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Abstract

In this paper, composition operators and weighted composition operators
of (a, B)-normal operators on L2 space and composition operators of
(o, B)-normal operators on general weighted Hardy Spaces are

characterised.

1. Preliminaries

Let (X, X, A) be a sigma-finite measure space and T be a non-singular
measurable transformation from X onto itself. Composition transformation C on
L?()) induced T is given by Cf = f o T forevery fin L2(1). If C is bounded, we

call C to be a composition operator on Lz(x). It is known that T induces a bounded

composition operator C on Lz(k) if and only if the measure AT L is absolutely
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continuous with respect to the measure A and f, is essentially bounded, where f

is the Radon-Nikodym derivative of the measure AT 1 with respect to A. The

Radon-Nikodym derivative of the measure A(T k )_1 with respect to A is denoted by
fok , where T k" is obtained by composing 7, k times [8].

Every essentially bounded complex-valued measurable function f, induces the
bounded operator M fo on r? (L), which is defined by M fo f = fof, for every

f € I*()) and it is well known that C*C = M .

A weighted composition operator W (w.c.0) induced by T is a linear
transformation acting on the set of complex valued >, measurable functions f of the

form Wf = wf oT, where w is a complex valued Y, measurable function. When
u =1, we say that ¥ is a composition operator. Let w; denote w(w o T)(w o T?)

co(wo T* 1) so that W £ = w(f o T)F [11].

For better examination, Lambert [9] associated with each transformation 7, a

condition expectation operator E(e/T ~Is) = E(e) studied in [3], [5], [6].

E(f) is defined for each non-negative measurable function f, or for each

f € I? (1 < p) and is uniquely determined by the conditions
(i) E(f) is T7'S is measurable.
(i) If B is any T 'S measurable set for which -[B fd\ converges, then

J E(f)d\ also converges.
B

2. (o, B) -Normal Composition Operators on the L> Space

Let B(H) be the Banach algebra of all the bounded linear operators on a
Hilbert space H. Then an operator T € B(H) is said to be hyponormal if

TT* < T*T, and m-hyponormal if there exists an m > 0 such that 77" < m?T*T.

Correspondingly the composition operator C is hyponormal if and only if (f o T) P
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< fp a.e., and m-hyponormal if there exists an m > 0 such that (fy o T)P < m? o
a.e., [I11].
Definition 2.1 [9]. An operator T € B(H) is said to be an (o, B)-normal

operator [10], (0 < a <1 < B) if o®T*T < TT* < B*T*T.

When o =B =1, (o, B)-normal operator is normal. We need the following

Lemma [8] for the characterization of (o, B)-normal composition operators on

the 12 space.

Lemma 2.2. Let P denote the projection of I? onto WC) Then

() C*Cf = fof and CC*f = (fy o T)Pf, forall f e L.

(b) R(C) = {f e I* : T"X(2) is measurable}.

Theorem 2.3. Let C € B(L*())). Then Cis (., B) -normal if and only if o> f,
<(fy o T)P <Py ae.

Proof. By Definition 2.1, C is (a, B)-normal if and only if «°C*C < CC* <
B>C"C for (0 < <1<B). Since C°C =M and CC*f = M 1P, it follows
that C'is (o, B) -normal if and only if aszO SMyrP < BszO a.e.

Thus a?fy < (fy o T)P < B> fpy, ae., for 0 < a <1<B.

Corollary 2.4. Let C € B(L*(\)). If C has a dense range, then C is (o, B) -
normal if and only if a>fy < (fo o T) < B> fy, a.e.

Corollary 2.5. Let C € B(I*())). If C has a dense range, then C* is (o, P)-
normal if and only if a*(fy o T) < fo < B>(fy o T) a.e.

Example 2.6. Let X = N be the set of all natural numbers and A be the
counting measure on it. Define 7: N -» Nby T(1)=1, T(2) =1, T(5n+m —2) =

n+1form=0,1,2,.. and n e N. Then Cis (a, B)-normal for 0 < a <1, and

B = /5/3.
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Now, we give an example of an m-hyponormal composition operator on I’ (»)
which is neither (o, B)-normal nor hyponormal.

Example 2.7. Let X = N be the set of all natural numbers and A be the
counting measure on it. Define T: N - N by T(1)=2, T(2)=1, T(3) =2,
TBn+m)= n+2 for m=1,2,.. and ne N. Then C is m-hyponormal but

neither (o, B) - normal nor hyponormal for n = 1.

Now, we use the following proposition due to Campbell and Jamison [3] for the

characterization of weighted (o, B) -normal composition operators on the ? space.
Proposition 2.8. For w20,
@) WS = folE(w*)]o 7',
(o) W™ f = w(fo o T)E(wf).
Here, we characterize weighted (o, ) -normal composition operators.
Theorem 2.9. If T™'S = X, then Wis (o, B) -normal if and only if o> foy(w?) o
T < W (fy o T) < B2 fo(w?) o T ace.

Proof. Since WX f = w (f o T¥) and (W**) f = fo(k)E(wkf) o T, we have
wyfooT
-
[E(wffo = T)Ja

If 77'S =%, then E becomes the identity operator and hence WW™f = v f=

wrkwk :fo(k)E(w,%)oT_kf and | W™ | f = vE(vf), where v =

w?(fy o T)f; f e I*. If Wis (a, B)-normal, then o’W*W <WW* < p*w*w
and hence o fy(w?) o T71 < w?(fy o T) < B2 fo(w?) o T ace.
The Aluthge transformation [1] of T is the operator T is given by T = |T |1/ 2

ulr |1/ 2. More generally, we may form the family of operators 4, : 0 <r <1,

where 4, = | A|"U| 4|"". For a composition operator C, the polar decomposition
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is given by C =U| C|, where |C|f =+/fof and UF = ! TfoT. Lambert

Vo
et al. [5] has given general Aluthge transformation for composition operators as
1

C.= |cluc|™" and C,fz(ffOszfoT. That is, C, is weighted
00

1
_Jo_ 2, where 0 < < 1. Since C, isa
JooT

weighted composition operator it is easy to show that | C, | f =/ fy [E (n)? T f

composition operator with weight © = (

. Also, we have

and | C | f = vE[yf], where v = Wlo ol ;
2=
[E(nyfo o T)]4
Crf =m(foT").
k —
CHf = fVEm ) e T
crkcky = fMEmE) T 1.
Corollary 2.10. If T7'S =%, then C, is (o, B)-normal if and only if
o2 fy(w) o T < 72(fy o T) < B2 fo(2) o T ae.
The second Aluthge transformation of 7" described by Duggal [4] is given by

- 1 ~ 1 ~ ~ ~
T =|T[2V|T |2, where T =V|T | is the polar decomposition of T

~ 1 1
Senthilkumar and Prasad [14] studied that the operator C =|C, [2V|C, |2,
where C, =V|C, | is the polar decomposition of the generalised Aluthge

transformation C, : 0 <r <1, is weighted composition operator with weight

1
w = J47t(x;1}1j OTJ, where J = fyE(n?)o T,

Corollary 2.11. If T 'S =3, then W is (o, B)-normal if and only if

Otzf()(wrz) o T—l < W'z(fo o T) < BZfO(WrZ) o T—l a.e.
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3. (a, B)-normal Composition Operators on Weighted Hardy Spaces

The set H?(y) of formal complex power series f(z) = Zw Z" such that

n=0“n
(Wa ||§ - Z:o=0| a, |*v2 < o is the general Hardy space of functions analytic in the

unit disc with the inner product
_\"” T 2
<fa g>y = Zn=0 anbnYn

for f as above and g(z) = Z::o b,Z" and y = {y,},_, is a sequence of positive

numbers with yy =1 and Tntl 51 a5 1 - .
n

If ¢ is an analytic function mapping the unit disc D into itself, we define the

composition operator Cy, on the spaces H 2(y) by

Cof = foo
Though the operator C is defined everywhere on the classical Hardy space

H? (the case when vy, =1, for all n), they are not necessarily defined on all of
H?(B). The composition operator Cy is defined on H 2(y) only when the function

¢ is analytic on some open set containing the closed unit disc having supremum
norm strictly smaller than one [16].

The properties of composition operator on the general Hardy spaces H 2(y) are

studied in [7], [12], [15].
In this Section, we investigate the properties of (a, B)-normal composition

operators on general Hardy spaces H (7).

For a sequence y as above and a point w in D, let

_ © I —wm
kWY(z) - Zn=OE(WZ) :

Then the function k,,y is a point evaluation for H2(y), i.e., for fin H2(y),

(.fa kWY)Y = f(W)
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Then kyy =1 and C;kwy = ko(w)Y-

Theorem 3.1. If Cy is (a, B)-normal on H2(y), then o < <

<p
1) |

Proof. Let Cy be (a, p)-normal on H 2(y). By the definition of (o, B)

normality,
of Cof N, <N Cof I, <BICoS || S € HA(v)
and if f = kyy, we have
of Cykor [, <1 Cokov I, < Bl Ckov |l

o qu(o) I, < lkov [, <8l kg(o) I,

1
Y
I £

o <

<B.
o |

Theorem 3.2. If Cy is (o, B) -normal, then ¢ is univalent in the unit disk.

Moreover, there is a subset E of the unit circle with measure zero, such that off E,

the radial limits of ¢ exists and are distinct at distinct points.
Proof. For non-constant ¢, ker(Cy) = (0). If Cy is (o, B) -normal, ker(Cy) =

ker(Cf;), $0 ker(qu) = (0).

This implies ran (C¢) is dense. In particular, there is a sequence of polynomials

Pp sothat Cyp, = p, o ¢ converges to z in Hz(y).

Since p,, o ¢(y) converges to y for each y in the disk, ¢ is univalent in the disk.

By possibly passing to a subsequence, we may assume that the boundary

functions of the p, o ¢ are defined and converge pointwise to z off a set E of

measure zero. If ¢/ and ¢'%2 are distinct and not in E, then the convergence of the

redial limit functions implies that infinitely many of the p, o ¢ have distinct values

at ¢ and €2 which implies that §(e™' ) and ¢(™2) are distinct.
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