A NOTE ON THE SECOND KIND (h, q)-EULER POLYNOMIALS

C. S. RYOO
Department of Mathematics
Hannam University
Daejeon 306-791, Korea

Abstract

In this paper, we construct the second kind (h, q)-Euler numbers $E_{n, q}^{(h)}$ and polynomials $E_{n, q}^{(h)}(x)$. From these numbers and polynomials, we establish some interesting identities and relations.

1. Introduction

Throughout this paper, we always make use of the following notations: $\mathbb{N}=$ $\{1,2,3, \ldots\}$ denotes the set of natural numbers, \mathbb{R} denotes the set of real numbers, \mathbb{C} denotes the set of complex numbers, \mathbb{Z}_{p} denotes the ring of p-adic rational integers, \mathbb{Q}_{p} denotes the field of p-adic rational numbers, and \mathbb{C}_{p} denotes the completion of algebraic closure of \mathbb{Q}_{p}.

Let v_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-v_{p}(p)}$ $=p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$ one 2010 Mathematics Subject Classification: 11B68, 11S40, 11S80.

Keywords and phrases: the second kind Euler numbers and polynomials, the second kind (h, q)-Euler numbers and polynomials.
normally assume that $|q|<1$. If $q \in \mathbb{C}_{p}$, we normally assume that $|q-1|_{p}<p^{-\frac{1}{p-1}}$ so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. For

$$
g \in U D\left(\mathbb{Z}_{p}\right)=\left\{g \mid g: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p} \text { is uniformly differentiable function }\right\}
$$

the fermionic p-adic invariant integral is defined as

$$
\begin{equation*}
I_{-1}(g)=\lim _{q \rightarrow-1} I_{q}(g)=\int_{\mathbb{Z}_{p}} g(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \sum_{0 \leq x<p^{N}} g(x)(-1)^{x} \tag{1.1}
\end{equation*}
$$

If we take $g_{1}(x)=g(x+1)$ in (1.1), then we see that

$$
\begin{equation*}
I_{-1}\left(g_{1}\right)+I_{-1}(g)=2 g(0),(\text { see }[1-3]) \tag{1.2}
\end{equation*}
$$

First, we introduce the second kind Euler numbers E_{n} and polynomials $E_{n}(x)$. The second kind Euler numbers E_{n} are defined by the generating function:

$$
\begin{equation*}
F(t)=\frac{2 e^{t}}{e^{2 t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!} \tag{1.3}
\end{equation*}
$$

We introduce the second kind Euler polynomials $E_{n}(x)$ as follows:

$$
\begin{equation*}
F(x, t)=\frac{2 e^{t}}{e^{2 t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!} \tag{1.4}
\end{equation*}
$$

2. The Second Kind (h, q)-Euler Numbers and Polynomials

In this section, we introduce the second kind (h, q)-Euler numbers $E_{n, q}^{(h)}$ and polynomials $E_{n, q}^{(h)}(x)$ and investigate their properties. In (1.2), if we take $g(x)=$ $q^{h x} e^{(2 x+1) t}$, then we easily see that

$$
I_{-1}\left(q^{h x} e^{(2 x+1) t}\right)=\int_{\mathbb{Z}_{p}} q^{h x} e^{(2 x+1) t} d \mu_{-1}(x)=\frac{2 e^{t}}{q^{h} e^{2 t}+1}
$$

Let us define the second kind (h, q)-Euler numbers $E_{n, q}^{(h)}$ and polynomials
$E_{n, q}^{(h)}(x)$ as follows:

$$
\begin{align*}
& I_{-1}\left(q^{h y} e^{(2 y+1) t}\right)=\int_{\mathbb{Z}_{p}} q^{h y} e^{(2 y+1) t} d \mu_{-1}(y)=\sum_{n=0}^{\infty} E_{n, q}^{(h)} \frac{t^{n}}{n!} \tag{2.1}\\
& I_{-1}\left(q^{h y} e^{(2 y+1+x) t}\right)=\int_{\mathbb{Z}_{p}} q^{h y} e^{(x+2 y+1) t} d \mu_{-1}(y)=\sum_{n=0}^{\infty} E_{n, q}^{(h)}(x) \frac{t^{n}}{n!} \tag{2.2}
\end{align*}
$$

By (2.1) and (2.2), we obtain the following Witt's formula.
Theorem 1. For $h \in \mathbb{Z}$ and $q \in \mathbb{C}_{p}$ with $|q-1|_{p}<p^{-\frac{1}{p-1}}$, we have

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}} q^{h x}(2 x+1)^{n} d \mu_{-1}(x)=E_{n, q}^{(h)} \\
& \int_{\mathbb{Z}_{p}} q^{h y}(x+2 y+1)^{n} d \mu_{-1}(y)=E_{n, q}^{(h)}(x)
\end{aligned}
$$

Let q be a complex number with $|q|<1$ and $h \in \mathbb{Z}$. By the meaning of (1.3) and (1.4), let us define the second kind (h, q)-Euler numbers $E_{n, q}^{(h)}$ and polynomials $E_{n, q}^{(h)}(x)$ as follows:

$$
\begin{align*}
& F_{q}^{(h)}(t)=\frac{2 e^{t}}{q^{h} e^{2 t}+1}=\sum_{n=0}^{\infty} E_{n, q}^{(h)} \frac{t^{n}}{n!} \tag{2.3}\\
& F_{q}^{(h)}(x, t)=\frac{2 e^{t}}{q^{h} e^{2 t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n, q}^{(h)}(x) \frac{t^{n}}{n!} \tag{2.4}
\end{align*}
$$

We have the following remark.
Remark. Note that
(1) $E_{n, q}^{(h)}(0)=E_{n, q}^{(h)}$,
(2) If $q \rightarrow 1$, then $E_{n, q}^{(h)}(x)=E_{n}(x), E_{n, q}^{(h)}=E_{n}$,
(3) If $q \rightarrow 1$, then $F_{q}^{(h)}(x, t)=F(x, t), F_{q}^{(h)}(t)=F(t)$.

By the above definition, we obtain

$$
\begin{aligned}
\sum_{l=0}^{\infty} E_{l, q}^{(h)}(x) \frac{t^{l}}{l!} & =\frac{2 e^{t}}{q^{h} e^{2 t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n, q}^{(h)} \frac{t^{n}}{n!} \sum_{m=0}^{\infty} x^{m} \frac{t^{m}}{m!} \\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l} E_{n, q}^{(h)} \frac{t^{n}}{n!} x^{l-n} \frac{t^{l-n}}{(l-n)!}\right) \\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l}\binom{l}{n} E_{n, q}^{(h)} x^{l-n}\right) \frac{t^{l}}{l!}
\end{aligned}
$$

By using comparing coefficients of $\frac{t^{l}}{l!}$, we have the following theorem.
Theorem 2. For any positive integer n, we have

$$
E_{n, q}^{(h)}(x)=\sum_{k=0}^{n}\binom{n}{k} E_{k, q}^{(h)} x^{n-k}
$$

Because

$$
\frac{\partial}{\partial x} F_{q}(x, t)=t F_{q}(x, t)=\sum_{n=0}^{\infty} \frac{d}{d x} E_{n, q}^{(h)}(x) \frac{t^{n}}{n!}
$$

it follows the important relation

$$
\frac{d}{d x} E_{n, q}^{(h)}(x)=n E_{n-1, q}^{(h)}(x)
$$

We also obtain the following integral formula

$$
\int_{a}^{b} E_{n-1, q}^{(h)}(x) d x=\frac{1}{n}\left(E_{n, q}^{(h)}(b)-E_{n, q}^{(h)}(a)\right)
$$

Theorem 3. The second kind (h, q)-Euler numbers $E_{n, q}^{(h)}$ are defined inductively by

$$
q^{h}\left(E_{q}^{(h)}+1\right)^{n}+\left(E_{q}^{(h)}-1\right)^{n}= \begin{cases}2, & \text { if } n=0 \\ 0, & \text { if } n>0\end{cases}
$$

with the usual convention about replacing $\left(E_{q}^{(h)}\right)^{n}$ by $E_{n, q}^{(h)}$ in the binomial expansion.

Proof. From (2.3), we have

$$
\frac{2}{q^{h} e^{t}+e^{-t}}=\sum_{n=0}^{\infty} E_{n, q}^{(h)} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty}\left(E_{q}^{(h)}\right)^{n} \frac{t^{n}}{n!}=e^{E_{q}^{(h)} t}
$$

which yields

$$
2=\left(q^{h} e^{t}+e^{-t}\right) e^{E_{q}^{(h)} t}=q^{h} e^{\left(E_{q}^{(h)}+1\right) t}+e^{\left(E_{q}^{(h)}-1\right) t} .
$$

Using Taylor expansion of exponential function, we obtain

$$
\begin{aligned}
2 & =\sum_{n=0}^{\infty}\left\{q^{h}\left(E_{q}^{(h)}+1\right)^{n}+\left(E_{q}^{(h)}-1\right)^{n}\right\} \frac{t^{n}}{n!} \\
& =q^{h}\left(E_{q}^{(h)}+1\right)^{0}+\left(E_{q}^{(h)}-1\right)^{0}+\sum_{n=1}^{\infty}\left\{q^{h}\left(E_{q}^{(h)}+1\right)^{n}+\left(E_{q}^{(h)}-1\right)^{n}\right\} \frac{t^{n}}{n!} .
\end{aligned}
$$

The result follows by comparing the coefficients.
Since

$$
\begin{aligned}
\sum_{l=0}^{\infty} E_{l, q}^{(h)}(x+y) \frac{t^{l}}{l!} & =\frac{2 e^{t}}{q^{h} e^{2 t}+1} e^{(x+y) t} \\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l} E_{n, q}^{(h)}(x) \frac{t^{n}}{n!} y^{l-n} \frac{t^{l-n}}{(l-n)!}\right) \\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l}\binom{l}{n} E_{n, q}^{(h)}(x) y^{l-n}\right) \frac{t^{l}}{l!},
\end{aligned}
$$

we have the following addition theorem.
Theorem 4. The second kind (h, q)-Euler polynomials $E_{n, q}^{(h)}(x)$ satisfy the following relation:

$$
E_{k, q}^{(h)}(x+y)=\sum_{n=0}^{k}\binom{k}{n} E_{n, q}^{(h)}(x) y^{k-n} .
$$

It is easy to see that

$$
\begin{aligned}
\sum_{n=0}^{\infty} E_{n, q}^{(h)}(x) \frac{t^{n}}{n!} & =\frac{2 e^{t}}{q^{h} e^{2 t}+1} e^{x t} \\
& =\sum_{a=0}^{m-1}(-1)^{a} q^{h a} \sum_{n=0}^{\infty} E_{n, q^{m}}^{(h)}\left(\frac{2 a+x+1-m}{m}\right) \frac{(m t)^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(m^{n} \sum_{a=0}^{m-1}(-1)^{a} q^{h a} E_{n, q^{m}}^{(h)}\left(\frac{2 a+x+1-m}{m}\right)\right) \frac{t^{n}}{n!}
\end{aligned}
$$

Hence we have the below theorem.
Theorem 5. For any positive integer $m(=o d d)$, we have

$$
E_{n, q}^{(h)}(x)=m^{n} \sum_{a=0}^{m-1}(-1)^{a} q^{h a} E_{n, q^{m}}^{(h)}\left(\frac{2 a+x+1-m}{m}\right), \quad \text { for } n \geq 0
$$

3. Directions for Further Research

In [4], we observed the behavior of complex roots of the second kind Euler polynomials $E_{n}(x)$ by using numerical investigation. Since

$$
\sum_{n=0}^{\infty} E_{n}(-x) \frac{(-t)^{n}}{n!}=F(-x,-t) \sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}
$$

we have

$$
E_{n}(x)=(-1)^{n} E_{n}(-x), \quad \text { for } n \in \mathbb{N}
$$

Prove that $E_{n}(x), x \in \mathbb{C}$, has $\operatorname{Re}(x)=0$ reflection symmetry in addition to the usual $\operatorname{Im}(x)=0$ reflection symmetry analytic complex functions. The obvious corollary is that the zeros of $E_{n}(x)$ will also inherit these symmetries.

$$
\begin{equation*}
\text { If } E_{n}\left(x_{0}\right)=0 \text {, then } E_{n}\left(-x_{0}\right)=0=E_{n}\left(x_{0}^{*}\right)=E_{n}\left(-x_{0}^{*}\right) \tag{3.1}
\end{equation*}
$$

* denotes complex conjugation (see [4]). The question is: what happens with the reflection symmetry (3.1), when one considers the second kind (h,q)-Euler polynomials $E_{n, q}^{(h)}(x)$? In general, how many roots does $E_{n, q}^{(h)}(x)$ have? This is open
problem. Prove or disprove: $E_{n, q}^{(h)}(x)=0$ have n distinct solutions. Find the numbers of complex zeros $C_{E_{n, q}^{(h)}(x)}$ of $E_{n, q}^{(h)}(x), \operatorname{Im}(x) \neq 0$. Since n is the degree of the polynomial $E_{n, q}^{(h)}(x)$, the number of real zeros $R_{E_{n, q}^{(h)}(x)}$ lying on the real plane $\operatorname{Im}(x)=0$ is then $R_{E_{n, q}^{(h)}(x)}=n-C_{E_{n, q}^{(h)}(x)}$, where $C_{E_{n, q}^{(h)}(x)}$ denotes complex zeros. Observe that the structure of the zeros of the second Euler polynomials $E_{n}(x)$ resembles the structure of the zeros of the second kind (h, q)-Euler polynomials $E_{n, q}^{(h)}(x)$ as $q \rightarrow 1$. The author has no doubt that investigation along this line will lead to a new approach employing numerical method in the field of research of the second kind (h, q)-Euler polynomials $E_{n, q}^{(h)}(x)$ to appear in mathematics and physics. The reader may refer to [4-6] for the details.

References

[1] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), 15-27.
[2] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299.
[3] T. Kim, L. C. Jang and H. K. Pak, A note on q-Euler and Genocchi numbers, Proc. Japan Acad. 77A (2001), 139-141.
[4] C. S. Ryoo, Calculating zeros of the second kind Euler polynomials, J. Comput. Anal. Appl. 12 (2010), 828-833.
[5] C. S. Ryoo, Calculating zeros of the q-Euler polynomials, Proceeding of the Jangjeon Mathematical Society 12 (2009), 253-259.
[6] C. S. Ryoo and T. Kim, A note on the (h, q)-extension of Bernoulli numbers and Bernoulli polynomials, Discrete Dynam Nature Soc., Article ID 807176, (2010), p. 11.

