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Abstract

In this paper, we define a subspace A p(q)) of the Cesaro-Musielak-Orlicz
sequence space ces,(¢) and show that A,(e) is the rearrangement
invariant Banach space. Also, we show that cesp(cp) has the property
(H), whenever the Musielak-Orlicz function ¢ satisfies the A, -condition.
It is also proved that cesp(cp) has the Fatou-Levy property. Finally, we
give the necessary condition such that cesp((p) is the separable and

reflexive space.
0. Preliminaries

For all notations and terms, we refer to [3], [5] and [13]. We denote N, R and

R* for the sets of the natural, real and nonnegative real numbers, respectively. A
bijection map ¢ on N is called a permutation. If (X, ||-||) is a norm space, then the

set By ={xe X :|x| <1} denotes the unit ball of (X,|-|) and the set
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Sy = {x € X :| x| =1} denotes the unit sphere of (X, |-[). By (N, 2", m), we
denote the counting measure space. Let ¢, be the space of all real sequences. For

every x =(x,) ey, we write |x|=(x,[). Also we write |x|<|y]|, if

|x,|<|y,| for all neN and define distribution function p, :[0, o)
—-> NU{0,0} by pA)=m{neN:|x,|>r} and define decreasing
rearrangement x* = (x,) with x, = inf{h > 0: p (1) < n}. We refer to [5] to see

x, = inf sup |x;| The sequences x, y e, is called equimeasurable, if
m(J)<n jeN\J

By =M, on R*. Let (X, |-) denote a sequential Banach space. The space
(X, ||-]) is said symmetric, if for any x € X and for any arbitrary permutation
o, xoc € X. The unit ball of each symmetric space contains x if and only if
contains x o ¢, for any arbitrary permutation o. If X is a symmetric space, then
{1 < X < Uy (see [6]). The space (X, | -||) is called Banach lattice, if it satisfies

the following two conditions:

(DIf xe X, yelyand |y|<|x|, then y e X and | y| < x|

(2) There is x € X suchthat x, > 0, forall » € N.

Also the space (X, ||-|) is called rearrangement invariant Banach space, if it
satisfies the following condition:

(DIf x e X, y € £ and p,, =, then y € X and |y | = x|

It is clear that, (X, | -|) is a rearrangement invariant Banach lattice if and only
if it satisfies the following condition:

(DIf x e X, yelyand y* < x*, then y € X and |y | <] x|

Every rearrangement invariant sequence space is the symmetric space. If £ is a
subset of the rearrangement invariant Banach lattice X, then E X s also the
rearrangement invariant Banach lattice (see [9, Lemma 4.4]). The rearrangement
invariant Banach lattice is useful in study the Interpolation theory (see [1, 9]).

The space (X, |-|) is said to have the property (H) (or kadec norm), if weak

and norm convergence coincide, for any sequence on the unit sphere X. If (X, |- |)
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has property (H), then the Identity map Id : (X, o(X, X*)) — (X, |-]) is

continuous. Also By is weakly closed (see [12, Proposition 4]).

The space (X,

-|) has the Fatou-Levy property, if (x,,) is a sequence in X

such that sup| x,, | < o and 0 < x,, Tx, then x € X and || x,, | = || x|.
m

" p
Let p e[l, ©). For any x = (x,) € {(, we denote SP(x)= {12| X; |J LA
n“
i=l1

vector space ces,, defined by

ces, = {x ely: ZS,f(x) < oo}

n=1

1

and equipped with the norm | x|, :(Z sp (x))p, is called the Cesdro
p
n=1

sequence space. It is known ces; = {0}. Also it is known ces, is reflexive and

P
separable Banach space and it contains /, space, for any p € (1, ) (see [7, 10]).
This space has property (H), for any p € [l, ) (see [13]). The Ceséaro sequence
space is useful in study the Matrix theory (see [8]).

Let X be the real vector space. Then a function o : X — R' is called the

convex modular if it satisfies the following condition:
(1) 0(0) = 0.

(2) o(x) = o(~x), forany x € X.

(3) o(ox +By) < ap(x) + Po(x), for any o, B € R* such that o+ B =1 and
forany x, y € X.

A vector space X, defined by X, = {x € X : o(Bx) < oo, for some B > 0}, is

called the Modular space generated by o. The space X, equipped with the

I x| = inf{ﬁ >0: g(%j < 1},

is the Banach space (see [11]).

Luxemburg norm



10 MARYAM BAJALAN and DARYOUSH BEHMARDI

A function @ : [0, + ] — [0, + o0] is said to be Orlicz function if ¢ is a
nonzero function that is convex, even, vanishing at zero, left continuous on (0, ©)
and continuous at zero. A sequence ¢ = (¢,) of the Orlicz functions is called a

Musielak-Orlicz  function. We suppose that ¢ = (¢,) is the Musielak-Orlicz

o0
function. We say ¢ satisfies the condition (L,), if Z(pn (1) = oo, for all u > 0.

n=1
Also we say ¢ satisfies the A, -condition, if there is k& >0 such that

¢, (2u) < ko, (u), forany u > 0 and forall n € N.

From now on we let p €[l, ©) and the symbol ¢ will denote the Musielak-

Orlicz function (¢,,).

The space ces, (@) = {x € £ : py(Bx) < oo, for some B > 0}, where py(x) is

o0
the convex modular defined by py(x) =Y ¢,(S7(x)), is called the Cesdro-

n=1
Mousielak-Orlicz sequence space. This space endows with the Luxemburg norm

X

x| =inf<p>0: <1y. Banach lattice ces, (p) 1is not always
Pol B p

rearrangement invariant Banach space. We define one closed subspace of ces), (0)

as follows
cesg((p) ={x € ly:py(Bx) < oo, for all B > 0}.
We define the symmetric space A ,(¢) by

A, (@) ={x € £ : 0y(Bx) < 0, for some B > 0},

where g, is the convex modular defined by o,(x)=sup » ¢,(S”(x00c)). We
) 0] n\Pn

G n=1

endow this space with the Luxemburg norm

[ x] = inf{B >0: ‘Q‘P(%j < 1}.

It is easy to check that the modular space A, (¢) is the Banach lattice. Also we
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define one closed subspace of A ,(¢) as follows
A(;(go) ={x € £ 1 0¢(Bx) < o, for all B > 0}.

First, we show that if ¢ satisfies the condition (L), then ces,(¢p) contains
isometric copy of /.. Also we establish that A , (@) is the rearrangement invariant
space. Then property (H) of the space ces p(q)) considered, if ¢ satisfies the A, -
condition. Also it is proved that ces, (@) has the Fatou-Levy property. Finally, we

will give criteria which ces p((p) be the separable and reflexive space.

1. Results

Lemma 1.1. The following assertions are equivalent:
(1) ces,(9) < co.
(2) ces,(¢) < o and ¢ satisfies the condition (L,).

Proof. Assume that ¢ does not satisfy the condition (L,). Hence there exists

o 1 1
u >0 such that Z(pn(u)<oo. Put x =|u?,u”,.--|. We have x e ces,(¢).

n=1

Then u = 0, a contradiction.

Assume that x = (x,) € ces,(9)\cy. We have x" € l,. Then the sequence
(S”(x")) has the upper bound M > 0. Also there is ny € N such that
®ny (M) >0. We claim that there is B >0 such that p(P(Bx*) < oo, At first,
we suppose that ¢, (M)=c. In this case, there is B>0 that

o0
(p”o(BSZ) (x™)) < ®ny (M). If B 2 1, then we have p(p(x*) < Zgon(M) = oo and if

n=1

o0
B <1, then we have p(p(Bx*) < Z(pn (M)=ow. Now we suppose that

n=1
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@y (M) > 0. Then there is a, b € R* such that M e [a, b] and the function Pn,
is strictly increasing in the interval [a, b]. Therefore, ¢, (BS :0 (x")) < ®ny (BM).

Then p, (BSY (x™)) < oo. We know x* & ¢;. Thus there are & > 0 and subsequence

*

g > g, for all k£ € N. Therefore, x: >¢g, forall n € N. Then

(x, . ) such that x
e8]
we have Z 0,Be) < p(p(Bx*) < o, a contradiction. O
n=1
Similar to Lemma 1.1, we can prove Lemma 1.2.

Lemma 1.2. The following assertions are equivalent:

(1) Ap(e) < <.

(2) ¢ satisfies the condition (L,).

In Lemma 1.3 and Theorem 1.7, we will assume that ces ,(¢) < /.

Lemma 1.3. ¢ satisfies the condition (L,) if and only if ilrlzf 0, ) >0, for all

u > 0.

Proof. If there is u > 0 such that inf @,(u) = 0, then inf ¢, (¢;) = 0, for all
n n
t; <u such that (f) ¢ cy. So for any ieN, there is n; € N such that
O, (t) < Ll We define the sequence x = (x,,) such that if n = n;, n;, x, =0
2

and if n=mn, x,=ny; ad if n=mn,, x,=-n,. We have

1 0 n=#n, & |
S,(x) = ) ., So Z(pn (S,(x)) < . Therefore, x e ces|(¢). Then

i i n=l1

X € ¢, a contradiction.

The inverse is clear. 0
Lemma 1.4. The following assertions are equivalent:

(1) The spaces A (@) and (, are isomorphic.

(2) ¢ does not satisfy the condition (L,).
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Proof. Assume there is x € /,,\A ,(9). By assertion (2), there exists u > 0

such that Z ¢, (u) < . If M is the upper bound of x, then we get Q@(% x) < oo,

n=1

a contradiction. Therefore, (o, = A (o).

Now assume ¢ >0 is fixed and |x|, <& Thus Q(P(EJS&P(I)‘ If

0p(1) <1, then || x || < 2&. If 9,(1) > 1, then put ¢ = max{l, g, (1)}. So | x|| < ce.
Therefore, the Identity map Id : (A, (¢), ||-[) > (Y« [|-]l,) is continuous. By the
Open Mapping theorem, /d is an isomorphism.

By Lemma 1.2, the inverse is clear. 0

Lemma 1.5. Suppose that ¢ is a convex modular on X,, x € X, and (x,,) is
a sequence in X,. Then || x,, — x| — 0 if and only if o(Mx,, — x)) = 0, for all
A > 0.

Proof. See [11, Theorems 1-6]. O

Lemma 1.6. If x = (x,) € (o and |x,, |2 infsup|x, |, for allm e N, then
k nxk

there are Ny < N and the bijection map & : Ny — N such that x* =|x |0 8.

Proof. See [4]. O

Theorem 1.7. A, () is the rearrangement invariant Banach space.

Proof. Let x € A,(p) and p, =p,. Assume that ¢ does not satisfy the

condition (L,). Because [/, is the rearrangement invariant space, by our

assumption, we get y € /. We know there are ¢y, ¢c; > 0 such that
al 2l <l x Iyl < eall [l
We have gq)(k(” yI-=lx|[)) =0, forany A > 0. So || x| =] x|

Now assume ¢ satisfies the condition (L,). Then there is n € N such that the

equality @, (u) = 0 implies u = 0. Therefore, there exists a € (0, ) such that o,
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is monotone increasing on [0, a]. Since y € ¢, it has the upper bound M. We can

choose B >0 such that BM? <a. We get supo,(BS?(yo0)) < ¢,(a). We

G

o0
obtain o, (By) < Z(pn(a) =oo. Then y € A,(p). Now we proof || x| =] y|. We

n=1

have x, y € ¢yp. Then there are N, N, < N and the bijection map ; : Ny > N

and &, : Ny = N such that |x|o8; =|y|8,. If we have |x,, | < x, for any

neN, then |x,|=0. Because if |x,|>0, then there is 7y € N such that

|x, | <|x,| forany ¢2>¢. So there is n; € N; such that x,

*
m <%, for all

n eN, a contradiction. Similarly, if we have |y, | < y,, for all m e N, then

| i | = 0. Therefore, g4(x) = 04(») and this completes the proof. 0

Lemma 1.8. Let x, y € ces,(0) and (x,,) be the sequence in ces (). Then

the following assertions are true:

(D If0<a<], then ap(p(%) < py(X).

1 X
(2)If a = 1, then EP‘P(X) < pq,(g).
() po(x + ) < pe(x) + pyu(¥).
A If0<a<], then || x| > a implies py(x) > a.
() If a 21, then | x|| < a implies p,(x) < a.

() If lim | x,, || =1, then lim py(x,,)=1.
m—>o0 m—

(M) If lim py(x,,) =0, then lim | x,, | = 0.
m—»w m—>0

Proof. We define the function f(B) = p(p(%j on R*. If ap(p(%) > pg(x),

thena f(a) > f (1). Also we know f(1) > f(a).Soa f(a) > f(a), a contradiction.

(2) follows similarly. (3) follows by (1). If || x| > a, then p(p(gj >1. So (4)
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follows from (1). (5) is similar to (4). Suppose that € € (0, 1) is arbitrary. Then there

is my € N such that 1 —& <[ x,, || <1+, forany m > mj. Then 1-g < py(x,,)

<l+eg, thatis lim p,(x,) = 1. (7) follows similarly (6). O
m—»o0

Lemma 1.9. If ¢ satisfies the A, -condition, then the following assertions are

true:

(1) ces,(0) = cesy (o).

(2) For any x € ces,(¢), we have | x || =1 if and only if p,(x) = 1.

Proof. (1) Suppose x € ces,(¢). Then there is B > 0 which p,(Bx) < . We
give an arbitrary real number p > 0. If p <3, then p(p(px) < oo. If u>p, then
there exists » > 0 such that p < 2"B. Let k be as in the definition of the A, -
condition. We have py,(ir) < k"py(Bx) < 0. So x € cesg((p).

(2) We need only to show that | x| =1 implies p,(x)=1, because the
opposite implication holds in any modular space. Suppose that p(p(x) <1. We

define the function f(B) = p,,(Bx) on R*. The function fis infinite and convex. So
it is continuous. Note that there is By > 1 such that p,(Box) > 1. Then we have

S(1) <1< f(Bg)- So there is & € (I, By) that p,(Ax) = 1. Therefore, | x| <1, a

contradiction. O

Lemma 1.10. Let ¢ satisfy the A, -condition, x be a point of the unit sphere

ces (@) and (x,,) is a sequence in the unit sphere ces,(¢) such that x,, —> x

coordinatewise. If  lim py(x,,) = py(x), then lim x,, = x.
m-—>0 m-—>

Proof. Let € > 0, t € N be an arbitrary number and £ be as in the definition of

A, -condition. We have SP(x, —x) — 0. Then there is My € N such that

> 0ul(SF (o —x)) < 5
n=1



16 MARYAM BAJALAN and DARYOUSH BEHMARDI

Since py(x,,) = py(x), thereis Ny € N such that

an(sp () - Z@n (SF (on)) < ==

n=1 n=I

Also there is By € N such that py(x,,) < py(x) + —— ”: , forany m > B,. Also
8

we can find ¢y € N such that Z (pn(Sp(x))<T Put mq =max{M, Ny, Py }.

n=i t0+1

So for any m > mg, we obtain

0

Polin =¥) <5+ D 0,(| S (5 =) )

n=f +1

<Z+ Z Q271 SF (o) |+ SP@) D)

s§+kp S 0u(sE) s Y 0nlSElm)
| n=to+1 n=ty+1

<Eikr p(p(x)—i-——Z(Pn (5P () + Z 9a(SF (x))
n=ty+1

<§+kﬂ NE: )+——Z<pn<sp(x>)+ Z 0 (SF (x)

n=ty+1
<frwr| L tols
20 L4kl ak?
So we have p,(x,, — x) — 0. Therefore, x,, —x —> 0 0

Theorem 1.11. If ¢ satisfies the A, -condition, then space ces,(¢) has the
property (H).
Proof. Assume that x is a point of the unit sphere ces,(9) and (x,) is a

sequence in the unit sphere ces,(¢) such that (x,,) is weak convergence to x. By
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w
X,; = x, we get x,,(n) > x(n) as m — oo, for all n € N. Now, by Lemma 1.10,

we have || x,, — x| — 0.

Corollary 1.12. If ¢ satisfies the A, -condition, then the unit ball ces,(¢) is
weakly closed.

Theorem 1.13. The space ces ,(9) has the Fatou-Levy property.

Proof. Suppose that x € £y and (x,,) is a sequence in ces,(¢) such that

0 < x,, Tx and sup| x,, | < . Put 4 = sup| x,, |. Let m be fixed. Then we have

m m

Sp( )<Sp( j forany n € N. So
T |

CICSIENACIF

1))

Therefore,

;%(S,f[%m)j <1, VmeN. (1.1)

Since x, — x, we have S”( jTSp( j Hence lim (p,,(S,’f(%”D =

m—>0

0, (S,f (%D By using Monotone convergence theorem, we get

i 3ot = Zou52(3)

Now, by equation (1.1), we have x € ces,(¢).

We suppose | x,, | does not convergent to | x|. Then there are € >0 and

subsequence (x,, );_; suchthat || x,, | -] x||> ¢, forall n € N. Sowe have

X X
SPl Mk || < sP| k1<, 1.2
"’"[ "[nxn—eD < ‘”n[ "(n ||D ) (1.2)
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for any k& € N. Also, by Monotone convergence theorem, we have

o0 X o0
o Z"’"(S" (—n - D o3t =)}
n=1 n=1
Then, by equation (1.2), we get | x || < || x| — €, a contradiction. O
Theorem 1.14. If one of the following conditions satisfies:
(1) there is x1, x, > 0 such that x| # x, and ¢,(x;) = x|, ¢0,(x2) = x5, for
all n e N,
(2) o, is differentiable in the point zero and ¢,,(0) 2 1, forall n € N,

then the space ces, () is separable and reflexive.

Proof. In two cases we claim that ¢,(x) > x, for any x € R and for all
n e N. If x € [-o, 0), then it holds. So we suppose that x € [0, o]. Let condition
(1) hold. Without loss of generality, we can assume that x; < x,. We claim that
¢,(x) > x, for any x >0 and for all n € N. Assume that there are x3 > 0 and
neN such that ¢, (x3)<x3. If x3>x >0, then there is A e (0,1) as
x; = Axz. Hence, Ax3 = @,(x]) < A, (x3) < Ax3, a contradiction. And if x5 < xi,

then by convexity ¢,,, we have

0n(4) = 0n(x3) _ @n(¥2) = @u(x) _ |
X1 — X3 B X2 — X

Therefore, ¢, (x3) = x3 which is impossible. Now let condition (2) hold. Assume

that there are uy > 0 and n € N such that @, (uy) < ug. We have

sup inf @) _ 0,(0)>1> M
§>00<u<d U Up

Then we can find & > 0 that forany 0 < u < 9,

(Pn(”)_(Pn(uO) > (Pn(u())' (1.3)
U —ugy Ug
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Define the function f(u) = @,(u) — u on R. This function has at least one root

u in interval (u, uy). We get

(Pn(uO) > Py (”O) ) (ul) So by equation (1.3)
MO - ' o

Uy — Uy

we have

(Pn(”)_(Pn(MO) S (Pn(MO)_(Pn(”l)
U — Uy Uy — U

E)

a contradiction.

o0
So in two cases, we have ZB(S,fx)Sp(p(px), for any x e ces,(¢p) and for

n=1

any B> 0. Therefore, ces,(¢) < ces,. Thus ces,(¢) is the separable and

.
reflexive space. 0

Lemma 1.15. Suppose that X is the Banach lattice. Then the following
assertions are equivalent:

(1) X is the reflexive space.

(2) X has the Fatou-Levy property and on By, pointwise convergence topology

and weak topology are coincide.
Proof. See [2, Lemma 2]. O

Corollary 1.16. If two conditions of the before theorem hold, then pointwise

convergence topology and weak topology are coincide on the unit ball ces, ().

Remark 1.17. We can prove similarly all theorems and lemmas for the space
A, (o).
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