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Abstract 

In this paper, we construct the second kind ( ) Euler-, qh  numbers ( )h
qnE ,  

and polynomials ( ) ( )., xE h
qn  From these numbers and polynomials, we 

establish some interesting identities and relations. 

1. Introduction 

Throughout this paper, we always make use of the following notations: =N  
{ }...,3,2,1  denotes the set of natural numbers, R  denotes the set of real numbers, 

C  denotes the set of complex numbers, pZ  denotes the ring of p-adic rational 

integers, pQ  denotes the field of p-adic rational numbers, and pC  denotes the 

completion of algebraic closure of .pQ  

Let pν  be the normalized exponential valuation of pC  with ( )p
p

ppp ν−
=  

.1−= p  When one talks of q-extension, q is considered in many ways such as an 

indeterminate, a complex number ,C∈q  or p-adic number .pq C∈  If C∈q  one 
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normally assume that .1<q  If ,pq C∈  we normally assume that 1
1

1 −
−

<− p
p pq  

so that ( )qxqx logexp=  for .1≤px  For 

( ) { },functionabledifferentiuniformlyis: ppp ggUDg CZZ →|=∈  

the fermionic p-adic invariant integral is defined as 

( ) ( ) ( ) ( ) ( ) ( )∫ ∑
<≤

∞→−−→− −=µ==
p Npx

x
Nqq

xgxdxggIgI
Z

0
111 .1limlim  (1.1) 

If we take ( ) ( )11 += xgxg  in (1.1), then we see that 

( ) ( ) ( ) ,02111 ggIgI =+ −−  (see [1-3]). (1.2) 

First, we introduce the second kind Euler numbers nE  and polynomials ( ).xEn  

The second kind Euler numbers nE  are defined by the generating function: 

 ( ) ∑
∞

=

=
+

=
0

2 .!1
2

n

n
nt

t

n
tE

e
etF  (1.3) 

We introduce the second kind Euler polynomials ( )xEn  as follows: 

( ) ( )∑
∞

=

=
+

=
0

,2 .!1
2,

n

n
qn

xt
t

t

n
txEe

e
etxF  (1.4) 

2. The Second Kind ( ) Euler-, qh  Numbers and Polynomials 

In this section, we introduce the second kind ( ) Euler-, qh  numbers ( )h
qnE ,  and 

polynomials ( ) ( )xE h
qn,  and investigate their properties. In (1.2), if we take ( ) =xg  

( ) ,12 txhxeq +  then we easily see that 

( ( ) ) ( ) ( )∫ +
=µ= −

++
−

p
th

t
txhxtxhx

eq
exdeqeqI

Z
.

1
2
21

1212
1  

Let us define the second kind ( ) Euler-, qh  numbers ( )h
qnE ,  and polynomials 
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( ) ( )xE h
qn,  as follows: 

( ( ) ) ( ) ( ) ( )∫ ∑
∞

=
−

++
− =µ=

p n

n
h

qn
tyhytyhy

n
tEydeqeqI

Z
0

,1
1212

1 ,
!

 (2.1) 

( ( ) ) ( ) ( ) ( ) ( )∫ ∑
∞

=
−

++++
− =µ=

p n

n
h

qn
tyxhytxyhy

n
txEydeqeqI

Z
0

,1
1212

1 .!  (2.2) 

By (2.1) and (2.2), we obtain the following Witt’s formula. 

Theorem 1. For Z∈h  and pq C∈  with ,1 1
1
−

−
<− p

p pq  we have 

( ) ( ) ( )∫ =µ+ −
p

h
qn

nhx Exdxq
Z

,12 ,1  

( ) ( ) ( ) ( )∫ =µ++ −
p

xEydyxq h
qn

nhy
Z

.12 ,1  

Let q be a complex number with 1<q  and .Z∈h  By the meaning of (1.3) 

and (1.4), let us define the second kind ( ) Euler-, qh  numbers ( )h
qnE ,  and 

polynomials ( ) ( )xE h
qn,  as follows: 

( ) ( ) ( )∑
∞

=

=
+

=
0

,2 ,
!1

2

n

n
h
qnth

t
h

q n
tE

eq
etF  (2.3) 

( ) ( ) ( ) ( )∑
∞

=

=
+

=
0

,2 .
!1

2,
n

n
h
qn

xt
th

t
h

q n
txEe

eq
etxF  (2.4) 

We have the following remark. 

Remark. Note that 

(1) ( ) ( ) ( ) ,0 ,,
h

qn
h

qn EE =  

(2) If ,1→q  then ( ) ( ) ( ) ( ) ,, ,, n
h

qnn
h

qn EExExE ==  

(3) If ,1→q  then ( )( ) ( ) ( )( ) ( ).,,, tFtFtxFtxF h
q

h
q ==  
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By the above definition, we obtain 

( ) ( ) ( )∑ ∑ ∑
∞

=

∞

=

∞

=

=
+

=
0 0 0

,2, !!1
2

!
l n m

m
m

n
h
qn

xt
th

tl
h
ql m

tx
n
tEe

eq
e

l
txE  

( )
( )∑ ∑

∞

= =

−
−















−
=

0 0
, !!

l

l

n

nl
nl

n
h
qn nl

tx
n
tE  

( )∑ ∑
∞

= =

−























=

0 0
, .

!
l

ll

n

nlh
qn l

txE
n

l
 

By using comparing coefficients of ,!l
t l

 we have the following theorem. 

Theorem 2. For any positive integer n, we have 

( ) ( ) ( )∑
=

−










=

n

k

knh
qk

h
qn xE

k

n
xE

0
,, .  

Because 

( ) ( ) ( ) ( )∑
∞

=

==
∂
∂

0
, ,

!
,,

n

n
h
qnqq n

txE
dx
dtxtFtxF

x
 

it follows the important relation 

( ) ( ) ( ) ( ).,1, xnExE
dx
d h

qn
h
qn −=  

We also obtain the following integral formula 

( ) ( ) ( ( ) ( ) ( ) ( ))∫ −=−

b

a
h
qn

h
qn

h
qn aEbE

n
dxxE .1

,,,1  

Theorem 3. The second kind ( ) Eulerqh -,  numbers ( )h
qnE ,  are defined 

inductively by 

( ( ) ) ( ( ) )






>

=
=−++

,0,0

,0,2
11

nif

nif
EEq nh

q
nh

q
h  

with the usual convention about replacing ( ( ) )nh
qE  by ( )h

qnE ,  in the binomial 

expansion. 
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Proof. From (2.3), we have 

( ) ( ( ) )
( )

∑ ∑
∞

=

∞

=
−

===
+ 0 0

, !!
2

n n

tEn
nh

q
n

h
qntth

h
qen

tEn
tE

eeq
 

which yields 

( )
( ) ( ( ) ) ( ( ) ) .2 11 tEtEhtEtth h

q
h

q
h

q eeqeeeq −+− +=+=  

Using Taylor expansion of exponential function, we obtain 

{ ( ( ) ) ( ( ) ) }∑
∞

=

−++=
0

!112
n

n
nh

q
nh

q
h

n
tEEq  

( ( ) ) ( ( ) ) { ( ( ) ) ( ( ) ) }∑
∞

=

−+++−++=
1

00 .
!

1111
n

n
nh

q
nh

q
hh

q
h

q
h

n
tEEqEEq  

The result follows by comparing the coefficients. 

Since 

( ) ( ) ( )∑
∞

=

+

+
=+

0
2, 1

2
!

l

tyx
th

tl
h
ql e

eq
e

l
tyxE  

( ) ( ) ( )∑ ∑
∞

= =

−
−















−
=

0 0
, !!

l

l

n

nl
nl

n
h
qn nl

ty
n
txE  

( ) ( )∑ ∑
∞

= =

−























=

0 0
, ,

!
l

ll

n

nlh
qn l

tyxE
n

l
 

we have the following addition theorem. 

Theorem 4. The second kind ( ) Eulerqh -,  polynomials ( ) ( )xE h
qn,  satisfy the 

following relation: 

( ) ( ) ( ) ( )∑
=

−










=+

k

n

nkh
qn

h
qk yxE

n

k
yxE

0
,, .  
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It is easy to see that 

( ) ( )∑
∞

= +
=

0
2,

1
2

!
n

xt
th

tn
h
qn e

eq
e

n
txE  

( ) ( ) ( )∑ ∑
−

=

∞

=





 −++−=

1

0 0
, !

121
m

a n

n
h
qn

haa
n
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m

mxaEq m  

( ) ( )∑ ∑
∞

=

−

=















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 −++−=

0

1
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,

.
!

121
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m
mxaEqm m  

Hence we have the below theorem. 

Theorem 5. For any positive integer ( ),oddm =  we have 

( ) ( ) ( ) ( ) .0,121
1

0
,, ≥





 −++−= ∑

−

=

nfor
m

mxaEqmxE
m

a

h
qn

haanh
qn m  

3. Directions for Further Research 

In [4], we observed the behavior of complex roots of the second kind Euler 
polynomials ( )xEn  by using numerical investigation. Since 

( ) ( ) ( ) ( )∑ ∑
∞

=

∞

=

−−=−−
0 0

,!,!
n n

n
n

n

n n
txEtxFn

txE  

we have 
( ) ( ) ( ) .for,1 N∈−−= nxExE n

n
n  

Prove that ( ) ,, C∈xxEn  has ( ) 0Re =x  reflection symmetry in addition to the 

usual ( ) 0=xIm  reflection symmetry analytic complex functions. The obvious 

corollary is that the zeros of ( )xEn  will also inherit these symmetries. 

( ) ( ) ( ) ( ),0then,0If 0000
∗∗ −===−= xExExExE nnnn  (3.1) 

* denotes complex conjugation (see [4]). The question is: what happens with the 
reflection symmetry (3.1), when one considers the second kind ( ) Euler-, qh  

polynomials ( ) ( )?, xE h
qn  In general, how many roots does ( ) ( )xE h

qn,  have? This is open 
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problem. Prove or disprove: ( ) ( ) 0, =xE h
qn  have n distinct solutions. Find the 

numbers of complex zeros ( ) ( )xE h
qn

C
,

 of ( ) ( ),, xE h
qn  ( ) .0≠xIm  Since n is the degree 

of the polynomial ( ) ( ),, xE h
qn  the number of real zeros ( ) ( )xE h

qn
R

,
 lying on the real 

plane ( ) 0=xIm  is then ( ) ( ) ( ) ( ),,, xExE h
qn

h
qn

CnR −=  where ( ) ( )xE h
qn

C
,

 denotes complex 

zeros. Observe that the structure of the zeros of the second Euler polynomials ( )xEn  

resembles the structure of the zeros of the second kind ( ) Euler-, qh  polynomials 
( ) ( )xE h

qn,  as .1→q  The author has no doubt that investigation along this line will 

lead to a new approach employing numerical method in the field of research of the 

second kind ( ) Euler-, qh  polynomials ( ) ( )xE h
qn,  to appear in mathematics and 

physics. The reader may refer to [4-6] for the details. 
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