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Abstract 

In the present paper, we calculate the sign solved propagator of a two 
electrons two dimensional (2D) atom by solving the sign problem. We 
apply the sign solved propagator expression to the evaluation of the 
geometric phase of the ground state of the 2D helium atom that is derived 
variationally. 2D quantum dots are another possible area of application of 
the present theory. 

1. Introduction 

In the present paper, we calculate the sign solved propagator (SSP) of a two 
dimensional (2D) helium like atom. The SSP propagator theory began as an attempt 
to solve [1] the sign problem, a well known problem in quantum physics and 
chemistry. Then we applied that solution in [2] and [3] and numerically observed the 
existence of the SSP and further of the sign solved influence functional. In those two 
references the author studied the solution of the sign problem in systems concerning 
the interaction of radiation with matter. There followed the severe foundation of the 
whole theory in [4, 5, 6]. Other systems were considered in [7, 8, 9]. 
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Instead to the use of the single word “propagator” in the development of the 
theory of the above series of papers we have preferred to introduce the naming “sign 
solved propagator” as in contrast with the usual case the being extracted includes a 
delta function which forbids its connection with a zeta function although it obeys the 
semigroup property. The importance and the power of the extracted being is that it 
gives closed expressions even in the case of interacting systems and therefore it 
introduces a completely new approach in solving differential equations, like the 
Schrödinger one, and consequently performing analytical and further numerical 
calculations. Moreover, although till now we have restricted our interest in quantum 
mechanical systems the applicability of the SSP theory is wider as we discuss in the 
conclusions of [5]. 

To handle the present system of a 2D two electrons atom and calculate its SSP 
we combine standard methods of the path integral theory with our methods (see next 
section). Further, we consider the calculation of the geometric phase of the ground 
state of the present system that has been derived variationally. 2D quantum dots are 
another area of application of the present theory as the Hamiltonian term of each 
single electron appears just in a phase in the final result. Moreover, that phase is 
canceled in most of the expressions of interest. What matters in the present theory is 
the interaction term. 

The paper proceeds as follows. In Section 2, we study the path integral of a 2D 
helium like atom and handle it in such a way that we can apply the usual SSP 
theorem. In Section 3, we consider the numerical evaluation of the geometric phase 
of the ground state of the present system. In Section 4, we give our conclusions. 
Finally, in Appendix A we give certain necessary integrals. 

2. System Hamiltonian and Path Integration 

The Hamiltonian H of a 2D two electrons atom has the form 

,1
22 2121

2
2

2
1

ρ−ρ
+

ρ
−

ρ
−+= ZZppH  (1) 

where Z is the atomic number. 1ρ  and 2ρ  are the positions of the first and the 

second electron respectively, with respect the nucleus placed at the origin. 
Moreover, 1p   and 2p  are their corresponding momentums. 
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The corresponding path integral in its discrete form is 
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where .
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tt if  We have also set fNii 111220110 ,, ρ=ρρ=ρρ=ρ +  and 

.212 fN ρ=ρ +  Now, we observe that the two electrons interaction term can be 

written as 
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In the last equality we have set 
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Moreover, ., 2211 nnnn ρ=ρρ=ρ  Then the path integral (2) becomes 
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To proceed we insert in equation (5) a delta function in order to get 
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Now, we observe that the delta functions in equation (6) have the representation 
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where ( )., 21 nnn ρρα=α  Moreover, the integrals appearing in equation (7) are 

given by the expressions [10] 
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and particularly in the case of the first integral in the last equality of equation (7) we 
have the expression 
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Therefore, we can perform the integrations in equation (7) according to the 
expressions (8)-(10) and place the results in equation (6) after keeping leading terms 
with respect the .s’nk  In fact the angular part of higher order terms in the expansion 

(7) gives infinities as .∞→N  This is the case in [2, 3, 7, 8] as well, anyhow large 
the volume may be there. The presence of the volume just guides us to the correct 
route of the solution. Now, expression (6) becomes 
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We have set the range of nw  in the interval from nα−  to nα  as otherwise the 

functions c
kf2  and s

kf 12 +  are zero (see equations (8)-(10)). Moreover, for the case 

of the 1+N  factor appearing in equation (11) we have kept the full series (7) as it 
involves the final coordinates. 

Now, in the two dimensional path integral (11) we perform standard 
manipulations including angular decomposition according to [11] to obtain the result 
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1q  and 2q  have appeared after the angular decomposition and are the azimuthal 
quantum numbers corresponding to electrons 1 and 2, respectively. The 
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 terms above correspond to the path integrals 
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We can easily observe that the above multiple integral can be decomposed in 
1+N  one-dimensional integrals. We can use the results of Appendix A for their 

evaluation. 
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Now, we solve the sign problem relevant with the path integral (13). It is easy to 
observe that 
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where b is a positive constant. The above inequalities can be derived easily if we 
take into account both the facts that the phase in equation (14) is bounded by unity 
as well as the form of the functions in equations (8), (9), (10) and further if we 
perform the transformation ( ).sin nnnw θα=  Therefore, the sign solved propagator 

theorem of [5, 6] is applicable and the corresponding sign solved propagators are 
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An appropriate sampling function is used in the evaluation of the expectation 

value of 21
0
qqH  on the phase in equation (16). However, in most of the final results 

of interest, that phase does not appear. 

3. Application to the Geometric Phase 

Our intension now is to apply the above theory to the numerical evaluation of 
the geometric phase [12]. Let the wavefunction of the ground state of the 2D helium 
atom [13] at time zero be ( ) .0ψ  Then the geometric phase ( )tgΦ  of the system 

has the form 
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where according to standard results of quantum mechanics the wavefunction ( )tψ  

of the system at time t has the form 

( ) ( ) ( )∫ ψ|ρρρρρρρρ=ψ|ρρ .0,0,,;,,~, 2121212121 iiiiffiiff tKddt  (19) 

The SSP is given by equation (12). We notice that if we take into account 
equations (12) and (16), then the phase appearing in equation (16) is canceled in 
equation (18). 

In our calculations we consider as an initial state the approximate variationally 
extracted wavefunction of the singlet ground state of the 2D atom. It has the form 
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The first term on the right hand side of equation (18) is the total phase while the 
second one is the opposite of the dynamical one. More specifically in the case of the 
ground state of the 2D helium ( )2=Z  we give the geometric phase as a function of 

time in Figure 1. The range of time is arbitrary and has been extended to large 
enough values in order jumps in the value of the geometric phase to be observed. 
Larger values of time are not considered due to limited numerical accuracy. 
However, we can expect a structure with jumps. In fact in our calculations we use 

200=N  and in the series of the Appendix A we have kept terms until .100=n  

4. Conclusions 

In the present paper, we consider the path integral of a 2D two electrons atom. 
We have derived its SSP and specializing on helium we have presented results on 
the numerical calculation of the geometric phase of its ground state. The 
wavefunction has been derived variationally. A complete discussion of the 
usefulness of the 2D Helium is given in [13]. 

The 2D quantum dots are another domain of application of the present 
methodology.  

Further, we notice that if we consider the interaction of the two electrons with 
radiation and treat the radiation term perturbatively in the relevant path integral, then 
the present theory is applicable in both of the above physical cases. 
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Concluding the present method is tractable and can be used in various problems 
concerning the quantum mechanics of a two electrons 2D atom. In future, we intend 
to consider the present calculations further when external magnetic fields are 
present. 

Appendix A 

In equations above (see for instance equation (14)) there appear integrals of the 
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Figure 1. Geometric phase of the ground state of the 2D helium as a function of 
time. We have used .200=N  
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