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Abstract

In this paper, we construct the second kind (h, q)-Euler numbers E,(f"()q

and polynomials Er({‘()](x). From these numbers and polynomials, we

establish some interesting identities and relations.
1. Introduction

Throughout this paper, we always make use of the following notations: N =
{1, 2, 3, ...} denotes the set of natural numbers, R denotes the set of real numbers,

C denotes the set of complex numbers, Z, denotes the ring of p-adic rational
integers, Q, denotes the field of p-adic rational numbers, and C denotes the

completion of algebraic closure of Q.

Let v, be the normalized exponential valuation of C with | p |p = p_vp(p)

= p‘l. When one talks of g-extension, q is considered in many ways such as an

indeterminate, a complex number g € C, or p-adic number q € C,,. If g € C one
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1

normally assume that |¢|<1. If g € C,,, we normally assume that g —1 |p <p P!

so that ¢* = exp(xlogq) for | x |p < 1. For
geUD(Z,)=1{g|g:Z, - C, is uniformly differentiable function},

the fermionic p-adic invariant integral is defined as

Lie) = Jim Ty(e) = [ eldhioa()= fim 3 0%

0<x<p
If we take g;(x) = g(x + 1) in (1.1), then we see that
11(g1) + 1-4(g) = 2g(0), (see [1-3]). (1.2)

First, we introduce the second kind Euler numbers E, and polynomials E,(x).

The second kind Euler numbers E, are defined by the generating function:

= i % (1.3)

n=0

F(t) =

We introduce the second kind Euler polynomials £, (x) as follows:

0

26 t"
= 1e’“ = ZEn,q(x)m. (1.4)

n=0

F(x, t)=

2. The Second Kind (%, ¢)-Euler Numbers and Polynomials

In this section, we introduce the second kind (%, g)-Euler numbers E,(,hc)] and

polynomials E;(th)I (x) and investigate their properties. In (1.2), if we take g(x) =

¢"* e then we easily see that

t
Lalg" @0 = [ ey () - 22—
Zp qe +1

Let us define the second kind (A, g)-Euler numbers E,gh

’ ()] and polynomials
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E,(f’()] (x) as follows:

o8] tn
Lalg" e = [ gheCr i () = 3 B @
P n=0 ’
Ll(qhye(zyﬂﬂ)t) _ J'Z qhye(x+2y+l)tdu,1(y) _ ZEr(lh()](x)% 2.2)
p n=0

By (2.1) and (2.2), we obtain the following Witt’s formula.

1
Theorem 1. For h € Z and q € C, with [q—1|, < p P71 we have

jZ g (2x + 1 d_y(x) = E),
p

[ a"Gr2endu, o) = B,
P

Let ¢ be a complex number with |¢ | <1 and & € Z. By the meaning of (1.3)

and (1.4), let us define the second kind (%, g)-Euler numbers E,(,h; and

polynomials E,(th)] (x) as follows:

FM() = 5 — ZEn ) 2.3)
Wy 22w N 0
Fq ()C, t) = me ; E ()C) . (24)

We have the following remark.

Remark. Note that

(1) ESM0) = E),

@)1f ¢ — 1, then E)(x) = E,(x), EV") = E

n,q »q n>

G3)If ¢ — 1, then F\)(x, 1) = F(x, 1), F\"(1) = F(¢).
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By the above definition, we obtain

2e Xt _ c (h) t" c m "
ZE ()1| T _ZE”"IFZX m
=0 n=0 m=0
© /
_Z[ZE(h)f_ g £ J
- n,q . —n)
=0 \n=0 (l n)
© i ]
h) I-n |t
= Z[Z( \JEF(Z,C)[ n} 7
1=0 \n=0\"

By using comparing coefficients of we have the following theorem.

n’
Theorem 2. For any positive integer n, we have
h () ) ek
E,(“)I(x) = Z(]JE]"‘IX”_ )
k=0

Because
0 N h
S Fy(x 1) = tF,(x, 1) = >4 T EV) (x )—_,
n=0
it follows the important relation
< E(h) ) () = nEW ().

We also obtain the following integral formula

7B, yax = L@ o) - B

are defined

Theorem 3. The second kind (h, q)-Euler numbers E,(,h,)]

inductively by
2, ifn=0

g"(EM w1y + (B —1y" = {
0, ifn>0,

with the usual convention about replacing (E(gh))” by E,(f'()] in the binomial

expansion.
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Proof. From (2.3), we have

which yields

(h) (1) (h)_
2 = (qhet + e_t)eEq Lo qhe(Eq i + e(Eq 1)t.

Using Taylor expansion of exponential function, we obtain

2= Y {g" (B 1)+ (B -1y s
n=0

=" (B + )0+ (B = 1)+ g (B 41y + (B - 1)"};—,.
n=1 ’

The result follows by comparing the coefficients.

Since

® I} t

(h) r__ 2 ()
ZEl,q(x+y) N hoa . C
=0 qge’ +1

=0 \n=

) e /
- {Z{ ]E,Sf’;u)y’-"]@—!,
=0

] n=0\"

x ! n I-n
_ (h) (I 1-n _L
‘ZL OEn’q(") Y (Z—n)!J

we have the following addition theorem.

Theorem 4. The second kind (h, q)-Euler polynomials E,(,h()](x) satisfy the

following relation:

k (k
E) (x+ y) = Z( ]E,S?;(x)yk-".

n=0\"
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It is easy to see that

() (2 2"
ZEn,q(x)? = h 2t €
=0 ooge” +1

m—1 0
2a + x +1—m\ (mt)"
BN ( j

0 m—1
_ n a hap(h) (2a+x+1-m\|t"
_Z[m Z(—l) q En,qm(—m j}?

n=0 a=0

Hence we have the below theorem.

Theorem 5. For any positive integer m(= odd), we have

m—1
2a+x+1-m
EM (x) = ”E _1)% gha (k) (—j >0.
nq(X)=m a:O( )q e - ., forn

3. Directions for Further Research

In [4], we observed the behavior of complex roots of the second kind Euler

polynomials £, (x) by using numerical investigation. Since
o0 _t n o0 tn
> Ee0 S Fen Y WL
n=0 n=0
we have
E,(x)=(-1)"E,(-x), forneN.

Prove that E,(x), x € C, has Re(x) =0 reflection symmetry in addition to the
usual Im(x) =0 reflection symmetry analytic complex functions. The obvious

corollary is that the zeros of E,(x) will also inherit these symmetries.

If E,(xg) =0, then E,(-x0) = 0 = E,(x3) = E,(=x0), (3.1

* denotes complex conjugation (see [4]). The question is: what happens with the

reflection symmetry (3.1), when one considers the second kind (A4, g)-Euler

polynomials E,(,h()] (x)? In general, how many roots does E,Shzl (x) have? This is open



A NOTE ON THE SECOND KIND (%, ¢)-EULER POLYNOMIALS 41

problem. Prove or disprove: E,(f'()](x) =0 have n distinct solutions. Find the

numbers of complex zeros C ), of E,(f’; (x), Im(x)= 0. Since n is the degree

.q(%)

of the polynomial E,(f’[)l (x), the number of real zeros R, )
nq

lying on the real

plane Im(x) = 0 is then Ry y=n where C () denotes complex

-C ,
)@ £ () )
zeros. Observe that the structure of the zeros of the second Euler polynomials E,,(x)

resembles the structure of the zeros of the second kind (%, ¢)-Euler polynomials

E,(,hc)l (x) as g — 1. The author has no doubt that investigation along this line will
lead to a new approach employing numerical method in the field of research of the
second kind (A, ¢)-Euler polynomials E ;gh(); (x) to appear in mathematics and
physics. The reader may refer to [4-6] for the details.
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