

Theorem 1. Let A be a nonnegative matrix of order n, and define

B = A+ al, o > 0. Then for arbitrary positive integers m, k and r,

1 1
(Aamnk\\m (Amnk\\m
o BATBO T (7B ®
o nr(BY) | r(BY)
k — k L
(AT m (A™M m
min CL(A—E) < r £ max C‘(A—kB) . 9)
0 ¢(BY) ! ¢;(B¥)
Proof. Assume that, without loss of generality, (x;, x9, ..., x,,) is a

nonnegative characteristic vector of AT corresponding to r such that

n
in = 1. Hence, for any positive integers m and k, (x;, xg, ..., X,) is a
=1

characteristic vector of (A”B*)! and (B*)" corresponding to r™(r + a)*
and (r+oc)k, respectively. By the above statements, applying (2) to

(AmBM)T and (B®)T, we have
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Further, by (4), we get

(Amnpk m(AMmRpk
L R(ATBY_ L xn(amB)

< <m
P8

k k
SrmSmaxw_ axw
xi#0 x5 (B*) 5i#0 xrn(BY) 1 n(BY)
Hence the inequality of (8) holds. The column sums case can be proved
similarly.

Corollary 2. Let A be a nonnegative matrix of order n, and define
B = A + I. Then for any positive integers m, k and r,

1 1
mpk\\m (Am R\ \m
min| %] <r< max[%} , (10)
i r; i r
k = k L
i aBh) i (B

Proof. By taking a = 1 in Theorem 1, we obtain (10) and (11).

Remark 2. By (7) in Lemma 4 and (10) in Corollary 2, we have

1 1
ConBh L R(B" P n(B") ©on(BY)
Hence the estimation in Corollary 2 improves the bound given by Yin in
[7].

Remark 3. If we take m =1 in Corollary 2, then we get the bound
given by Yin.

Corollary 3. Let A be a nonnegative matrix of order n, and define

B = A + I. Then for any positive integers m and r,

1 1
. (1,(A™B)\m r(A™B)\m

1

1 1
m;n(cz(%g)m]m <r< miax(%]m' (13)
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Proof. By taking £ =1 in Corollary 2, we obtain (12) and (13).

Theorem 4. Let A be a nonnegative matrix of order n, and define

B=A+al,a>0. And let m and k be any positive integers. Then the

1
(AmnR\\m
limits lim mjn{MJm and lim max

(rxA'"Bk) 1

mo
exist for any

koo i ri(Bk) E—eo i ri(Bk)
fixed numbers o, m and r, and
1 1
lim mln{MJm <r < lim maX[MJm. 14)
koo i ri(Bk) E—eo i ri(Bk)

Proof. Let B = (b;;). By (4) in Lemma 2 and (5) in Lemma 3, for any
positive integer &, the following inequality holds:
n
m pk+l zbitrt(AmBk) mpk
RAmBHY) & < _n(amBh)
r,(BR*! n " bu#0 by (B t nBY
l( ) Zbitrt(Bk) Ltt( ) t( )
t=1

) mpk
maxw < ma

For any i (1 < i < n), we have

1 1
(AmpR+IN\m (Amnk\\m
max[MJm < max{M}m .
l l

(B r(B*)
k 1"
(AT m
Thus the sequence {max ’A‘(A—f) decreases monotonically and
b n(BY)
k=1

has lower bound r. Similarly, we can deduce that the sequence
k L™

. [ (A™B
mu{u

m
( k) ] increases monotonically and has upper bound r.
n; B

i
k=1
Then, we finish the proof of Theorem 4.

Remark 4. For any nonnegative matrix A of order n, if we take

m=1 and k=0 in Theorem 1 and assume A = I, then Theorem 1
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yields the Frobenius’ bounds, i.e., (1). And by the proof of Theorem 4, we
have

1
(ri(A’”Bk)JE .

r < max A
1 (BY)

12

1
(Aamnk-1\\m
s TA7E)
Ll RBT)
1

<...< m?x[%g)m]ﬁ < m;?lX Ti(A)-

Thus the estimation in Theorem 1 improves the bound given by
Frobenius [2].

Remark 5. Assume that A has nonzero row sums, and if we take
o = 0 in Theorem 1, then we get the bound given by Liu [4]. Moreover,

by Lemma 4 and Theorem 4, the above bound improves the Minc’s
bounds [5].

Example. Let

1
A=|2
4

= oW K

2
3|
1

The accurate value r = 5.74165738.... If we take oo =1, m =3, k = 4,

then by Theorem 1, bounds for the Perron root of A are shown in the

following table.

Row Column
Frobenius 4<r<8 5<r<7
Minc 5<r<6.25 5.6 <r <5.8572
Ledermann 4.1547 < r < 7.8661 5.080 < r < 6.9259
Ostrowski 4.5275 < r < 7.6547 5.2247 < r £ 6.8165
Brauer 4.8284 < r <7.4642 5.3722 < r £6.7016
Yin [7] 5.7297 < r < 5.7564 5.7349 < r £ 5.7484
Theorem 1 of this paper 5.7368 < r < 5.74759 5.73897 < r < 5.74438

The choice of the optimal o in estimations

investigation on it is interesting.

is difficult and
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