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Abstract 

In this paper, we define a subspace ( )ϕΛ p  of the Cesáro-Musielak-Orlicz 

sequence space ( )ϕpces  and show that ( )ϕΛ p  is the rearrangement 

invariant Banach space. Also, we show that ( )ϕpces  has the property 

(H), whenever the Musielak-Orlicz function ϕ satisfies the 2Δ -condition. 

It is also proved that ( )ϕpces  has the Fatou-Levy property. Finally, we 

give the necessary condition such that ( )ϕpces  is the separable and 

reflexive space. 

0. Preliminaries 

For all notations and terms, we refer to [3], [5] and [13]. We denote ,N  R  and 
+R  for the sets of the natural, real and nonnegative real numbers, respectively. A 

bijection map σ on N  is called a permutation. If ( )⋅,X  is a norm space, then the 

set { }1: ≤∈= xXxBX  denotes the unit ball of ( )⋅,X  and the set 
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{ }1: =∈= xXxSX  denotes the unit sphere of ( )., ⋅X  By ( ),,2, mNN  we 

denote the counting measure space. Let 0  be the space of all real sequences. For 

every ,)( 0∈= nxx  we write ( ).nxx =  Also we write ,yx ≤  if 

nn yx ≤  for all N∈n  and define distribution function [ )∞µ ,0:x   

{ }∞→ ,0∪N  by ( ) { }λ>∈=λµ nx xNnm :  and define decreasing 

rearrangement ( )∗∗ = nxx  with ( ){ }.:0inf nx xn <λµ>λ=∗  We refer to [5] to see 

( )
.supinf

\
i

JinJm
n xx

N∈<

∗ =  The sequences 0, ∈yx  is called equimeasurable, if 

yx µ=µ  on .+R  Let ( )⋅,X  denote a sequential Banach space. The space 

( )⋅,X  is said symmetric, if for any Xx ∈  and for any arbitrary permutation 

., Xx ∈σσ  The unit ball of each symmetric space contains x if and only if 

contains ,σx  for any arbitrary permutation .σ  If X is a symmetric space, then 

∞⊆⊆ X1  (see [6]). The space ( )⋅,X  is called Banach lattice, if it satisfies 

the following two conditions: 

(1) If 0, ∈∈ yXx  and ,xy ≤  then Xy ∈  and .xy ≤  

(2) There is Xx ∈  such that ,0>nx  for all .N∈n  

Also the space ( )⋅,X  is called rearrangement invariant Banach space, if it 

satisfies the following condition: 

(1) If 0, ∈∈ yXx  and ,xy µ=µ  then Xy ∈  and .xy =  

It is clear that, ( )⋅,X  is a rearrangement invariant Banach lattice if and only 

if it satisfies the following condition: 

(1) If 0, ∈∈ yXx  and ,∗∗ ≤ xy  then Xy ∈  and .xy ≤  

Every rearrangement invariant sequence space is the symmetric space. If E is a 

subset of the rearrangement invariant Banach lattice X, then XE  is also the 
rearrangement invariant Banach lattice (see [9, Lemma 4.4]). The rearrangement 
invariant Banach lattice is useful in study the Interpolation theory (see [1, 9]). 

The space ( )⋅,X  is said to have the property (H) (or kadec norm), if weak 

and norm convergence coincide, for any sequence on the unit sphere X. If ( )⋅,X  
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has property (H), then the Identity map ( ( )) ( )⋅→σ ∗ ,,,: XXXXId  is 

continuous. Also XB  is weakly closed (see [12, Proposition 4]). 

The space ( )⋅,X  has the Fatou-Levy property, if ( )mx  is a sequence in X 

such that ∞<m
m

xsup  and ,0 xxm ↑≤  then Xx ∈  and .xxm →  

Let [ ).,1 ∞∈p  For any ( ) ,0∈= nxx  we denote ( ) .1

1

pn

i
i

p
n x

n
xS 










= ∑

=
 A 

vector space ,pces  defined by 

( )












∞<∈= ∑
∞

=1
0 :

n

p
np xSxces  

and equipped with the norm ( ) ,

1

1

p

n

p
nces xSx

p 









= ∑

∞

=
 is called the Cesáro 

sequence space. It is known { }.01 =ces  Also it is known pces  is reflexive and 

separable Banach space and it contains p  space, for any ( )∞∈ ,1p  (see [7, 10]). 

This space has property (H), for any [ )∞∈ ,1p  (see [13]). The Cesáro sequence 

space is useful in study the Matrix theory (see [8]). 

Let X be the real vector space. Then a function +→ RX:  is called the 
convex modular if it satisfies the following condition: 

(1) ( ) .00 =  

(2) ( ) ( ),xx −=  for any .Xx ∈  

(3) ( ) ( ) ( ),xxyx β+α≤β+α  for any +∈βα R,  such that 1=β+α  and 
for any ., Xyx ∈  

A vector space X  defined by ( ){ },0somefor,: >β∞<β∈= xXxX  is 

called the Modular space generated by .  The space X  equipped with the 

Luxemburg norm 

,1:0inf




 ≤






β

>β= xx  

is the Banach space (see [11]). 
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A function [ ] [ ]∞+→∞+−∞ϕ ,0,:  is said to be Orlicz function if ϕ is a 

nonzero function that is convex, even, vanishing at zero, left continuous on ( )∞,0  

and continuous at zero. A sequence ( )nϕ=ϕ  of the Orlicz functions is called a 

Musielak-Orlicz function. We suppose that ( )nϕ=ϕ  is the Musielak-Orlicz 

function. We say ϕ satisfies the condition ( ),2L  if ( ) ,
1
∑
∞

=
∞=ϕ

n
n u  for all .0>u  

Also we say ϕ satisfies the 2∆ -condition, if there is 0>k  such that 

( ) ( ),2 uku nn ϕ≤ϕ  for any 0≥u  and for all .N∈n  

From now on we let [ )∞∈ ,1p  and the symbol ϕ will denote the Musielak-

Orlicz function ( ).nϕ   

The space ( ) { ( ) },0somefor,:0 >β∞<βρ∈=ϕ ϕ xxcesp  where ( )xϕρ  is 

the convex modular defined by ( ) ( ( ))∑
∞

=
ϕ ϕ=ρ

1
,

n

p
nn xSx  is called the Cesáro-

Musielak-Orlicz sequence space. This space endows with the Luxemburg norm 

.1:0inf




 ≤






β

ρ>β= ϕ
xx  Banach lattice ( )ϕpces  is not always 

rearrangement invariant Banach space. We define one closed subspace of ( )ϕpces  

as follows 

( ) { ( ) }.0allfor,:0
0 >β∞<βρ∈=ϕ ϕ xxcesp  

We define the symmetric space ( )ϕΛ p  by 

( ) { ( ) },0somefor,:0 >β∞<β∈=ϕΛ ϕ xxp  

where ϕ  is the convex modular defined by ( ) ( ( ))∑
∞

=σ
ϕ σϕ=

1
.sup

n

p
nn xSx  We 

endow this space with the Luxemburg norm 

.1:0inf




 ≤






β

>β= ϕ
xx  

It is easy to check that the modular space ( )ϕΛ p  is the Banach lattice. Also we 
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define one closed subspace of ( )ϕΛ p  as follows 

( ) { ( ) }.0allfor,:0
0 >β∞<β∈=ϕΛ ϕ xxp  

First, we show that if ϕ satisfies the condition ( ),2L  then ( )ϕpces  contains 

isometric copy of .∞  Also we establish that ( )ϕΛ p  is the rearrangement invariant 

space. Then property (H) of the space ( )ϕpces  considered, if ϕ satisfies the 2∆ -

condition. Also it is proved that ( )ϕpces  has the Fatou-Levy property. Finally, we 

will give criteria which ( )ϕpces  be the separable and reflexive space. 

1. Results 

Lemma 1.1. The following assertions are equivalent: 

(1) ( ) .0ccesp ⊆ϕ  

(2) ( ) ∞⊆ϕpces  and ϕ satisfies the condition ( ).2L  

Proof. Assume that ϕ  does not satisfy the condition ( ).2L  Hence there exists 

0>u  such that ( )∑
∞

=
∞<ϕ

1
.

n
n u  Put .,,

11














= pp uux  We have ( ).ϕ∈ pcesx  

Then ,0=u  a contradiction. 

Assume that ( ) ( ) .\ 0ccesxx pn ϕ∈=  We have .∞
∗ ∈x  Then the sequence 

( ( ))∗xS p
n  has the upper bound .0>M  Also there is N∈0n  such that 

( ) .00 >ϕ Mn  We claim that there is 0>β  such that ( ) .∞<βρ ∗
ϕ x  At first,           

we suppose that ( ) .0 ∞=ϕ Mn  In this case, there is 0>β  that 

( ( )) ( ).000 MxS n
p
nn ϕ<βϕ ∗  If ,1≥β  then we have ( ) ( )∑

∞

=

∗
ϕ ∞=ϕ<ρ

1n
n Mx  and if 

,1<β  then we have ( ) ( )∑
∞

=

∗
ϕ ∞=ϕ<βρ

1
.

n
n Mx  Now we suppose that 
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( ) .00 >ϕ Mn  Then there is +∈ Rba,  such that [ ]baM ,∈  and the function 0nϕ  

is strictly increasing in the interval [ ]., ba  Therefore, ( ( )) ( ).000 MxS n
p
nn βϕ<βϕ ∗  

Then ( ( )) .∞<βρ ∗
ϕ xS p

n  We know .0cx ∉∗  Thus there are 0>ε  and subsequence 

( )∗
knx  such that ,ε≥∗

knx  for all .N∈k  Therefore, ,ε≥∗
nx  for all .N∈n  Then 

we have ( ) ( )∑
∞

=

∗
ϕ ∞<βρ≤βεϕ

1
,

n
n x  a contradiction.  � 

Similar to Lemma 1.1, we can prove Lemma 1.2. 

Lemma 1.2. The following assertions are equivalent: 

(1) ( ) .0cp ⊆ϕΛ  

(2) ϕ satisfies the condition ( ).2L  

In Lemma 1.3 and Theorem 1.7, we will assume that ( ) .∞⊆ϕpces  

Lemma 1.3. ϕ satisfies the condition ( )2L  if and only if ( ) ,0inf >ϕ un
n

 for all 

.0>u  

Proof. If there is 0>u  such that ( ) ,0inf =ϕ un
n

 then ( ) ,0inf =ϕ in
n

t  for all 

uti ≤  such that ( ) .0cti ∉  So for any ,N∈i  there is N∈in  such that 

( ) .
2
1
iin ti <ϕ  We define the sequence ( )nxx =  such that if 0,, 1 =≠ + nii xnnn  

and if ,inn =  in ntx =  and if ,1+= inn  .in ntx −=  We have 

( )




=
≠

=
.
,01

ii

i
n nnt

nn
xS  So ( ( ))∑

∞

=
∞<ϕ

1

1 .
n

nn xS  Therefore, ( ).1 ϕ∈ cesx  Then 

,0cx ∈ a contradiction. 

The inverse is clear. � 

Lemma 1.4. The following assertions are equivalent: 

(1) The spaces ( )ϕΛ p  and ∞  are isomorphic. 

(2) ϕ does not satisfy the condition ( ).2L  
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Proof. Assume there is ( ).\ ϕΛ∈ ∞ px  By assertion (2), there exists 0>u  

such that ( )∑
∞

=
∞<ϕ

1
.

n
n u  If M is the upper bound of x, then we get ,∞<







ϕ xM
u  

a contradiction. Therefore, ( ).ϕΛ=∞ p  

Now assume 0>ε  is fixed and .ε<∞x  Thus ( ).1ϕϕ ≤





ε
x  If 

( ) ,11 ≤ϕ  then .2ε<x  If ( ) ,11 >ϕ  then put { ( )}.1,1max ϕ=c  So .ε< cx  

Therefore, the Identity map ( ( ) ) ( )∞∞ ⋅→⋅ϕΛ ,,: pId  is continuous. By the 

Open Mapping theorem, Id is an isomorphism. 

By Lemma 1.2, the inverse is clear. � 

Lemma 1.5. Suppose that  is a convex modular on XxX ∈,  and ( )mx  is  

a sequence in .X  Then 0→− xxm  if and only if ( )( ) ,0→−λ xxm  for all 

.0>λ  

Proof. See [11, Theorems 1-6]. � 

Lemma 1.6. If ( ) 0∈= nxx  and ,supinf n
knk

m xx
≥

≥  for all ,N∈m  then 

there are N⊆0N  and the bijection map N→δ 0: N  such that .δ=∗ xx  

Proof. See [4]. � 

Theorem 1.7. ( )ϕΛ p  is the rearrangement invariant Banach space. 

Proof. Let ( )ϕΛ∈ px  and .yx µ=µ  Assume that ϕ does not satisfy the 

condition ( ).2L  Because ∞  is the rearrangement invariant space, by our 

assumption, we get .∞∈y  We know there are 0, 21 >cc  such that 

., 21 ∞∞ ≤≤ xcyxxc  

We have ( )( ) ,0=−λϕ xy  for any .0>λ  So .yx =  

Now assume ϕ satisfies the condition ( ).2L  Then there is N∈n  such that the 

equality ( ) 0=ϕ un  implies .0=u  Therefore, there exists ( )∞∈ ,0a  such that nϕ  
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is monotone increasing on [ ].,0 a  Since ,0cy ∈  it has the upper bound M. We can 

choose 0>β  such that .aM p <β  We get ( ( )) ( ).sup ayS n
p
nn ϕ<σβϕ

σ
 We 

obtain ( ) ( )∑
∞

=
ϕ ∞=ϕ<β

1
.

n
n ay  Then ( ).py pΛ∈  Now we proof .yx =  We 

have ., 0cyx ∈  Then there are N⊆21, NN  and the bijection map N→δ 11 : N  

and N→δ 22 : N  such that .21 δ=δ yx  If we have ∗< nm xx  for any 

,N∈n  then .0=mx  Because if ,0>mx  then there is N∈0t  such that 

,mt xx <  for any .0tt ≥  So there is 11 N∈n  such that ,1
∗∗ < nn xx  for all 

,N∈n  a contradiction. Similarly, if we have ,∗< nm yy  for all ,N∈m  then 

.0=my  Therefore, ( ) ( )yx ϕϕ =  and this completes the proof. � 

Lemma 1.8. Let ( )ϕ∈ pcesyx,  and ( )mx  be the sequence in ( ).ϕpces  Then 

the following assertions are true: 

(1) If ,10 << a  then ( ).xa
xa ϕϕ ρ≤




ρ  

(2) If ,1≥a  then ( ) .1





ρ≤ρ ϕϕ a

xxa  

(3) ( ) ( ) ( ).yxyx ϕϕϕ ρ+ρ≤+ρ  

(4) If ,10 << a  then ax >  implies ( ) .ax >ρϕ  

(5) If  ,1≥a  then ax <  implies ( ) .ax <ρϕ  

(6) If ,1lim =
∞→

m
m

x  then ( ) .1lim =ρϕ
∞→

m
m

x  

(7) If ( ) ,0lim =ρϕ
∞→

m
m

x  then .0lim =
∞→

m
m

x  

Proof. We define the function ( ) 





β

ρ=β ϕ
xf  on .+R  If ( ),xa

xa ϕϕ ρ>




ρ  

then ( ) fafa >  (1). Also we know ( ) ( ).1 aff ≥ So ( ) ( ),afafa >  a contradiction. 

(2) follows similarly. (3) follows by (1). If ,ax >  then .1>




ρϕ a

x  So (4) 
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follows from (1). (5) is similar to (4). Suppose that ( )1,0∈ε  is arbitrary. Then there 

is N∈0m  such that ,11 ε+<<ε− mx  for any .0mm ≥  Then ( )mxϕρ<ε−1  

,1 ε+<  that is ( ) .1lim =ρϕ
∞→

m
m

x  (7) follows similarly (6). � 

Lemma 1.9. If ϕ satisfies the 2∆ -condition, then the following assertions are 

true: 

(1) ( ) ( ).0 ϕ=ϕ pp cesces  

(2) For any ( ),ϕ∈ pcesx  we have 1=x  if and only if ( ) .1=ρϕ x  

Proof. (1) Suppose ( ).ϕ∈ pcesx  Then there is 0>β  which ( ) .∞<βρϕ x  We 

give an arbitrary real number .0>µ  If ,β≤µ  then ( ) .∞<µρϕ x  If ,β>µ  then 

there exists 0>r  such that .2 β≤µ r  Let k be as in the definition of the 2∆ -

condition. We have ( ) ( ) .∞<βρ≤µρ ϕϕ xkx r  So ( ).0 ϕ∈ pcesx  

(2) We need only to show that 1=x  implies ( ) ,1=ρϕ x  because the 

opposite implication holds in any modular space. Suppose that ( ) .1<ρϕ x  We 

define the function ( ) ( )xf βρ=β ϕ  on .+R  The function f is infinite and convex. So 

it is continuous. Note that there is 10 >β  such that ( ) .10 >βρϕ x  Then we have 

( ) ( ).11 0β<< ff  So there is ( )0,1 β∈λ  that ( ) .1=λρϕ x  Therefore, ,1<x  a 

contradiction.  

Lemma 1.10. Let ϕ satisfy the 2∆ -condition, x be a point of the unit sphere 

( )ϕpces  and ( )mx  is a sequence in the unit sphere ( )ϕpces  such that xxm →  

coordinatewise. If  ( ) ( ),lim xxm
m

ϕϕ
∞→

ρ=ρ  then .lim xxm
m

=
∞→

 

Proof. Let ,0>ε N∈t  be an arbitrary number and k be as in the definition of 

2∆ -condition. We have ( ) .0→− xxS m
p
n  Then there is N∈0M  such that 

( ( ))∑
=

ε<−ϕ
t

n
m

p
nn xxS

1
.

2
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Since ( ) ( ),xxm ϕϕ ρ→ρ  there is N∈0N  such that 

( ( )) ( ( ))∑ ∑
= =

ε<ϕ−ϕ
t

n

t

n
pm

p
nn

p
nn

k
xSxS

1 1

.
8

 

Also there is N∈0P  such that ( ) ( ) ,
8 pm
k

xx ε+ρ≤ρ ϕϕ  for any .0Pm ≥  Also 

we can find N∈0t  such that ( ( ))∑
∞

+=

ε<ϕ
10

.
8tn

p
p
nn

k
xS  Put { }.,,max 0000 PNMm =  

So for any ,0mm ≥  we obtain 

( ) ( ( ) )∑
∞

+=
ϕ −ϕ+ε<−ρ

10
2

tn
m

p
nnm xxSxx  

( [ ( ) ( ) ])∑
∞

+=

+ϕ+ε≤
10

22
tn

p
nm

p
n

p
n xSxS  

( ( )) ( ( ))













ϕ+ϕ+ε≤ ∑ ∑

∞

+=

∞

+=1 10 0
2

tn tn
m

p
nnm

p
nn

p xSxSk  

( ) ( ( )) ( ( ))













ϕ+ϕ−ε+ρ+ε< ∑ ∑

=

∞

+=
ϕ

0

01 182

t

n tn

p
nnm

p
nnp

p xSxS
k

xk  

( ) ( ( )) ( ( ))













ϕ+ϕ−ε+ρ+ε< ∑ ∑

=

∞

+=
ϕ

0

01 142

t

n tn

p
nn

p
nnp

p xSxS
k

xk  

.
442 ε=



 ε+ε+ε< pp

p

kk
k  

So we have ( ) .0→−ρϕ xxm  Therefore, 0→− xxm  � 

Theorem 1.11. If ϕ satisfies the 2∆ -condition, then space ( )ϕpces  has the 

property (H). 

Proof. Assume that x is a point of the unit sphere ( )ϕpces  and ( )mx  is a 

sequence in the unit sphere ( )ϕpces  such that ( )mx  is weak convergence to x. By 
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,xx
w

m →  we get ( ) ( )nxnxm →  as ,∞→m  for all .N∈n  Now, by Lemma 1.10, 

we have .0→− xxm  

Corollary 1.12. If ϕ satisfies the 2∆ -condition, then the unit ball ( )ϕpces  is 

weakly closed. 

Theorem 1.13. The space ( )ϕpces  has the Fatou-Levy property. 

Proof. Suppose that 0∈x  and ( )mx  is a sequence in ( )ϕpces  such that 

xxm ↑≤0  and .sup ∞<m
m

x  Put .sup m
m

xA =  Let m be fixed. Then we have 

,





≤







m
mp

n
mp

n x
xSA

xS  for any .N∈n  So 

∑ ∑
∞

=

∞

=















ϕ≤





 





ϕ

1 1

.
n n m

p
nn

mp
nn x

xSA
xS  

Therefore, 

∑
∞

=

∈∀≤













ϕ

1

.,1
n

mp
nn m

A
x

S N  (1.1) 

Since ,xxm →  we have .




↑







A
xSA

xS p
n

mp
n  Hence =





 





ϕ

∞→ A
xS mp

nn
m
lim  

.




 





ϕ A

xS p
nn  By using Monotone convergence theorem, we get 

∑ ∑
∞

=

∞

=
∞→






 





ϕ=





 





ϕ

1 1

.lim
n n

p
nn

mp
nn

m A
xSA

xS  

Now, by equation (1.1), we have ( ).ϕ∈ pcesx  

We suppose mx  does not convergent to .x  Then there are 0>ε  and 

subsequence ( )∞=1kmkx  such that ,ε>− xx km  for all .N∈n  So we have 

,1≤















ϕ≤
















ε−

ϕ
k

kk

m

mp
nn

mp
nn x

x
Sx

x
S  (1.2) 
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for any .N∈k  Also, by Monotone convergence theorem, we have 

∑ ∑
∞

=

∞

=
∞→






 







ε−
ϕ=
















ε−

ϕ
1 1

.lim
n n

p
nn

mp
nn

m x
xSx

x
S k  

Then, by equation (1.2), we get ,ε−≤ xx  a contradiction. � 

Theorem 1.14. If one of the following conditions satisfies: 

(1) there is 0, 21 >xx  such that 21 xx ≠  and ( ) ,11 xxn =ϕ  ( ) ,22 xxn =ϕ  for 

all ,N∈n  

(2) nϕ  is differentiable in the point zero and ( ) ,10 ≥ϕ′n  for all ,N∈n   

then the space ( )ϕpces  is separable and reflexive. 

Proof. In two cases we claim that ( ) ,xxn ≥ϕ  for any R∈x  and for all 

.N∈n  If [ ),0,∞−∈x  then it holds. So we suppose that [ ].,0 ∞∈x  Let condition 

(1) hold. Without loss of generality, we can assume that .21 xx <  We claim that 

( ) ,xxn ≥ϕ  for any 0≥x  and for all .N∈n  Assume that there are 03 >x  and 

N∈n  such that ( ) .33 xxn <ϕ  If ,013 >> xx  then there is ( )1,0∈λ  as 

.31 xx λ=  Hence, ( ) ( ) ,3313 xxxx nn λ<λϕ≤ϕ=λ  a contradiction. And if ,13 xx <  

then by convexity ,nϕ  we have 

( ) ( ) ( ) ( ) .1
12

12

31

31 =
−
ϕ−ϕ

≤
−
ϕ−ϕ

xx
xx

xx
xx nnnn  

Therefore, ( ) 33 xxn ≥ϕ  which is impossible. Now let condition (2) hold. Assume 

that there are 00 >u  and N∈n  such that ( ) .00 uun <ϕ  We have 

( ) ( ) ( ) .10infsup
0

0
00 u

u
u

u n
n

n
u

ϕ
>≥ϕ′=

ϕ
δ<<>δ

 

Then we can find 0>δ  that for any ,0 δ<< u  

( ) ( ) ( )
.

0

0

0

0
u

u
uu

uu nnn ϕ
>

−
ϕ−ϕ

 (1.3) 
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Define the function ( ) ( ) uuuf n −ϕ=  on .R  This function has at least one root 

1u  in interval ( )., 0uu  We get ( ) ( ) ( ) .
10

10
0

0
uu

uu
u

u nnn
−
ϕ−ϕ

≥
ϕ  So by equation (1.3), 

we have 

( ) ( ) ( ) ( ) ,
10

10
0

0
uu

uu
uu

uu nnnn
−
ϕ−ϕ

>
−
ϕ−ϕ  

a contradiction. 

So in two cases, we have ( ) ( )∑
∞

=
ϕ ρρ≤β

1
,

n
x

p
n xS  for any ( )ϕ∈ pcesx  and for 

any .0>β  Therefore, ( ) .pp cesces ⊆ϕ  Thus ( )ϕpces  is the separable and 

reflexive space. � 

Lemma 1.15. Suppose that X is the Banach lattice. Then the following 
assertions are equivalent: 

(1) X is the reflexive space. 

(2) X has the Fatou-Levy property and on ,XB  pointwise convergence topology 

and weak topology are coincide. 

Proof. See [2, Lemma 2]. � 

Corollary 1.16. If two conditions of the before theorem hold, then pointwise 
convergence topology and weak topology are coincide on the unit ball ( )ϕpces . 

Remark 1.17. We can prove similarly all theorems and lemmas for the space 
( ).ϕΛ p  
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