### Far East Journal of Mathematical Sciences (FJMS)

Volume 49, Number 1, 2011, Pages 7-20 Published Online: February 25, 2011

This paper is available online at http://pphmj.com/journals/fjms.htm

© 2011 Pushpa Publishing House

# SOME PROPERTIES OF THE CESÁRO-MUSIELAK-ORLICZ **SEQUENCE SPACES**

### MARYAM BAJALAN and DARYOUSH BEHMARDI

Department of Mathematics Alzahra University Vanak, Tehran, Iran

e-mail: behmardi@alzahra.ac.ir

### **Abstract**

In this paper, we define a subspace  $\Lambda_p(\varphi)$  of the Cesáro-Musielak-Orlicz sequence space  $ces_p(\varphi)$  and show that  $\Lambda_p(\varphi)$  is the rearrangement invariant Banach space. Also, we show that  $ces_p(\varphi)$  has the property (H), whenever the Musielak-Orlicz function  $\phi$  satisfies the  $\,\Delta_2$  -condition. It is also proved that  $ces_p(\varphi)$  has the Fatou-Levy property. Finally, we give the necessary condition such that  $ces_p(\varphi)$  is the separable and reflexive space.

## 0. Preliminaries

For all notations and terms, we refer to [3], [5] and [13]. We denote  $\mathbb{N}$ ,  $\mathbb{R}$  and  $\mathbb{R}^+$  for the sets of the natural, real and nonnegative real numbers, respectively. A bijection map  $\sigma$  on  $\mathbb N$  is called a *permutation*. If  $(X,\|\cdot\|)$  is a norm space, then the set  $B_X = \{x \in X : \|x\| \le 1\}$  denotes the unit ball of  $(X, \|\cdot\|)$  and the set 2010 Mathematics Subject Classification: 46E30, 46B20, 46A45, 46A80, 46B42, 15A60.

Keywords and phrases: Cesáro-Musielak-Orlicz space, rearrangement invariant Banach space, property (H), Fatou-Levy property.

The second author is supported by Alzahra University.

Received December 7, 2010; Revised January 26, 2011

 $S_X = \{x \in X : \|x\| = 1\}$  denotes the unit sphere of  $(X, \|\cdot\|)$ . By  $(\mathbb{N}, 2^{\mathbb{N}}, m)$ , we denote the counting measure space. Let  $\ell_0$  be the space of all real sequences. For every  $x = (x_n) \in \ell_0$ , we write  $|x| = (|x_n|)$ . Also we write  $|x| \le |y|$ , if  $|x_n| \le |y_n|$  for all  $n \in \mathbb{N}$  and define distribution function  $\mu_x : [0, \infty) \to \mathbb{N} \cup \{0, \infty\}$  by  $\mu_x(\lambda) = m\{n \in N : |x_n| > \lambda\}$  and define decreasing rearrangement  $x^* = (x_n^*)$  with  $x_n^* = \inf\{\lambda > 0 : \mu_x(\lambda) < n\}$ . We refer to [5] to see  $x_n^* = \inf_{m(J) < n} \sup_{i \in \mathbb{N} \setminus J} |x_i|$ . The sequences  $x, y \in \ell_0$  is called *equimeasurable*, if

 $\mu_x = \mu_y$  on  $\mathbb{R}^+$ . Let  $(X, \|\cdot\|)$  denote a sequential Banach space. The space  $(X, \|\cdot\|)$  is said *symmetric*, if for any  $x \in X$  and for any arbitrary permutation  $\sigma$ ,  $x \circ \sigma \in X$ . The unit ball of each symmetric space contains x if and only if contains  $x \circ \sigma$ , for any arbitrary permutation  $\sigma$ . If X is a symmetric space, then  $\ell_1 \subseteq X \subseteq \ell_\infty$  (see [6]). The space  $(X, \|\cdot\|)$  is called *Banach lattice*, if it satisfies the following two conditions:

- (1) If  $x \in X$ ,  $y \in \ell_0$  and  $|y| \le |x|$ , then  $y \in X$  and  $||y|| \le ||x||$ .
- (2) There is  $x \in X$  such that  $x_n > 0$ , for all  $n \in \mathbb{N}$ .

Also the space  $(X, \|\cdot\|)$  is called *rearrangement invariant Banach space*, if it satisfies the following condition:

(1) If 
$$x \in X$$
,  $y \in \ell_0$  and  $\mu_y = \mu_x$ , then  $y \in X$  and  $||y|| = ||x||$ .

It is clear that,  $(X, \|\cdot\|)$  is a rearrangement invariant Banach lattice if and only if it satisfies the following condition:

(1) If 
$$x \in X$$
,  $y \in \ell_0$  and  $y^* \le x^*$ , then  $y \in X$  and  $||y|| \le ||x||$ .

Every rearrangement invariant sequence space is the symmetric space. If E is a subset of the rearrangement invariant Banach lattice X, then  $\overline{E}^X$  is also the rearrangement invariant Banach lattice (see [9, Lemma 4.4]). The rearrangement invariant Banach lattice is useful in study the Interpolation theory (see [1, 9]).

The space  $(X, \|\cdot\|)$  is said to have the property (H) (or kadec norm), if weak and norm convergence coincide, for any sequence on the unit sphere X. If  $(X, \|\cdot\|)$ 

has property (H), then the Identity map  $Id: (X, \sigma(X, X^*)) \to (X, \|\cdot\|)$  is continuous. Also  $B_X$  is weakly closed (see [12, Proposition 4]).

The space  $(X, \|\cdot\|)$  has the Fatou-Levy property, if  $(x_m)$  is a sequence in X such that  $\sup_m \|x_m\| < \infty$  and  $0 \le x_m \uparrow x$ , then  $x \in X$  and  $\|x_m\| \to \|x\|$ .

Let  $p \in [1, \infty)$ . For any  $x = (x_n) \in \ell_0$ , we denote  $S_n^p(x) = \left(\frac{1}{n}\sum_{i=1}^n |x_i|\right)^p$ . A vector space  $ces_p$ , defined by

$$ces_p = \left\{ x \in \ell_0 : \sum_{n=1}^{\infty} S_n^p(x) < \infty \right\}$$

and equipped with the norm  $||x||_{ces_p} = \left(\sum_{n=1}^{\infty} S_n^p(x)\right)^{\frac{1}{p}}$ , is called the *Cesáro* sequence space. It is known  $ces_1 = \{0\}$ . Also it is known  $ces_p$  is reflexive and separable Banach space and it contains  $\ell_p$  space, for any  $p \in (1, \infty)$  (see [7, 10]). This space has property (H), for any  $p \in [1, \infty)$  (see [13]). The Cesáro sequence space is useful in study the Matrix theory (see [8]).

Let X be the real vector space. Then a function  $\varrho: X \to \mathbb{R}^+$  is called the *convex modular* if it satisfies the following condition:

- (1)  $\varrho(0) = 0$ .
- (2)  $\rho(x) = \rho(-x)$ , for any  $x \in X$ .
- (3)  $\varrho(\alpha x + \beta y) \le \alpha \varrho(x) + \beta \varrho(x)$ , for any  $\alpha, \beta \in \mathbb{R}^+$  such that  $\alpha + \beta = 1$  and for any  $x, y \in X$ .

A vector space  $X_{\varrho}$  defined by  $X_{\varrho} = \{x \in X : \varrho(\beta x) < \infty, \text{ for some } \beta > 0\}$ , is called the *Modular space generated* by  $\varrho$ . The space  $X_{\varrho}$  equipped with the Luxemburg norm

$$\|x\| = \inf \left\{ \beta > 0 : \varrho \left(\frac{x}{\beta}\right) \le 1 \right\},$$

is the Banach space (see [11]).

A function  $\varphi: [-\infty, +\infty] \to [0, +\infty]$  is said to be *Orlicz function* if  $\varphi$  is a nonzero function that is convex, even, vanishing at zero, left continuous on  $(0, \infty)$  and continuous at zero. A sequence  $\varphi = (\varphi_n)$  of the Orlicz functions is called a *Musielak-Orlicz function*. We suppose that  $\varphi = (\varphi_n)$  is the Musielak-Orlicz function. We say  $\varphi$  satisfies the condition  $(L_2)$ , if  $\sum_{n=1}^{\infty} \varphi_n(u) = \infty$ , for all u > 0. Also we say  $\varphi$  satisfies the  $\Delta_2$ -condition, if there is k > 0 such that  $\varphi_n(2u) \le k\varphi_n(u)$ , for any  $u \ge 0$  and for all  $n \in \mathbb{N}$ .

From now on we let  $p \in [1, \infty)$  and the symbol  $\varphi$  will denote the Musielak-Orlicz function  $(\varphi_n)$ .

The space  $ces_p(\varphi)=\{x\in\ell_0: \rho_\varphi(\beta x)<\infty, \text{ for some }\beta>0\}$ , where  $\rho_\varphi(x)$  is the convex modular defined by  $\rho_\varphi(x)=\sum_{n=1}^\infty \varphi_n(S_n^{\,p}(x))$ , is called the *Cesáro-Musielak-Orlicz sequence space*. This space endows with the Luxemburg norm  $\|x\|=\inf\Big\{\beta>0: \rho_\varphi\Big(\frac{x}{\beta}\Big)\leq 1\Big\}$ . Banach lattice  $ces_p(\varphi)$  is not always rearrangement invariant Banach space. We define one closed subspace of  $ces_p(\varphi)$  as follows

$$ces_p^0(\varphi) = \{x \in \ell_0 : \rho_{\varphi}(\beta x) < \infty, \text{ for all } \beta > 0\}.$$

We define the symmetric space  $\Lambda_p(\varphi)$  by

$$\Lambda_{p}(\varphi) = \{x \in \ell_{0} : \varrho_{\varphi}(\beta x) < \infty, \text{ for some } \beta > 0\},\$$

where  $\varrho_{\varphi}$  is the convex modular defined by  $\varrho_{\varphi}(x) = \sup_{\sigma} \sum_{n=1}^{\infty} \varphi_n(S_n^p(x \circ \sigma))$ . We endow this space with the Luxemburg norm

$$\|x\| = \inf \left\{ \beta > 0 : \varrho_{\varphi} \left( \frac{x}{\beta} \right) \le 1 \right\}.$$

It is easy to check that the modular space  $\Lambda_p(\varphi)$  is the Banach lattice. Also we

define one closed subspace of  $\Lambda_p(\varphi)$  as follows

$$\Lambda_p^0(\varphi) = \{ x \in \ell_0 : \varrho_{\varphi}(\beta x) < \infty, \text{ for all } \beta > 0 \}.$$

First, we show that if  $\varphi$  satisfies the condition  $(L_2)$ , then  $ces_p(\varphi)$  contains isometric copy of  $\ell_\infty$ . Also we establish that  $\Lambda_p(\varphi)$  is the rearrangement invariant space. Then property (H) of the space  $ces_p(\varphi)$  considered, if  $\varphi$  satisfies the  $\Delta_2$ -condition. Also it is proved that  $ces_p(\varphi)$  has the Fatou-Levy property. Finally, we will give criteria which  $ces_p(\varphi)$  be the separable and reflexive space.

### 1. Results

**Lemma 1.1.** *The following assertions are equivalent:* 

- (1)  $ces_p(\varphi) \subseteq c_0$ .
- (2)  $ces_p(\varphi) \subseteq \ell_\infty$  and  $\varphi$  satisfies the condition  $(L_2)$ .

**Proof.** Assume that  $\varphi$  does not satisfy the condition  $(L_2)$ . Hence there exists u > 0 such that  $\sum_{n=1}^{\infty} \varphi_n(u) < \infty$ . Put  $x = \left(u^{\frac{1}{p}}, u^{\frac{1}{p}}, \cdots\right)$ . We have  $x \in ces_p(\varphi)$ .

Then u = 0, a contradiction.

Assume that  $x=(x_n)\in ces_p(\varphi)\backslash c_0$ . We have  $x^*\in\ell_\infty$ . Then the sequence  $(S_n^p(x^*))$  has the upper bound M>0. Also there is  $n_0\in\mathbb{N}$  such that  $\varphi_{n_0}(M)>0$ . We claim that there is  $\beta>0$  such that  $\rho_{\varphi}(\beta x^*)<\infty$ . At first, we suppose that  $\varphi_{n_0}(M)=\infty$ . In this case, there is  $\beta>0$  that  $\varphi_{n_0}(\beta S_{n_0}^p(x^*))<\varphi_{n_0}(M)$ . If  $\beta\geq 1$ , then we have  $\rho_{\varphi}(x^*)<\sum_{n=1}^\infty\varphi_n(M)=\infty$  and if  $\beta<1$ , then we have  $\rho_{\varphi}(\beta x^*)<\sum_{n=1}^\infty\varphi_n(M)=\infty$ . Now we suppose that

 $\varphi_{n_0}(M) > 0$ . Then there is  $a, b \in \mathbb{R}^+$  such that  $M \in [a, b]$  and the function  $\varphi_{n_0}$  is strictly increasing in the interval [a, b]. Therefore,  $\varphi_{n_0}(\beta S_{n_0}^p(x^*)) < \varphi_{n_0}(\beta M)$ . Then  $\rho_{\varphi}(\beta S_n^p(x^*)) < \infty$ . We know  $x^* \notin c_0$ . Thus there are  $\varepsilon > 0$  and subsequence  $(x_{n_k}^*)$  such that  $x_{n_k}^* \ge \varepsilon$ , for all  $k \in \mathbb{N}$ . Therefore,  $x_n^* \ge \varepsilon$ , for all  $n \in \mathbb{N}$ . Then we have  $\sum_{n=1}^{\infty} \varphi_n(\beta \varepsilon) \le \rho_{\varphi}(\beta x^*) < \infty$ , a contradiction.

Similar to Lemma 1.1, we can prove Lemma 1.2.

**Lemma 1.2.** The following assertions are equivalent:

- (1)  $\Lambda_p(\varphi) \subseteq c_0$ .
- (2)  $\varphi$  satisfies the condition  $(L_2)$ .

In Lemma 1.3 and Theorem 1.7, we will assume that  $ces_p(\varphi) \subseteq \ell_{\infty}$ .

**Lemma 1.3.**  $\varphi$  satisfies the condition  $(L_2)$  if and only if  $\inf_n \varphi_n(u) > 0$ , for all u > 0.

**Proof.** If there is u>0 such that  $\inf_n \varphi_n(u)=0$ , then  $\inf_n \varphi_n(t_i)=0$ , for all  $t_i\leq u$  such that  $(t_i)\not\in c_0$ . So for any  $i\in\mathbb{N}$ , there is  $n_i\in\mathbb{N}$  such that  $\varphi_{n_i}(t_i)<\frac{1}{2^i}$ . We define the sequence  $x=(x_n)$  such that if  $n\neq n_i, n_{i+1}, x_n=0$  and if  $n=n_i, x_n=nt_i$  and if  $n=n_{i+1}, x_n=-nt_i$ . We have  $S_n^1(x)=\begin{cases} 0 & n\neq n_i, \\ t_i & n=n_i. \end{cases}$  So  $\sum_{n=1}^\infty \varphi_n(S_n^1(x))<\infty$ . Therefore,  $x\in ces_1(\varphi)$ . Then  $x\in c_0$ , a contradiction.

The inverse is clear.

**Lemma 1.4.** The following assertions are equivalent:

- (1) The spaces  $\Lambda_p(\varphi)$  and  $\ell_\infty$  are isomorphic.
- (2)  $\varphi$  does not satisfy the condition  $(L_2)$ .

**Proof.** Assume there is  $x \in \ell_{\infty} \setminus \Lambda_{p}(\varphi)$ . By assertion (2), there exists u > 0 such that  $\sum_{n=1}^{\infty} \varphi_{n}(u) < \infty$ . If M is the upper bound of x, then we get  $\varrho_{\varphi}\left(\frac{u}{M}x\right) < \infty$ , a contradiction. Therefore,  $\ell_{\infty} = \Lambda_{p}(\varphi)$ .

Now assume  $\varepsilon > 0$  is fixed and  $\|x\|_{\infty} < \varepsilon$ . Thus  $\varrho_{\phi}\left(\frac{x}{\varepsilon}\right) \le \varrho_{\phi}(1)$ . If  $\varrho_{\phi}(1) \le 1$ , then  $\|x\| < 2\varepsilon$ . If  $\varrho_{\phi}(1) > 1$ , then put  $c = \max\{1, \varrho_{\phi}(1)\}$ . So  $\|x\| < c\varepsilon$ . Therefore, the Identity map  $Id: (\Lambda_p(\phi), \|\cdot\|) \to (\ell_{\infty}, \|\cdot\|_{\infty})$  is continuous. By the Open Mapping theorem, Id is an isomorphism.

By Lemma 1.2, the inverse is clear.

**Lemma 1.5.** Suppose that  $\varrho$  is a convex modular on  $X_{\varrho}$ ,  $x \in X_{\varrho}$  and  $(x_m)$  is a sequence in  $X_{\varrho}$ . Then  $||x_m - x|| \to 0$  if and only if  $\varrho(\lambda(x_m - x)) \to 0$ , for all  $\lambda > 0$ .

**Proof.** See [11, Theorems 1-6].

**Lemma 1.6.** If  $x = (x_n) \in \ell_0$  and  $|x_m| \ge \inf_k \sup_{n \ge k} |x_n|$ , for all  $m \in \mathbb{N}$ , then there are  $N_0 \subseteq \mathbb{N}$  and the bijection map  $\delta : N_0 \to \mathbb{N}$  such that  $x^* = |x| \circ \delta$ .

**Theorem 1.7.**  $\Lambda_p(\varphi)$  is the rearrangement invariant Banach space.

**Proof.** Let  $x \in \Lambda_p(\varphi)$  and  $\mu_x = \mu_y$ . Assume that  $\varphi$  does not satisfy the condition  $(L_2)$ . Because  $\ell_\infty$  is the rearrangement invariant space, by our assumption, we get  $y \in \ell_\infty$ . We know there are  $c_1, c_2 > 0$  such that

$$c_1 \| x \|_{\infty} \le \| x \|, \| y \| \le c_2 \| x \|_{\infty}.$$

We have  $\varrho_{\varphi}(\lambda(\parallel y \parallel - \parallel x \parallel)) = 0$ , for any  $\lambda > 0$ . So  $\parallel x \parallel = \parallel y \parallel$ .

Now assume  $\varphi$  satisfies the condition  $(L_2)$ . Then there is  $n \in \mathbb{N}$  such that the equality  $\varphi_n(u) = 0$  implies u = 0. Therefore, there exists  $a \in (0, \infty)$  such that  $\varphi_n(u) = 0$  implies u = 0.

is monotone increasing on [0, a]. Since  $y \in c_0$ , it has the upper bound M. We can choose  $\beta > 0$  such that  $\beta M^p < a$ . We get  $\sup_{\sigma} \varphi_n(\beta S_n^p(y \circ \sigma)) < \varphi_n(a)$ . We

obtain  $\varrho_{\varphi}(\beta y) < \sum_{n=1}^{\infty} \varphi_n(a) = \infty$ . Then  $y \in \Lambda_p(p)$ . Now we proof ||x|| = ||y||. We have  $x, y \in c_0$ . Then there are  $N_1, N_2 \subseteq \mathbb{N}$  and the bijection map  $\delta_1 : N_1 \to \mathbb{N}$  and  $\delta_2 : N_2 \to \mathbb{N}$  such that  $||x|| \circ \delta_1 = ||y|| \circ \delta_2$ . If we have  $||x_m|| < x_n^*$  for any  $n \in \mathbb{N}$ , then  $||x_m|| = 0$ . Because if  $||x_m|| > 0$ , then there is  $t_0 \in \mathbb{N}$  such that  $||x_t|| < ||x_m||$ , for any  $t \ge t_0$ . So there is  $n_1 \in \mathbb{N}_1$  such that  $x_{n_1}^* < x_n^*$ , for all  $n \in \mathbb{N}$ , a contradiction. Similarly, if we have  $||y_m|| < y_n^*$ , for all  $m \in \mathbb{N}$ , then  $||y_m|| = 0$ . Therefore,  $\varrho_{\varphi}(x) = \varrho_{\varphi}(y)$  and this completes the proof.

**Lemma 1.8.** Let  $x, y \in ces_p(\varphi)$  and  $(x_m)$  be the sequence in  $ces_p(\varphi)$ . Then the following assertions are true:

(1) If 
$$0 < a < 1$$
, then  $a\rho_{\varphi}\left(\frac{x}{a}\right) \le \rho_{\varphi}(x)$ .

(2) If 
$$a \ge 1$$
, then  $\frac{1}{a} \rho_{\phi}(x) \le \rho_{\phi} \left(\frac{x}{a}\right)$ .

(3) 
$$\rho_{\varphi}(x+y) \leq \rho_{\varphi}(x) + \rho_{\varphi}(y)$$
.

(4) If 
$$0 < a < 1$$
, then  $||x|| > a$  implies  $\rho_{\phi}(x) > a$ .

(5) If 
$$a \ge 1$$
, then  $||x|| < a$  implies  $\rho_0(x) < a$ .

(6) If 
$$\lim_{m \to \infty} ||x_m|| = 1$$
, then  $\lim_{m \to \infty} \rho_{\phi}(x_m) = 1$ .

(7) If 
$$\lim_{m\to\infty} \rho_{\varphi}(x_m) = 0$$
, then  $\lim_{m\to\infty} ||x_m|| = 0$ .

**Proof.** We define the function  $f(\beta) = \rho_{\phi}\left(\frac{|x|}{\beta}\right)$  on  $\mathbb{R}^+$ . If  $a\rho_{\phi}\left(\frac{x}{a}\right) > \rho_{\phi}(x)$ , then af(a) > f (1). Also we know  $f(1) \ge f(a)$ . So af(a) > f(a), a contradiction. (2) follows similarly. (3) follows by (1). If ||x|| > a, then  $\rho_{\phi}\left(\frac{x}{a}\right) > 1$ . So (4)

follows from (1). (5) is similar to (4). Suppose that  $\varepsilon \in (0, 1)$  is arbitrary. Then there is  $m_0 \in \mathbb{N}$  such that  $1 - \varepsilon < \|x_m\| < 1 + \varepsilon$ , for any  $m \ge m_0$ . Then  $1 - \varepsilon < \rho_{\phi}(x_m) < 1 + \varepsilon$ , that is  $\lim_{m \to \infty} \rho_{\phi}(x_m) = 1$ . (7) follows similarly (6).

**Lemma 1.9.** If  $\varphi$  satisfies the  $\Delta_2$ -condition, then the following assertions are true:

- (1)  $ces_p(\varphi) = ces_p^0(\varphi)$ .
- (2) For any  $x \in ces_p(\varphi)$ , we have ||x|| = 1 if and only if  $\rho_{\varphi}(x) = 1$ .

**Proof.** (1) Suppose  $x \in ces_p(\varphi)$ . Then there is  $\beta > 0$  which  $\rho_{\varphi}(\beta x) < \infty$ . We give an arbitrary real number  $\mu > 0$ . If  $\mu \le \beta$ , then  $\rho_{\varphi}(\mu x) < \infty$ . If  $\mu > \beta$ , then there exists r > 0 such that  $\mu \le 2^r \beta$ . Let k be as in the definition of the  $\Delta_2$ -condition. We have  $\rho_{\varphi}(\mu x) \le k^r \rho_{\varphi}(\beta x) < \infty$ . So  $x \in ces_p^0(\varphi)$ .

(2) We need only to show that ||x|| = 1 implies  $\rho_{\phi}(x) = 1$ , because the opposite implication holds in any modular space. Suppose that  $\rho_{\phi}(x) < 1$ . We define the function  $f(\beta) = \rho_{\phi}(\beta x)$  on  $\mathbb{R}^+$ . The function f is infinite and convex. So it is continuous. Note that there is  $\beta_0 > 1$  such that  $\rho_{\phi}(\beta_0 x) > 1$ . Then we have  $f(1) < 1 < f(\beta_0)$ . So there is  $\lambda \in (1, \beta_0)$  that  $\rho_{\phi}(\lambda x) = 1$ . Therefore, ||x|| < 1, a contradiction.

**Lemma 1.10.** Let  $\varphi$  satisfy the  $\Delta_2$ -condition, x be a point of the unit sphere  $ces_p(\varphi)$  and  $(x_m)$  is a sequence in the unit sphere  $ces_p(\varphi)$  such that  $x_m \to x$  coordinatewise. If  $\lim_{m \to \infty} \rho_{\varphi}(x_m) = \rho_{\varphi}(x)$ , then  $\lim_{m \to \infty} x_m = x$ .

**Proof.** Let  $\varepsilon > 0$ ,  $t \in \mathbb{N}$  be an arbitrary number and k be as in the definition of  $\Delta_2$  -condition. We have  $S_n^p(x_m - x) \to 0$ . Then there is  $M_0 \in \mathbb{N}$  such that  $\sum_{n=1}^t \varphi_n(S_n^p(x_m - x)) < \frac{\varepsilon}{2}.$ 

Since  $\rho_{\varphi}(x_m) \to \rho_{\varphi}(x)$ , there is  $N_0 \in \mathbb{N}$  such that

$$\sum_{n=1}^{t} \varphi_n(S_n^p(x)) - \sum_{n=1}^{t} \varphi_n(S_n^p(x_m)) < \frac{\varepsilon}{8k^p}.$$

Also there is  $P_0 \in \mathbb{N}$  such that  $\rho_{\phi}(x_m) \le \rho_{\phi}(x) + \frac{\varepsilon}{8k^p}$ , for any  $m \ge P_0$ . Also

we can find  $t_0 \in \mathbb{N}$  such that  $\sum_{n=t_0+1}^{\infty} \varphi_n(S_n^p(x)) < \frac{\varepsilon}{8k^p}$ . Put  $m_0 = \max\{M_0, N_0, P_0\}$ .

So for any  $m \ge m_0$ , we obtain

$$\rho_{\varphi}(x_{m} - x) < \frac{\varepsilon}{2} + \sum_{n=t_{0}+1}^{\infty} \varphi_{n}(|S_{n}^{p}(x_{m} - x)|)$$

$$\leq \frac{\varepsilon}{2} + \sum_{n=t_{0}+1}^{\infty} \varphi_{n}(2^{p}[|S_{n}^{p}(x_{m})| + |S_{n}^{p}(x)|])$$

$$\leq \frac{\varepsilon}{2} + k^{p} \left[ \sum_{n=t_{0}+1}^{\infty} \varphi_{n}(S_{n}^{p}(x_{m})) + \sum_{n=t_{0}+1}^{\infty} \varphi_{n}(S_{n}^{p}(x_{m})) \right]$$

$$< \frac{\varepsilon}{2} + k^{p} \left[ \rho_{\varphi}(x) + \frac{\varepsilon}{8k^{p}} - \sum_{n=1}^{t_{0}} \varphi_{n}(S_{n}^{p}(x_{m})) + \sum_{n=t_{0}+1}^{\infty} \varphi_{n}(S_{n}^{p}(x)) \right]$$

$$< \frac{\varepsilon}{2} + k^{p} \left[ \rho_{\varphi}(x) + \frac{\varepsilon}{4k^{p}} - \sum_{n=1}^{t_{0}} \varphi_{n}(S_{n}^{p}(x)) + \sum_{n=t_{0}+1}^{\infty} \varphi_{n}(S_{n}^{p}(x)) \right]$$

$$< \frac{\varepsilon}{2} + k^{p} \left[ \frac{\varepsilon}{4k^{p}} + \frac{\varepsilon}{4k^{p}} \right] = \varepsilon.$$

So we have  $\rho_{\phi}(x_m - x) \to 0$ . Therefore,  $x_m - x \to 0$ 

**Theorem 1.11.** If  $\varphi$  satisfies the  $\Delta_2$ -condition, then space  $ces_p(\varphi)$  has the property (H).

**Proof.** Assume that x is a point of the unit sphere  $ces_p(\varphi)$  and  $(x_m)$  is a sequence in the unit sphere  $ces_p(\varphi)$  such that  $(x_m)$  is weak convergence to x. By

 $x_m \stackrel{w}{\to} x$ , we get  $x_m(n) \to x(n)$  as  $m \to \infty$ , for all  $n \in \mathbb{N}$ . Now, by Lemma 1.10, we have  $\|x_m - x\| \to 0$ .

**Corollary 1.12.** If  $\varphi$  satisfies the  $\Delta_2$ -condition, then the unit ball  $ces_p(\varphi)$  is weakly closed.

**Theorem 1.13.** The space  $ces_p(\varphi)$  has the Fatou-Levy property.

**Proof.** Suppose that  $x \in \ell_0$  and  $(x_m)$  is a sequence in  $ces_p(\varphi)$  such that  $0 \le x_m \uparrow x$  and  $\sup_m \|x_m\| < \infty$ . Put  $A = \sup_m \|x_m\|$ . Let m be fixed. Then we have  $S_n^p\left(\frac{x_m}{A}\right) \le S_n^p\left(\frac{x_m}{\|x_m\|}\right)$ , for any  $n \in \mathbb{N}$ . So

$$\sum_{n=1}^{\infty} \varphi_n \left( S_n^p \left( \frac{x_m}{A} \right) \right) \leq \sum_{n=1}^{\infty} \varphi_n \left( S_n^p \left( \frac{x}{\parallel x_m \parallel} \right) \right).$$

Therefore,

$$\sum_{n=1}^{\infty} \varphi_n \left( S_n^p \left( \frac{x_m}{A} \right) \right) \le 1, \quad \forall m \in \mathbb{N}.$$
 (1.1)

Since  $x_m \to x$ , we have  $S_n^p \left( \frac{x_m}{A} \right) \uparrow S_n^p \left( \frac{x}{A} \right)$ . Hence  $\lim_{m \to \infty} \varphi_n \left( S_n^p \left( \frac{x_m}{A} \right) \right) = \varphi_n \left( S_n^p \left( \frac{x}{A} \right) \right)$ . By using Monotone convergence theorem, we get

$$\lim_{m \to \infty} \sum_{n=1}^{\infty} \varphi_n \left( S_n^p \left( \frac{x_m}{A} \right) \right) = \sum_{n=1}^{\infty} \varphi_n \left( S_n^p \left( \frac{x}{A} \right) \right).$$

Now, by equation (1.1), we have  $x \in ces_p(\varphi)$ .

We suppose  $\|x_m\|$  does not convergent to  $\|x\|$ . Then there are  $\varepsilon > 0$  and subsequence  $(x_{m_k})_{k=1}^{\infty}$  such that  $\|x_{m_k}\| - \|x\|\| > \varepsilon$ , for all  $n \in \mathbb{N}$ . So we have

$$\varphi_n\left(S_n^p\left(\frac{x_{m_k}}{\parallel x \parallel - \varepsilon}\right)\right) \le \varphi_n\left(S_n^p\left(\frac{x_{m_k}}{\parallel x_{m_k} \parallel}\right)\right) \le 1,\tag{1.2}$$

for any  $k \in \mathbb{N}$ . Also, by Monotone convergence theorem, we have

$$\lim_{m \to \infty} \sum_{n=1}^{\infty} \varphi_n \left( S_n^p \left( \frac{x_{m_k}}{\parallel x \parallel - \varepsilon} \right) \right) = \sum_{n=1}^{\infty} \varphi_n \left( S_n^p \left( \frac{x}{\parallel x \parallel - \varepsilon} \right) \right).$$

Then, by equation (1.2), we get  $||x|| \le ||x|| - \varepsilon$ , a contradiction.

**Theorem 1.14.** *If one of the following conditions satisfies*:

- (1) there is  $x_1, x_2 > 0$  such that  $x_1 \neq x_2$  and  $\varphi_n(x_1) = x_1, \varphi_n(x_2) = x_2$ , for all  $n \in \mathbb{N}$ ,
- (2)  $\varphi_n$  is differentiable in the point zero and  $\varphi'_n(0) \ge 1$ , for all  $n \in \mathbb{N}$ , then the space  $ces_p(\varphi)$  is separable and reflexive.

**Proof.** In two cases we claim that  $\varphi_n(x) \ge x$ , for any  $x \in \mathbb{R}$  and for all  $n \in \mathbb{N}$ . If  $x \in [-\infty, 0)$ , then it holds. So we suppose that  $x \in [0, \infty]$ . Let condition (1) hold. Without loss of generality, we can assume that  $x_1 < x_2$ . We claim that  $\varphi_n(x) \ge x$ , for any  $x \ge 0$  and for all  $n \in \mathbb{N}$ . Assume that there are  $x_3 > 0$  and  $n \in \mathbb{N}$  such that  $\varphi_n(x_3) < x_3$ . If  $x_3 > x_1 > 0$ , then there is  $\lambda \in (0, 1)$  as  $x_1 = \lambda x_3$ . Hence,  $\lambda x_3 = \varphi_n(x_1) \le \lambda \varphi_n(x_3) < \lambda x_3$ , a contradiction. And if  $x_3 < x_1$ , then by convexity  $\varphi_n$ , we have

$$\frac{\varphi_n(x_1) - \varphi_n(x_3)}{x_1 - x_3} \le \frac{\varphi_n(x_2) - \varphi_n(x_1)}{x_2 - x_1} = 1.$$

Therefore,  $\varphi_n(x_3) \ge x_3$  which is impossible. Now let condition (2) hold. Assume that there are  $u_0 > 0$  and  $n \in \mathbb{N}$  such that  $\varphi_n(u_0) < u_0$ . We have

$$\sup_{\delta>0} \inf_{0< u<\delta} \frac{\varphi_n(u)}{u} = \varphi'_n(0) \ge 1 > \frac{\varphi_n(u_0)}{u_0}.$$

Then we can find  $\delta > 0$  that for any  $0 < u < \delta$ ,

$$\frac{\varphi_n(u) - \varphi_n(u_0)}{u - u_0} > \frac{\varphi_n(u_0)}{u_0}.$$
 (1.3)

Define the function  $f(u) = \varphi_n(u) - u$  on  $\mathbb{R}$ . This function has at least one root  $u_1$  in interval  $(u, u_0)$ . We get  $\frac{\varphi_n(u_0)}{u_0} \ge \frac{\varphi_n(u_0) - \varphi_n(u_1)}{u_0 - u_1}$ . So by equation (1.3), we have

$$\frac{\phi_n(u) - \phi_n(u_0)}{u - u_0} > \frac{\phi_n(u_0) - \phi_n(u_1)}{u_0 - u_1},$$

a contradiction.

So in two cases, we have  $\sum_{n=1}^{\infty} \beta(S_n^p x) \le \rho_{\phi}(\rho_x)$ , for any  $x \in ces_p(\phi)$  and for any  $\beta > 0$ . Therefore,  $ces_p(\phi) \subseteq ces_p$ . Thus  $ces_p(\phi)$  is the separable and reflexive space.

**Lemma 1.15.** Suppose that X is the Banach lattice. Then the following assertions are equivalent:

- (1) X is the reflexive space.
- (2) X has the Fatou-Levy property and on  $B_X$ , pointwise convergence topology and weak topology are coincide.

**Corollary 1.16.** If two conditions of the before theorem hold, then pointwise convergence topology and weak topology are coincide on the unit ball  $ces_p(\varphi)$ .

**Remark 1.17.** We can prove similarly all theorems and lemmas for the space  $\Lambda_n(\varphi)$ .

### References

- [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
- [2] J. Cerda, H. Hdzik, A. Kaminska and M. Mastoylo, Geometry properties of symmetric spaces with application to Orlicz-Lorentz spaces, Positivity 2 (1998), 311-337.
- [3] M. Fabian, P. Habala, P. Hajek, V. M. Santalucia, J. Pelant and V. Zizler, Functional Analysis and Infinite-dimensional Geometry, Springer-Verlag, New York, 2001.
- [4] P. Forlewski, H. Hudzik and L. Szymaszkiewics, Local rotundity structure of generalized Orlicz-Lorentz sequence spaces, Nonlinear Anal. 68 (2008), 2709-2718.

- [5] P. Foralewski, H. Hudzik and L. Szymaszkiewicz, On some geometric and topological properties of generalized Orlicz-Lorentz sequence spaces, Math. Nachar. 281 (2008), 181-198.
- [6] D. J. H. Garling, Inequalities: A Journey into Linear Analysis, Cambridge University, 2007.
- [7] A. A. Jagers, A note on the Cesáro sequence spaces, Nieuw Arch. Wiskd. 22 (1974), 113-124.
- [8] F. M. Khan and M. A. Khan, Matrix transformations between Cesáro-sequence Spaces, Indian J. Pure Appl. Math. 25 (1994), 641-645.
- [9] S. G. Krein, J. I. Petunin and E. M. Seminov, Interpolation of linear operator, Proc. Amer. Math. Soc., 1982.
- [10] G. M. Leibowitz, A note on the Cesáro sequence spaces, Tamkang J. Math. 2 (1971), 151-157.
- [11] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Springer-Verlag, 1983.
- [12] M. Raja, Kadec norm and Borel sets in a Banach space, Studia Math. 136 (1999), 1-16.
- [13] S. Suantai, On some convexity properties of generalized Cesáro sequence spaces, Georgian Math. J. 10 (2003), 193-200.