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Abstract 

In this paper, it is shown that the value of the distance between the 

standard Sobolev spaces ( )R2,1W  and ( )R2,2W  is an irrational  
algebraic number. 

1. Introduction 

Sobolev space is de Branges space. Since de Branges space is deeply concerned 
with an operator theory, there is a new approach to Sobolev spaces by operational 

methods of de Branges space. Indeed, the standard Sobolev space ( ) ( )12, ≥mW m R  

in ( )R2L  is isometrically isomorphic to de Branges space ( )mAM  for a positive 

contraction ( ) 2
12

1
2
1

−+++= m
m IA DD  on ( ),2 RL  where 1D  is a differential 

operator .1
dx
d

i  Further, the Fourier type Sobolev space ( ) ( )1≥σ NH NR  is 

isometrically isomorphic to de Branges space ( )σA~M  for the Bessel potential 
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( ) 2
~ σ

−
σ Δ−= IA  on ( )NL R2  with the order .0>σ  Using these operators mA  and 

,~
σA  we can define the metric (we call the ρ-metric) among Sobolev spaces, and 

based on them, we further define the metric (we call the q-metric) among differential 
operators whose domains are Sobolev spaces ([2]). 

The ρ-metric can be defined not only for Sobolev spaces, but also for more 
general situations, the set of all semiclosed subspaces in any Hilbert space H. Thus, 
corresponding to their general cases of the ρ-metric, the q-metric also can be defined 
not only for differential operators, but also for the set ( )HS  of all semiclosed 

operators in H. The set ( )HS  is larger than the set ( )HDC  of all closed and densely 

defined operators in H. That is, ( ) ( ) ( ),HHH BDCS ⊃⊃  where ( )HB  is the set of 

all bounded operators in H. The sums, the products of closed operators are not 
closed in general, but necessarily semiclosed. Therefore, it is significant to consider 
the relations between ( )HDC  and ( ).HS  In this paper [2], it is shown that ( )HDC  

is an open set in ( )HS  with respect to the q-metric. Hence the set ( )HDC  is stable 

to the small perturbation with respect to the q-metric. Moreover, it is shown that 
( )HB  is a connected component in ( )HS  with respect to the same metric. The 

q-metric is so natural in a sense. Because, on ( ),HB  the q-metric coincides with the 

usual metric induced from the operator norm on it. Therefore, it is important to 
handle the ρ-metric which plays a role of the distance between domains of given two 
semiclosed operators. 

In this paper, we focus on the special cases of the ρ-metric for Sobolev spaces 
which are domains of differential operators. Especially, we study the algebraic 

properties of the distance between the standard Sobolev spaces ( )R2,1W  and 

( ).2,2 RW  We shall show that the value of the distance between them is the 

irrational and the algebraic number. 

2. Sobolev Space is de Branges Space 

Let H be an infinite dimensional, complex Hilbert space. We denote by ( )⋅⋅,  the 

original inner product in H and put ( ) .,: 2
1

⋅⋅=⋅  For a linear operator T defined in 

H, denote ( )Tdom  and ( )Tran  by the domain and the range of T, respectively. 
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Throughout this paper, operator means linear operator. Let ( )HB  be the set of all 

bounded operators with their domains H. Then ( )HS B∈  is said to be positive, in 

short ,0≥S  if ( ) 0, ≥uSu  for all .Hu ∈  For a subspace M in H, M is said to be  

semiclosed in H if there exists an inner product ( )M⋅⋅,  on M such that M is a 

complete inner product space with respect to ( )M⋅⋅,  and that the inclusion mapping 

( ) HMJ M →⋅,:  is continuous with respect to the norm M⋅  induced by 

( ) ., M⋅⋅  That is, ,Mucu ≤  Mu ∈  for some .0>c  When the inclusion 

mapping J is continuous, we simply write ( ) .,: HMJ M ⋅  Clearly, any closed 

subspace is semiclosed. A semiclosed subspace is an operator range of some element 
in ( ).HB  For if M is a semiclosed subspace in H, then it is the operator range of the 

positive bounded operator ( ) ,2
1∗JJ  that is, ( ) HJJM 2

1∗=  for the inclusion 

mapping ( ) .,: HMJ M ⋅  Conversely, if M is an operator range for some 

( ),HS B∈  i.e., ,SHM =  then the inner product ( )M⋅⋅,  defined by 

( ) ( ) ( )⊥∈= SvuvuSvSu M ker,,,:,  

gives Hilbert space structures for SHM =  so that ( ) ., HM M ⋅  Therefore, M 

is semiclosed. 

Definition. For ( ),HS B∈  we define the inner product ( )S⋅⋅,  on the operator 

range SH by ( ) ( ) ,,:, uvuSvSu S =  ( ) .ker ⊥∈ Sv  Then ( ( ) )SSH ⋅⋅,,  is a complete 

inner product space, that is, a Hilbert space and ( ( ) ) .,, HSH S ⋅⋅  We call 

( ( ) )SSH ⋅⋅,,  the de Branges space induced by S and denote it by ( ).SM  

A connection between semiclosed subspaces and de Branges spaces is given by 
the next proposition. 

Proposition 2.1 ([1]). Let HM ⊂  be a semiclosed subspace and let M⋅  be 

a Hilbert norm on M such that ( ) .,: HMJ M ⋅  Then there uniquely exists a 

positive bounded operator ( )HA B∈  such that 

( ) ( )AM M M=⋅,  (isometrically isomorphic). 

In this case, A is given by ( ) .02
1
≥∗JJ  
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As an example, let ( )R2: LH =  and ( )mM 1dom: D=  which stands for the 

domain of m
1D  for integers .1≥m  ( ) ( )R2

11 dom:1: Ldx
d

i →= DD  is a (selfadjoint) 

differential operator in a weak derivative sense. Here, a subspace 

( ) { ( ) ( )}RR 2
11

2
1 ...,,::dom LffLf mm ∈∈= DDD  

is a Hilbert space with the standard Hilbert structure 

( ) .: 2
12

1
2

1
2

2, ffff m
W m DD +++=  

Clearly, 

( ( ) ) ( ).,dom 2
1 2, RLmW
m ⋅D  

Therefore, we see that ( )m
1dom D  is a semiclosed subspace in ( )R2L  and we call 

( ) ( ( ) )2,,dom: 1
2,

mW
mmW ⋅= DR  the standard Sobolev spaces with the order m. 

Let the inclusion mapping 

( ) ( ) ( ).1: 22, ≥mLWJ m
m RR   

Then it follows from Proposition 2.1 that there exists a unique positive bounded 

operator ( ) ( )HJJA mmm B∈= ∗ 2
1

 such that ( ) ( )m
m AW M=R2,  in the sense of 

isometrically isomorphic. In this case, we define the real valued function by 

( ( ) ( )) ( ),1,:, 2,2, ≥−=ρ lkAAWW lk
lk RR  

where ⋅  means the operator norm in ( ( )).2 RLB  It is clear that the function ρ is a 

metric among the standard Sobolev spaces. But it is difficult to calculate the distance 

lk AA −  for the form ( ) ( ).2
1

mmm AJJ =∗  

Now on, we construct another form of mA  for available treatment of 

calculations. The next lemma is essentially proved by Kaufman [4]. 

Lemma 2.2. Let T be a closed and densely defined operator in a Hilbert space 

H. Then ( ) ( )HTTI B∈+ −∗ 2
1

 and ( ) ( ) .dom 2
1

HTTIT −∗+=  Further, the graph 

norm of T and de Branges norm of ( ) 2
1−∗+ TTI  are equal, that is, 
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( ( ) ) (( ) )2
1

h,dom −∗+=⋅ TTIT grap M  (isometrically isomorphic). 

Proof. It is shown in [4] that a closed and densely defined operator T in H         

is represented by a quotient ( )2
1

BBIBT ∗−=  for a unique pure contraction 

( ( ) )2
1−∗+= TTITB  such that ( ) ( ) HBBIT 2

1
dom ∗−=  and ( ) .ran BHT =  

In general, under the kernel condition FE kerker ⊆  for ( ),, HFE B∈  a 

mapping FuEu →  for Hu ∈  is called a quotient of bounded operators E and F. 

We denote it by .EF  Since ( ) ( ) ,2
1

2
1

BBITTI ∗−∗ −=+  we see that ( ) =Tdom  

( ) .2
1

HTTI −∗+  Hence it is sufficient to show that the norm condition =⋅ graph  

( ) .2
1−∗+⋅ TTI  For any ( )Tf dom∈  and ( ) ,2

1
uBBIf ∗−=  ,Hu ∈  

( ) 22
1222

graph : BuuBBITfff +−=+= ∗  

( )
( ) ( )

.222
12

2
1

2
1 −∗∗ +−

∗ =−==
TTIBBI

fuBBIu  � 

To apply Lemma 2.2, we remark that the standard Sobolev norm ( )R2,mW⋅  is 

a graph norm of some differential operator. Now we explain this. For 

( ),2, RmWf ∈  

( )
2

1
2

1
22

2, ffff m
W m DD +++=

R
 

( ) 22
12

1
2
1

2 ff mDD +++=  

( ( ) ).ofnormgraphthe 2
12

1
2
1

2
graph

mf DD ++=  

Hence the standard Sobolev norm is equal to the graph norm of ( ) ,2
12

1
2
1

mDD ++  

( ) .graph2, ⋅=⋅ RmW  Let T in Lemma 2.2 be .
2
1

1
2
1 ⎟

⎠
⎞

⎜
⎝
⎛∑ =

m
k

kD  Then, since =T  
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2
1

1
2
1 ⎟

⎠
⎞

⎜
⎝
⎛∑ =

m
k

kD  is closed (in fact, selfadjoint) operator with the domain ( )m
1 dom D  

which is dense in ( ),2 RL  it follows from Lemma 2.2 that 

( ( ) ) ( ) (( ) )2
12

1
2
1

2,
graph,dom −+++==⋅ mm IWT DDMR  

in a sense of isometrically isomorphic. Thus, by the uniqueness condition of 
positivity in Proposition 2.1, we have 

Proposition 2.3 ([2, Lemma 3.2]). Let ( ) ( )12, ≥mW m R  be the standard 

Sobolev spaces ( ( ) ( )).: 22, RR LWJ m
m   Then there exists a unique positive 

bounded operator ( )HAm B∈  such that ( )R2,mW  is isometrically isomorphic to 

de Branges space ( )mAM  for 

 ( ) ( ) .02
12

1
2
12

1
≥+++== −∗ m

mmm IJJA DD  (2.1) 

3. The Metric Calculations for ( )R2,1W  and ( )R2,2W  

We shall calculate the metric ( ( ) ( ))RR 2,22,1 , WWρ  ([2, Example 4.1]). By 

Proposition 2.3, 

( ( ) ( )) gg
gLg

AAAAWW 21
1,

21
2,22,1

2
sup, −=−=ρ

≤∈
RR  

( ) ( ) gIgI
gLg

2
14

1
2
12

12
1

1,2
sup −−

≤∈
++−+= DDD  

( ) ( ) gg
gLg

ˆ1ˆ1sup 2
1422

12

1ˆ,ˆ 2

−−

≤∈
ξ+ξ+−ξ+=  

( ) ( ) .11 2
1422

12
∞

−− ξ+ξ+−ξ+=  (3.1) 

In the above equations, we use the 2L -Fourier transform by 

( ) ( ) ( )∫
∞

∞−

ξ− ∈
π

=ξ .,
2
1ˆ 2 RLfdxexff ix  
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We can see that the final term (3.1) is about 0.229365 ···. We have some questions. 
Is it rational or irrational? Is it an algebraic number or not? In general, a complex 
number is said to be algebraic if it is a solution of a polynomial with integer 
coefficients. From now, we consider this problem. Let 

( ) ( )0
1

1

1

1:
422

≥
ξ+ξ+

−
ξ+

=ξS   for  .R∈ξ  

Since we are interested in the maximum of the function ( ),ξS  it is sufficient to 

consider the case for .0>ξ  To obtain the maximal value, we consider the 

derivative function 

( )
( )

( )
( ) 4242

2

22 11

21

11 ξ+ξ+ξ+ξ+

ξ+ξ+
ξ+ξ+

ξ−=ξ′S  

( ) ( ) ( )
( ) ( )

,
1111

1211
422422

2
3222

342

ξ+ξ+ξ+ξ+ξ+ξ+

ξ+ξ+ξ+ξ+ξ+ξ−=  

so that we have ( ) 0=ξ′S  if and only if ( ) ( ) ( ) .01121 2
3422

322 =ξ+ξ+−ξ+ξ+  

Here let ( ).11: 2 >ξ+=t  Then this is equivalent to the equation 

01368107 23456 =+−+−+− tttttt  

or 

( ) ( ) .0124461 2345 =−+−+−− tttttt  

Hence, we have 

 ( ) .012446: 2345 =−+−+−= ttttttP  (3.2) 

By the way, we can see that the equation ( ) 0=tP  has the only one real solution 

( )65 00 << tt  with the help of computational methods. Since we now consider on  

the domain ,1>t  the solution ( )( )000 =tPt  is important for us. It is not in Q  

(equivalently, is not in )Z  by the monic property of ( ).tP  Let 00 >ξ  such that 

.1 2
00 ξ+=t  Then ( )ξS  attains the maximal value at .0ξ  Therefore, 
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( ( ) ( )) ( )
4
0

2
0

2
0

0
2,22,1

1

1

1

1,
ξ+ξ+

−
ξ+

=ξ=ρ SWW RR  

.
1

11

0
2
00 +−

−=
ttt

 (3.3) 

We shall show that the value (3.3) is the irrational number. Suppose that it is 
rational, that is, irreducible fraction mn  (m and n are positive integers): 

.
1

11

0
2
00 m

n

ttt
=

+−
−  

Then 

( ) m
n

ttt

ttt
=

+−

−+−

1

1

0
2
00

00
2
0    or   ( )

( )
.

1
121 2

0
2
00

0
2
00

2
0 ⎟

⎠
⎞⎜

⎝
⎛=

+−

+−−+
m
n

ttt
tttt  

Thus, 

( ) ( ) .12 0
2
00

22
0

22
0

223
0

2 +−=+−++− tttmmtntnmtn  

Squaring both sides, we have the following which is in 6-degree with respect to :0t  

( ) {( ) } {( ) } 3
0

42224
0

42225
0

2226
0

4 222 tmnmtnnmtnmntn ++−++++−  

{( ) } ( ) .0225 4
0

2222
0

4222 =++−+++ mtmnmtmnm  (3.4) 

We replace 0t  by t in the left side of (3.4), and let be ( ).tQ  We divide ( )tQ  by 

( ),tP  then the remainder ( )tR  is 4-degree polynomial on Q  and ( ) .00 =tR  

Further, we divide ( )tP  by ( ),tR  then the remainder ( )tR1  is 3-degree polynomial 

on Q  and ( ) .001 =tR  Furthermore, we divide ( )tR  by ( ),1 tR  then the remainder 

( )tR2  is 2-degree polynomial on Q  and ( ) .002 =tR  We continue the process once 

again and getting the remainder ( )tR3  is 1-degree polynomial on Q  and ( ) .003 =tR  

This means that 0t  is in .Q  This is a contradiction. Therefore, the value of the 

distance (3.3) is the irrational number. 

Moreover, we consider the next problem which is whether the distance is an 
algebraic number or not. The set of algebraic numbers is a field and is closed 
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operations of square root and inverse. Since 0t  is the algebraic number by (3.2), we 

can see that the distance ( ( ) ( ))RR 2,22,1 , WWρ  is the algebraic number by (3.3). 

Therefore, we obtain the next theorem. 

Theorem 3.1. The distance ( ( ) ( ))RR 2,22,1 , WWρ  is the irrational number and 

the algebraic number. 

We do not know that whether the distance between another order cases is the 

irrational number. In other words, is ( ( ) ( ))RR 2,2, , lk WWρ  for ,2≥k  ( )lkl ≠≥ 2  

an irrational and an algebraic number? 

Remark 3.1. If we replace the standard Sobolev norm ( ) ( )2,12, =⋅ jjW R  for 

the Sobolev norm of Fourier type ( )2,1=σ⋅ σH  defined by 

( ) ( ) ( ),0,ˆ1: 22 >σ∈ξ+= σσ
σ RHfff H  

then the distance ( ( ) ( )) 25.0, 21 =ρ RR HH  which is a rational number ([2]). 

References 

 [1] T. Ando, De Branges spaces and analytic operator functions, Lecture Note, Hokkaido 
University, Sapporo, Japan, 1990. 

 [2] G. Hirasawa, A metric for unbounded linear operators in a Hilbert space, Integr. Equ. 
Oper. Theory (online). 

 [3] S. Izumino, Quotients of bounded operators, Proc. Amer. Math. Soc. 106 (1989),    
427-435. 

 [4] W. E. Kaufman, Representing a closed operator as a quotient of continuous operators, 
Proc. Amer. Math. Soc. 72 (1978), 531-534. 

 [5] W. E. Kaufman, Semiclosed operators in Hilbert space, Proc. Amer. Math. Soc.         
76 (1979), 67-73. 


