SOME PROPERTIES OF THE CESÁRO-MUSIELAK-ORLICZ SEQUENCE SPACES

MARYAM BAJALAN and DARYOUSH BEHMARDI
Department of Mathematics
Alzahra University
Vanak, Tehran, Iran
e-mail: behmardi@alzahra.ac.ir

Abstract

In this paper, we define a subspace $\Lambda_{p}(\varphi)$ of the Cesáro-Musielak-Orlicz sequence space $\operatorname{ces}_{p}(\varphi)$ and show that $\Lambda_{p}(\varphi)$ is the rearrangement invariant Banach space. Also, we show that $\operatorname{ces}_{p}(\varphi)$ has the property (H), whenever the Musielak-Orlicz function φ satisfies the Δ_{2}-condition It is also proved that $\operatorname{ces}_{p}(\varphi)$ has the Fatou-Levy property. Finally, we give the necessary condition such that $\operatorname{ces}_{p}(\varphi)$ is the separable and reflexive space.

0. Preliminaries

For all notations and terms, we refer to [3], [5] and [13]. We denote \mathbb{N}, \mathbb{R} and \mathbb{R}^{+}for the sets of the natural, real and nonnegative real numbers, respectively. A bijection map σ on \mathbb{N} is called a permutation. If $(X,\|\cdot\|)$ is a norm space, then the set $B_{X}=\{x \in X:\|x\| \leq 1\}$ denotes the unit ball of $(X,\|\cdot\|)$ and the set 2010 Mathematics Subject Classification: 46E30, 46B20, 46A45, 46A80, 46B42, 15A60.
Keywords and phrases: Cesáro-Musielak-Orlicz space, rearrangement invariant Banach space, property (H), Fatou-Levy property.

The second author is supported by Alzahra University.
Received December 7, 2010; Revised January 26, 2011
$S_{X}=\{x \in X:\|x\|=1\}$ denotes the unit sphere of $(X,\|\cdot\|)$. By $\left(\mathbb{N}, 2^{\mathbb{N}}, m\right)$, we denote the counting measure space. Let ℓ_{0} be the space of all real sequences. For every $x=\left(x_{n}\right) \in \ell_{0}$, we write $|x|=\left(\left|x_{n}\right|\right)$. Also we write $|x| \leq|y|$, if $\left|x_{n}\right| \leq\left|y_{n}\right|$ for all $n \in \mathbb{N}$ and define distribution function $\mu_{x}:[0, \infty)$ $\rightarrow \mathbb{N} \cup\{0, \infty\} \quad$ by $\quad \mu_{x}(\lambda)=m\left\{n \in N:\left|x_{n}\right|>\lambda\right\} \quad$ and define decreasing rearrangement $x^{*}=\left(x_{n}^{*}\right)$ with $x_{n}^{*}=\inf \left\{\lambda>0: \mu_{x}(\lambda)<n\right\}$. We refer to [5] to see $x_{n}^{*}=\inf _{m(J)<n} \sup _{i \in \mathbb{N} \backslash J}\left|x_{i}\right|$. The sequences $x, y \in \ell_{0}$ is called equimeasurable, if $\mu_{x}=\mu_{y}$ on \mathbb{R}^{+}. Let $(X,\|\cdot\|)$ denote a sequential Banach space. The space $(X,\|\cdot\|)$ is said symmetric, if for any $x \in X$ and for any arbitrary permutation $\sigma, x \circ \sigma \in X$. The unit ball of each symmetric space contains x if and only if contains $x \circ \sigma$, for any arbitrary permutation σ. If X is a symmetric space, then $\ell_{1} \subseteq X \subseteq \ell_{\infty}$ (see [6]). The space $(X,\|\cdot\|)$ is called Banach lattice, if it satisfies the following two conditions:
(1) If $x \in X, y \in \ell_{0}$ and $|y| \leq|x|$, then $y \in X$ and $\|y\| \leq\|x\|$.
(2) There is $x \in X$ such that $x_{n}>0$, for all $n \in \mathbb{N}$.

Also the space $(X,\|\cdot\|)$ is called rearrangement invariant Banach space, if it satisfies the following condition:
(1) If $x \in X, y \in \ell_{0}$ and $\mu_{y}=\mu_{x}$, then $y \in X$ and $\|y\|=\|x\|$.

It is clear that, $(X,\|\cdot\|)$ is a rearrangement invariant Banach lattice if and only if it satisfies the following condition:
(1) If $x \in X, y \in \ell_{0}$ and $y^{*} \leq x^{*}$, then $y \in X$ and $\|y\| \leq\|x\|$.

Every rearrangement invariant sequence space is the symmetric space. If E is a subset of the rearrangement invariant Banach lattice X, then \bar{E}^{X} is also the rearrangement invariant Banach lattice (see [9, Lemma 4.4]). The rearrangement invariant Banach lattice is useful in study the Interpolation theory (see [1, 9]).

The space $(X,\|\cdot\|)$ is said to have the property (H) (or kadec norm), if weak and norm convergence coincide, for any sequence on the unit sphere X. If $(X,\|\cdot\|)$
has property (H), then the Identity map $I d:\left(X, \sigma\left(X, X^{*}\right)\right) \rightarrow(X,\|\cdot\|)$ is continuous. Also B_{X} is weakly closed (see [12, Proposition 4]).

The space $(X,\|\cdot\|)$ has the Fatou-Levy property, if $\left(x_{m}\right)$ is a sequence in X such that $\sup \left\|x_{m}\right\|<\infty$ and $0 \leq x_{m} \uparrow x$, then $x \in X$ and $\left\|x_{m}\right\| \rightarrow\|x\|$.
m
Let $p \in[1, \infty)$. For any $x=\left(x_{n}\right) \in \ell_{0}$, we denote $S_{n}^{p}(x)=\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}\right|\right)^{p}$. A vector space $c e s{ }_{p}$, defined by

$$
\operatorname{ces}_{p}=\left\{x \in \ell_{0}: \sum_{n=1}^{\infty} S_{n}^{p}(x)<\infty\right\}
$$

and equipped with the norm $\|x\|_{\text {ces }_{p}}=\left(\sum_{n=1}^{\infty} S_{n}^{p}(x)\right)^{\frac{1}{p}}$, is called the Cesáro sequence space. It is known $\operatorname{ces}_{1}=\{0\}$. Also it is known ces p_{p} is reflexive and separable Banach space and it contains ℓ_{p} space, for any $p \in(1, \infty)$ (see [7, 10]). This space has property (H), for any $p \in[1, \infty$) (see [13]). The Cesáro sequence space is useful in study the Matrix theory (see [8]).

Let X be the real vector space. Then a function $\varrho: X \rightarrow R^{+}$is called the convex modular if it satisfies the following condition:
(1) $\varrho(0)=0$.
(2) $\varrho(x)=\varrho(-x)$, for any $x \in X$.
(3) $\varrho(\alpha x+\beta y) \leq \alpha \varrho(x)+\beta \varrho(x)$, for any $\alpha, \beta \in \mathbb{R}^{+}$such that $\alpha+\beta=1$ and for any $x, y \in X$.

A vector space X_{ϱ} defined by $X_{\varrho}=\{x \in X: \varrho(\beta x)<\infty$, for some $\beta>0\}$, is called the Modular space generated by ϱ. The space X_{ϱ} equipped with the Luxemburg norm

$$
\|x\|=\inf \left\{\beta>0: \varrho\left(\frac{x}{\beta}\right) \leq 1\right\}
$$

is the Banach space (see [11]).

A function $\varphi:[-\infty,+\infty] \rightarrow[0,+\infty]$ is said to be Orlicz function if φ is a nonzero function that is convex, even, vanishing at zero, left continuous on $(0, \infty)$ and continuous at zero. A sequence $\varphi=\left(\varphi_{n}\right)$ of the Orlicz functions is called a Musielak-Orlicz function. We suppose that $\varphi=\left(\varphi_{n}\right)$ is the Musielak-Orlicz function. We say φ satisfies the condition $\left(L_{2}\right)$, if $\sum_{n=1}^{\infty} \varphi_{n}(u)=\infty$, for all $u>0$. Also we say φ satisfies the Δ_{2}-condition, if there is $k>0$ such that $\varphi_{n}(2 u) \leq k \varphi_{n}(u)$, for any $u \geq 0$ and for all $n \in \mathbb{N}$.

From now on we let $p \in[1, \infty)$ and the $\operatorname{symbol} \varphi$ will denote the MusielakOrlicz function $\left(\varphi_{n}\right)$.

The space $\operatorname{ces}_{p}(\varphi)=\left\{x \in \ell_{0}: \rho_{\varphi}(\beta x)<\infty\right.$, for some $\left.\beta>0\right\}$, where $\rho_{\varphi}(x)$ is the convex modular defined by $\rho_{\varphi}(x)=\sum_{n=1}^{\infty} \varphi_{n}\left(S_{n}^{p}(x)\right)$, is called the Cesáro-Musielak-Orlicz sequence space. This space endows with the Luxemburg norm $\|x\|=\inf \left\{\beta>0: \rho_{\varphi}\left(\frac{x}{\beta}\right) \leq 1\right\}$. Banach lattice $\operatorname{ces}_{p}(\varphi)$ is not always rearrangement invariant Banach space. We define one closed subspace of $\operatorname{ces}_{p}(\varphi)$ as follows

$$
\operatorname{ces}_{p}^{0}(\varphi)=\left\{x \in \ell_{0}: \rho_{\varphi}(\beta x)<\infty, \text { for all } \beta>0\right\} .
$$

We define the symmetric space $\Lambda_{p}(\varphi)$ by

$$
\Lambda_{p}(\varphi)=\left\{x \in \ell_{0}: \varrho_{\varphi}(\beta x)<\infty, \text { for some } \beta>0\right\}
$$

where ϱ_{φ} is the convex modular defined by $\varrho_{\varphi}(x)=\sup _{\sigma} \sum_{n=1}^{\infty} \varphi_{n}\left(S_{n}^{p}(x \circ \sigma)\right)$. We endow this space with the Luxemburg norm

$$
\|x\|=\inf \left\{\beta>0: \varrho_{\varphi}\left(\frac{x}{\beta}\right) \leq 1\right\}
$$

It is easy to check that the modular space $\Lambda_{p}(\varphi)$ is the Banach lattice. Also we
define one closed subspace of $\Lambda_{p}(\varphi)$ as follows

$$
\Lambda_{p}^{0}(\varphi)=\left\{x \in \ell_{0}: \varrho_{\varphi}(\beta x)<\infty, \text { for all } \beta>0\right\}
$$

First, we show that if φ satisfies the condition $\left(L_{2}\right)$, then $\operatorname{ces}_{p}(\varphi)$ contains isometric copy of ℓ_{∞}. Also we establish that $\Lambda_{p}(\varphi)$ is the rearrangement invariant space. Then property (H) of the space $\operatorname{ces}_{p}(\varphi)$ considered, if φ satisfies the Δ_{2} condition. Also it is proved that $\operatorname{ces}_{p}(\varphi)$ has the Fatou-Levy property. Finally, we will give criteria which $\operatorname{ces}_{p}(\varphi)$ be the separable and reflexive space.

1. Results

Lemma 1.1. The following assertions are equivalent:
(1) $\operatorname{ces}_{p}(\varphi) \subseteq c_{0}$.
(2) $\operatorname{ces}_{p}(\varphi) \subseteq \ell_{\infty}$ and φ satisfies the condition $\left(L_{2}\right)$.

Proof. Assume that φ does not satisfy the condition $\left(L_{2}\right)$. Hence there exists $u>0$ such that $\sum_{n=1}^{\infty} \varphi_{n}(u)<\infty$. Put $x=\left(u^{\frac{1}{p}}, u^{\frac{1}{p}}, \cdots\right)$. We have $x \in \operatorname{ces}_{p}(\varphi)$. Then $u=0$, a contradiction.

Assume that $x=\left(x_{n}\right) \in \operatorname{ces}_{p}(\varphi) \backslash c_{0}$. We have $x^{*} \in \ell_{\infty}$. Then the sequence $\left(S_{n}^{p}\left(x^{*}\right)\right)$ has the upper bound $M>0$. Also there is $n_{0} \in \mathbb{N}$ such that $\varphi_{n_{0}}(M)>0$. We claim that there is $\beta>0$ such that $\rho_{\varphi}\left(\beta x^{*}\right)<\infty$. At first, we suppose that $\varphi_{n_{0}}(M)=\infty$. In this case, there is $\beta>0$ that $\varphi_{n_{0}}\left(\beta S_{n_{0}}^{p}\left(x^{*}\right)\right)<\varphi_{n_{0}}(M)$. If $\beta \geq 1$, then we have $\rho_{\varphi}\left(x^{*}\right)<\sum_{n=1}^{\infty} \varphi_{n}(M)=\infty$ and if $\beta<1$, then we have $\rho_{\varphi}\left(\beta x^{*}\right)<\sum_{n=1}^{\infty} \varphi_{n}(M)=\infty$. Now we suppose that
$\varphi_{n_{0}}(M)>0$. Then there is $a, b \in \mathbb{R}^{+}$such that $M \in[a, b]$ and the function $\varphi_{n_{0}}$ is strictly increasing in the interval $[a, b]$. Therefore, $\varphi_{n_{0}}\left(\beta S_{n_{0}}^{p}\left(x^{*}\right)\right)<\varphi_{n_{0}}(\beta M)$. Then $\rho_{\varphi}\left(\beta S_{n}^{p}\left(x^{*}\right)\right)<\infty$. We know $x^{*} \notin c_{0}$. Thus there are $\varepsilon>0$ and subsequence $\left(x_{n_{k}}^{*}\right)$ such that $x_{n_{k}}^{*} \geq \varepsilon$, for all $k \in \mathbb{N}$. Therefore, $x_{n}^{*} \geq \varepsilon$, for all $n \in \mathbb{N}$. Then we have $\sum_{n=1}^{\infty} \varphi_{n}(\beta \varepsilon) \leq \rho_{\varphi}\left(\beta x^{*}\right)<\infty$, a contradiction.

Similar to Lemma 1.1, we can prove Lemma 1.2.
Lemma 1.2. The following assertions are equivalent:
(1) $\Lambda_{p}(\varphi) \subseteq c_{0}$.
(2) φ satisfies the condition $\left(L_{2}\right)$.

In Lemma 1.3 and Theorem 1.7, we will assume that $\operatorname{ces}_{p}(\varphi) \subseteq \ell_{\infty}$.
Lemma 1.3. φ satisfies the condition $\left(L_{2}\right)$ if and only if $\inf _{n} \varphi_{n}(u)>0$, for all $u>0$.

Proof. If there is $u>0$ such that $\inf _{n} \varphi_{n}(u)=0$, then $\inf _{n} \varphi_{n}\left(t_{i}\right)=0$, for all $t_{i} \leq u$ such that $\left(t_{i}\right) \notin c_{0}$. So for any $i \in \mathbb{N}$, there is $n_{i} \in \mathbb{N}$ such that $\varphi_{n_{i}}\left(t_{i}\right)<\frac{1}{2^{i}}$. We define the sequence $x=\left(x_{n}\right)$ such that if $n \neq n_{i}, n_{i+1}, x_{n}=0$ and if $n=n_{i}, \quad x_{n}=n t_{i} \quad$ and if $\quad n=n_{i+1}, \quad x_{n}=-n t_{i} . \quad$ We have $S_{n}^{1}(x)=\left\{\begin{array}{ll}0 & n \neq n_{i}, \\ t_{i} & n=n_{i} .\end{array} \quad\right.$ So $\quad \sum_{n=1}^{\infty} \varphi_{n}\left(S_{n}^{1}(x)\right)<\infty . \quad$ Therefore, $\quad x \in \operatorname{ces}_{1}(\varphi) . \quad$ Then $x \in c_{0}$, a contradiction.

The inverse is clear.
Lemma 1.4. The following assertions are equivalent:
(1) The spaces $\Lambda_{p}(\varphi)$ and ℓ_{∞} are isomorphic.
(2) φ does not satisfy the condition $\left(L_{2}\right)$.

Proof. Assume there is $x \in \ell_{\infty} \backslash \Lambda_{p}(\varphi)$. By assertion (2), there exists $u>0$ such that $\sum_{n=1}^{\infty} \varphi_{n}(u)<\infty$. If M is the upper bound of x, then we get $\varrho_{\varphi}\left(\frac{u}{M} x\right)<\infty$, a contradiction. Therefore, $\ell_{\infty}=\Lambda_{p}(\varphi)$.

Now assume $\varepsilon>0$ is fixed and $\|x\|_{\infty}<\varepsilon$. Thus $\varrho_{\varphi}\left(\frac{x}{\varepsilon}\right) \leq \varrho_{\varphi}(1)$. If $\varrho_{\varphi}(1) \leq 1$, then $\|x\|<2 \varepsilon$. If $\varrho_{\varphi}(1)>1$, then put $c=\max \left\{1, \varrho_{\varphi}(1)\right\}$. So $\|x\|<c \varepsilon$. Therefore, the Identity map $I d:\left(\Lambda_{p}(\varphi),\|\cdot\|\right) \rightarrow\left(\ell_{\infty},\|\cdot\|_{\infty}\right)$ is continuous. By the Open Mapping theorem, $I d$ is an isomorphism.

By Lemma 1.2, the inverse is clear.
Lemma 1.5. Suppose that ϱ is a convex modular on $X_{\varrho}, x \in X_{\varrho}$ and $\left(x_{m}\right)$ is a sequence in X_{ϱ}. Then $\left\|x_{m}-x\right\| \rightarrow 0$ if and only if $\varrho\left(\lambda\left(x_{m}-x\right)\right) \rightarrow 0$, for all $\lambda>0$.

Proof. See [11, Theorems 1-6].
Lemma 1.6. If $x=\left(x_{n}\right) \in \ell_{0}$ and $\left|x_{m}\right| \geq \inf _{k} \sup _{n \geq k}\left|x_{n}\right|$, for all $m \in \mathbb{N}$, then there are $N_{0} \subseteq \mathbb{N}$ and the bijection map $\delta: N_{0} \rightarrow \mathbb{N}$ such that $x^{*}=|x| \circ \delta$.

Proof. See [4].
Theorem 1.7. $\Lambda_{p}(\varphi)$ is the rearrangement invariant Banach space.
Proof. Let $x \in \Lambda_{p}(\varphi)$ and $\mu_{x}=\mu_{y}$. Assume that φ does not satisfy the condition $\left(L_{2}\right)$. Because ℓ_{∞} is the rearrangement invariant space, by our assumption, we get $y \in \ell_{\infty}$. We know there are $c_{1}, c_{2}>0$ such that

$$
c_{1}\|x\|_{\infty} \leq\|x\|,\|y\| \leq c_{2}\|x\|_{\infty} .
$$

We have $\varrho_{\varphi}(\lambda(\|y\|-\|x\|))=0$, for any $\lambda>0$. So $\|x\|=\|y\|$.
Now assume φ satisfies the condition $\left(L_{2}\right)$. Then there is $n \in \mathbb{N}$ such that the equality $\varphi_{n}(u)=0$ implies $u=0$. Therefore, there exists $a \in(0, \infty)$ such that φ_{n}
is monotone increasing on $[0, a]$. Since $y \in c_{0}$, it has the upper bound M. We can choose $\beta>0$ such that $\beta M^{p}<a$. We get $\sup \varphi_{n}\left(\beta S_{n}^{p}(y \circ \sigma)\right)<\varphi_{n}(a)$. We obtain $\varrho_{\varphi}(\beta y)<\sum_{n=1}^{\infty} \varphi_{n}(a)=\infty$. Then $y \in \Lambda_{p}(p)$. Now we proof $\|x\|=\|y\|$. We have $x, y \in c_{0}$. Then there are $N_{1}, N_{2} \subseteq \mathbb{N}$ and the bijection map $\delta_{1}: N_{1} \rightarrow \mathbb{N}$ and $\delta_{2}: N_{2} \rightarrow \mathbb{N}$ such that $|x| \circ \delta_{1}=|y| \circ \delta_{2}$. If we have $\left|x_{m}\right|<x_{n}^{*}$ for any $n \in \mathbb{N}$, then $\left|x_{m}\right|=0$. Because if $\left|x_{m}\right|>0$, then there is $t_{0} \in \mathbb{N}$ such that $\left|x_{t}\right|<\left|x_{m}\right|$, for any $t \geq t_{0}$. So there is $n_{1} \in \mathbb{N}_{1}$ such that $x_{n_{1}}^{*}<x_{n}^{*}$, for all $n \in \mathbb{N}$, a contradiction. Similarly, if we have $\left|y_{m}\right|<y_{n}^{*}$, for all $m \in \mathbb{N}$, then $\left|y_{m}\right|=0$. Therefore, $\varrho_{\varphi}(x)=\varrho_{\varphi}(y)$ and this completes the proof.

Lemma 1.8. Let $x, y \in \operatorname{ces}_{p}(\varphi)$ and $\left(x_{m}\right)$ be the sequence in $\operatorname{ces}_{p}(\varphi)$. Then the following assertions are true:
(1) If $0<a<1$, then $a \rho_{\varphi}\left(\frac{x}{a}\right) \leq \rho_{\varphi}(x)$.
(2) If $a \geq 1$, then $\frac{1}{a} \rho_{\varphi}(x) \leq \rho_{\varphi}\left(\frac{x}{a}\right)$.
(3) $\rho_{\varphi}(x+y) \leq \rho_{\varphi}(x)+\rho_{\varphi}(y)$.
(4) If $0<a<1$, then $\|x\|>a$ implies $\rho_{\varphi}(x)>a$.
(5) If $a \geq 1$, then $\|x\|<a$ implies $\rho_{\varphi}(x)<a$.
(6) If $\lim _{m \rightarrow \infty}\left\|x_{m}\right\|=1$, then $\lim _{m \rightarrow \infty} \rho_{\varphi}\left(x_{m}\right)=1$.
(7) If $\lim _{m \rightarrow \infty} \rho_{\varphi}\left(x_{m}\right)=0$, then $\lim _{m \rightarrow \infty}\left\|x_{m}\right\|=0$.

Proof. We define the function $f(\beta)=\rho_{\varphi}\left(\frac{|x|}{\beta}\right)$ on \mathbb{R}^{+}. If $a \rho_{\varphi}\left(\frac{x}{a}\right)>\rho_{\varphi}(x)$, then $a f(a)>f(1)$. Also we know $f(1) \geq f(a)$. So $a f(a)>f(a)$, a contradiction. (2) follows similarly. (3) follows by (1). If $\|x\|>a$, then $\rho_{\varphi}\left(\frac{x}{a}\right)>1$. So (4)
follows from (1). (5) is similar to (4). Suppose that $\varepsilon \in(0,1)$ is arbitrary. Then there is $m_{0} \in \mathbb{N}$ such that $1-\varepsilon<\left\|x_{m}\right\|<1+\varepsilon$, for any $m \geq m_{0}$. Then $1-\varepsilon<\rho_{\varphi}\left(x_{m}\right)$ $<1+\varepsilon$, that is $\lim _{m \rightarrow \infty} \rho_{\varphi}\left(x_{m}\right)=1$. (7) follows similarly (6).

Lemma 1.9. If φ satisfies the Δ_{2}-condition, then the following assertions are true:
(1) $\operatorname{ces}_{p}(\varphi)=\operatorname{ces}_{p}^{0}(\varphi)$.
(2) For any $x \in \operatorname{ces}_{p}(\varphi)$, we have $\|x\|=1$ if and only if $\rho_{\varphi}(x)=1$.

Proof. (1) Suppose $x \in \operatorname{ces}_{p}(\varphi)$. Then there is $\beta>0$ which $\rho_{\varphi}(\beta x)<\infty$. We give an arbitrary real number $\mu>0$. If $\mu \leq \beta$, then $\rho_{\varphi}(\mu x)<\infty$. If $\mu>\beta$, then there exists $r>0$ such that $\mu \leq 2^{r} \beta$. Let k be as in the definition of the Δ_{2} condition. We have $\rho_{\varphi}(\mu x) \leq k^{r} \rho_{\varphi}(\beta x)<\infty$. So $x \in \operatorname{ces}_{p}^{0}(\varphi)$.
(2) We need only to show that $\|x\|=1$ implies $\rho_{\varphi}(x)=1$, because the opposite implication holds in any modular space. Suppose that $\rho_{\varphi}(x)<1$. We define the function $f(\beta)=\rho_{\varphi}(\beta x)$ on \mathbb{R}^{+}. The function f is infinite and convex. So it is continuous. Note that there is $\beta_{0}>1$ such that $\rho_{\varphi}\left(\beta_{0} x\right)>1$. Then we have $f(1)<1<f\left(\beta_{0}\right)$. So there is $\lambda \in\left(1, \beta_{0}\right)$ that $\rho_{\varphi}(\lambda x)=1$. Therefore, $\|x\|<1$, a contradiction.

Lemma 1.10. Let φ satisfy the Δ_{2}-condition, x be a point of the unit sphere $\operatorname{ces}_{p}(\varphi)$ and $\left(x_{m}\right)$ is a sequence in the unit sphere $\operatorname{ces}_{p}(\varphi)$ such that $x_{m} \rightarrow x$ coordinatewise. If $\lim _{m \rightarrow \infty} \rho_{\varphi}\left(x_{m}\right)=\rho_{\varphi}(x)$, then $\lim _{m \rightarrow \infty} x_{m}=x$.

Proof. Let $\varepsilon>0, t \in \mathbb{N}$ be an arbitrary number and k be as in the definition of Δ_{2}-condition. We have $S_{n}^{p}\left(x_{m}-x\right) \rightarrow 0$. Then there is $M_{0} \in \mathbb{N}$ such that $\sum_{n=1}^{t} \varphi_{n}\left(S_{n}^{p}\left(x_{m}-x\right)\right)<\frac{\varepsilon}{2}$.

Since $\rho_{\varphi}\left(x_{m}\right) \rightarrow \rho_{\varphi}(x)$, there is $N_{0} \in \mathbb{N}$ such that

$$
\sum_{n=1}^{t} \varphi_{n}\left(S_{n}^{p}(x)\right)-\sum_{n=1}^{t} \varphi_{n}\left(S_{n}^{p}\left(x_{m}\right)\right)<\frac{\varepsilon}{8 k^{p}}
$$

Also there is $P_{0} \in \mathbb{N}$ such that $\rho_{\varphi}\left(x_{m}\right) \leq \rho_{\varphi}(x)+\frac{\varepsilon}{8 k^{p}}$, for any $m \geq P_{0}$. Also we can find $t_{0} \in \mathbb{N}$ such that $\sum_{n=t_{0}+1}^{\infty} \varphi_{n}\left(S_{n}^{p}(x)\right)<\frac{\varepsilon}{8 k^{p}}$. Put $m_{0}=\max \left\{M_{0}, N_{0}, P_{0}\right\}$. So for any $m \geq m_{0}$, we obtain

$$
\begin{aligned}
\rho_{\varphi}\left(x_{m}-x\right) & <\frac{\varepsilon}{2}+\sum_{n=t_{0}+1}^{\infty} \varphi_{n}\left(\left|S_{n}^{p}\left(x_{m}-x\right)\right|\right) \\
& \leq \frac{\varepsilon}{2}+\sum_{n=t_{0}+1}^{\infty} \varphi_{n}\left(2^{p}\left[\left|S_{n}^{p}\left(x_{m}\right)\right|+\left|S_{n}^{p}(x)\right|\right]\right) \\
& \leq \frac{\varepsilon}{2}+k^{p}\left[\sum_{n=t_{0}+1}^{\infty} \varphi_{n}\left(S_{n}^{p}\left(x_{m}\right)\right)+\sum_{n=t_{0}+1}^{\infty} \varphi_{n}\left(S_{n}^{p}\left(x_{m}\right)\right)\right] \\
& <\frac{\varepsilon}{2}+k^{p}\left[\rho_{\varphi}(x)+\frac{\varepsilon}{8 k^{p}}-\sum_{n=1}^{t_{0}} \varphi_{n}\left(S_{n}^{p}\left(x_{m}\right)\right)+\sum_{n=t_{0}+1}^{\infty} \varphi_{n}\left(S_{n}^{p}(x)\right)\right] \\
& <\frac{\varepsilon}{2}+k^{p}\left[\rho_{\varphi}(x)+\frac{\varepsilon}{4 k^{p}}-\sum_{n=1}^{t_{0}} \varphi_{n}\left(S_{n}^{p}(x)\right)+\sum_{n=t_{0}+1}^{\infty} \varphi_{n}\left(S_{n}^{p}(x)\right)\right] \\
& <\frac{\varepsilon}{2}+k^{p}\left[\frac{\varepsilon}{4 k^{p}}+\frac{\varepsilon}{4 k^{p}}\right]=\varepsilon .
\end{aligned}
$$

So we have $\rho_{\varphi}\left(x_{m}-x\right) \rightarrow 0$. Therefore, $x_{m}-x \rightarrow 0$
Theorem 1.11. If φ satisfies the Δ_{2}-condition, then space $\operatorname{ces}_{p}(\varphi)$ has the property (H).

Proof. Assume that x is a point of the unit sphere $\operatorname{ces}_{p}(\varphi)$ and $\left(x_{m}\right)$ is a sequence in the unit sphere $\operatorname{ces}_{p}(\varphi)$ such that $\left(x_{m}\right)$ is weak convergence to x. By
$x_{m} \xrightarrow{w} x$, we get $x_{m}(n) \rightarrow x(n)$ as $m \rightarrow \infty$, for all $n \in \mathbb{N}$. Now, by Lemma 1.10, we have $\left\|x_{m}-x\right\| \rightarrow 0$.

Corollary 1.12. If φ satisfies the Δ_{2}-condition, then the unit ball ces ${ }_{p}(\varphi)$ is weakly closed.

Theorem 1.13. The space ces (φ) has the Fatou-Levy property.
Proof. Suppose that $x \in \ell_{0}$ and $\left(x_{m}\right)$ is a sequence in $\operatorname{ces}_{p}(\varphi)$ such that $0 \leq x_{m} \uparrow x$ and $\sup _{m}\left\|x_{m}\right\|<\infty$. Put $A=\sup _{m}\left\|x_{m}\right\|$. Let m be fixed. Then we have $S_{n}^{p}\left(\frac{x_{m}}{A}\right) \leq S_{n}^{p}\left(\frac{x_{m}}{\left\|x_{m}\right\|}\right)$, for any $n \in \mathbb{N}$. So

$$
\sum_{n=1}^{\infty} \varphi_{n}\left(S_{n}^{p}\left(\frac{x_{m}}{A}\right)\right) \leq \sum_{n=1}^{\infty} \varphi_{n}\left(S_{n}^{p}\left(\frac{x}{\left\|x_{m}\right\|}\right)\right)
$$

Therefore,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}\left(S_{n}^{p}\left(\frac{x_{m}}{A}\right)\right) \leq 1, \quad \forall m \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

Since $\quad x_{m} \rightarrow x$, we have $S_{n}^{p}\left(\frac{x_{m}}{A}\right) \uparrow S_{n}^{p}\left(\frac{x}{A}\right)$. Hence $\lim _{m \rightarrow \infty} \varphi_{n}\left(S_{n}^{p}\left(\frac{x_{m}}{A}\right)\right)=$ $\varphi_{n}\left(S_{n}^{p}\left(\frac{x}{A}\right)\right)$. By using Monotone convergence theorem, we get

$$
\lim _{m \rightarrow \infty} \sum_{n=1}^{\infty} \varphi_{n}\left(S_{n}^{p}\left(\frac{x_{m}}{A}\right)\right)=\sum_{n=1}^{\infty} \varphi_{n}\left(S_{n}^{p}\left(\frac{x}{A}\right)\right) .
$$

Now, by equation (1.1), we have $x \in \operatorname{ces}_{p}(\varphi)$.
We suppose $\left\|x_{m}\right\|$ does not convergent to $\|x\|$. Then there are $\varepsilon>0$ and subsequence $\left(x_{m_{k}}\right)_{k=1}^{\infty}$ such that $\left|\left\|x_{m_{k}}\right\|-\|x\|\right|>\varepsilon$, for all $n \in \mathbb{N}$. So we have

$$
\begin{equation*}
\varphi_{n}\left(S_{n}^{p}\left(\frac{x_{m_{k}}}{\|x\|-\varepsilon}\right)\right) \leq \varphi_{n}\left(S_{n}^{p}\left(\frac{x_{m_{k}}}{\left\|x_{m_{k}}\right\|}\right)\right) \leq 1 \tag{1.2}
\end{equation*}
$$

for any $k \in \mathbb{N}$. Also, by Monotone convergence theorem, we have

$$
\lim _{m \rightarrow \infty} \sum_{n=1}^{\infty} \varphi_{n}\left(S_{n}^{p}\left(\frac{x_{m_{k}}}{\|x\|-\varepsilon}\right)\right)=\sum_{n=1}^{\infty} \varphi_{n}\left(S_{n}^{p}\left(\frac{x}{\|x\|-\varepsilon}\right)\right)
$$

Then, by equation (1.2), we get $\|x\| \leq\|x\|-\varepsilon$, a contradiction.
Theorem 1.14. If one of the following conditions satisfies:
(1) there is $x_{1}, x_{2}>0$ such that $x_{1} \neq x_{2}$ and $\varphi_{n}\left(x_{1}\right)=x_{1}, \varphi_{n}\left(x_{2}\right)=x_{2}$, for all $n \in \mathbb{N}$,
(2) φ_{n} is differentiable in the point zero and $\varphi_{n}^{\prime}(0) \geq 1$, for all $n \in \mathbb{N}$,
then the space $\operatorname{ces}_{p}(\varphi)$ is separable and reflexive.
Proof. In two cases we claim that $\varphi_{n}(x) \geq x$, for any $x \in \mathbb{R}$ and for all $n \in \mathbb{N}$. If $x \in[-\infty, 0)$, then it holds. So we suppose that $x \in[0, \infty]$. Let condition (1) hold. Without loss of generality, we can assume that $x_{1}<x_{2}$. We claim that $\varphi_{n}(x) \geq x$, for any $x \geq 0$ and for all $n \in \mathbb{N}$. Assume that there are $x_{3}>0$ and $n \in \mathbb{N}$ such that $\varphi_{n}\left(x_{3}\right)<x_{3}$. If $x_{3}>x_{1}>0$, then there is $\lambda \in(0,1)$ as $x_{1}=\lambda x_{3}$. Hence, $\lambda x_{3}=\varphi_{n}\left(x_{1}\right) \leq \lambda \varphi_{n}\left(x_{3}\right)<\lambda x_{3}$, a contradiction. And if $x_{3}<x_{1}$, then by convexity φ_{n}, we have

$$
\frac{\varphi_{n}\left(x_{1}\right)-\varphi_{n}\left(x_{3}\right)}{x_{1}-x_{3}} \leq \frac{\varphi_{n}\left(x_{2}\right)-\varphi_{n}\left(x_{1}\right)}{x_{2}-x_{1}}=1
$$

Therefore, $\varphi_{n}\left(x_{3}\right) \geq x_{3}$ which is impossible. Now let condition (2) hold. Assume that there are $u_{0}>0$ and $n \in \mathbb{N}$ such that $\varphi_{n}\left(u_{0}\right)<u_{0}$. We have

$$
\sup _{\delta>0} \inf _{0<u<\delta} \frac{\varphi_{n}(u)}{u}=\varphi_{n}^{\prime}(0) \geq 1>\frac{\varphi_{n}\left(u_{0}\right)}{u_{0}}
$$

Then we can find $\delta>0$ that for any $0<u<\delta$,

$$
\begin{equation*}
\frac{\varphi_{n}(u)-\varphi_{n}\left(u_{0}\right)}{u-u_{0}}>\frac{\varphi_{n}\left(u_{0}\right)}{u_{0}} \tag{1.3}
\end{equation*}
$$

Define the function $f(u)=\varphi_{n}(u)-u$ on \mathbb{R}. This function has at least one root u_{1} in interval $\left(u, u_{0}\right)$. We get $\frac{\varphi_{n}\left(u_{0}\right)}{u_{0}} \geq \frac{\varphi_{n}\left(u_{0}\right)-\varphi_{n}\left(u_{1}\right)}{u_{0}-u_{1}}$. So by equation (1.3), we have

$$
\frac{\varphi_{n}(u)-\varphi_{n}\left(u_{0}\right)}{u-u_{0}}>\frac{\varphi_{n}\left(u_{0}\right)-\varphi_{n}\left(u_{1}\right)}{u_{0}-u_{1}}
$$

a contradiction.
So in two cases, we have $\sum_{n=1}^{\infty} \beta\left(S_{n}^{p} x\right) \leq \rho_{\varphi}\left(\rho_{x}\right)$, for any $x \in \operatorname{ces}_{p}(\varphi)$ and for any $\beta>0$. Therefore, $\operatorname{ces}_{p}(\varphi) \subseteq \operatorname{ces}_{p}$. Thus $\operatorname{ces}_{p}(\varphi)$ is the separable and reflexive space.

Lemma 1.15. Suppose that X is the Banach lattice. Then the following assertions are equivalent:
(1) X is the reflexive space.
(2) X has the Fatou-Levy property and on B_{X}, pointwise convergence topology and weak topology are coincide.

Proof. See [2, Lemma 2].
Corollary 1.16. If two conditions of the before theorem hold, then pointwise convergence topology and weak topology are coincide on the unit ball ces ${ }_{p}(\varphi)$.

Remark 1.17. We can prove similarly all theorems and lemmas for the space $\Lambda_{p}(\varphi)$.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
[2] J. Cerda, H. Hdzik, A. Kaminska and M. Mastoylo, Geometry properties of symmetric spaces with application to Orlicz-Lorentz spaces, Positivity 2 (1998), 311-337.
[3] M. Fabian, P. Habala, P. Hajek, V. M. Santalucia, J. Pelant and V. Zizler, Functional Analysis and Infinite-dimensional Geometry, Springer-Verlag, New York, 2001.
[4] P. Forlewski, H. Hudzik and L. Szymaszkiewics, Local rotundity structure of generalized Orlicz-Lorentz sequence spaces, Nonlinear Anal. 68 (2008), 2709-2718.
[5] P. Foralewski, H. Hudzik and L. Szymaszkiewicz, On some geometric and topological properties of generalized Orlicz-Lorentz sequence spaces, Math. Nachar. 281 (2008), 181-198.
[6] D. J. H. Garling, Inequalities: A Journey into Linear Analysis, Cambridge University, 2007.
[7] A. A. Jagers, A note on the Cesáro sequence spaces, Nieuw Arch. Wiskd. 22 (1974), 113-124.
[8] F. M. Khan and M. A. Khan, Matrix transformations between Cesáro-sequence Spaces, Indian J. Pure Appl. Math. 25 (1994), 641-645.
[9] S. G. Krein, J. I. Petunin and E. M. Seminov, Interpolation of linear operator, Proc. Amer. Math. Soc., 1982.
[10] G. M. Leibowitz, A note on the Cesáro sequence spaces, Tamkang J. Math. 2 (1971), 151-157.
[11] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Springer-Verlag, 1983.
[12] M. Raja, Kadec norm and Borel sets in a Banach space, Studia Math. 136 (1999), 1-16.
[13] S. Suantai, On some convexity properties of generalized Cesáro sequence spaces, Georgian Math. J. 10 (2003), 193-200.

