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Abstract

In the present paper, we calculate the sign solved propagator of a two
electrons two dimensional (2D) atom by solving the sign problem. We
apply the sign solved propagator expression to the evaluation of the
geometric phase of the ground state of the 2D helium atom that is derived
variationally. 2D quantum dots are another possible area of application of
the present theory.

1. Introduction

In the present paper, we calculate the sign solved propagator (SSP) of a two
dimensional (2D) helium like atom. The SSP propagator theory began as an attempt
to solve [1] the sign problem, a well known problem in quantum physics and
chemistry. Then we applied that solution in [2] and [3] and numerically observed the
existence of the SSP and further of the sign solved influence functional. In those two
references the author studied the solution of the sign problem in systems concerning
the interaction of radiation with matter. There followed the severe foundation of the
whole theory in [4, 5, 6]. Other systems were considered in [7, 8, 9].
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Instead to the use of the single word “propagator” in the development of the
theory of the above series of papers we have preferred to introduce the naming “sign
solved propagator” as in contrast with the usual case the being extracted includes a
delta function which forbids its connection with a zeta function although it obeys the
semigroup property. The importance and the power of the extracted being is that it
gives closed expressions even in the case of interacting systems and therefore it
introduces a completely new approach in solving differential equations, like the
Schrodinger one, and consequently performing analytical and further numerical
calculations. Moreover, although till now we have restricted our interest in quantum
mechanical systems the applicability of the SSP theory is wider as we discuss in the
conclusions of [5].

To handle the present system of a 2D two electrons atom and calculate its SSP
we combine standard methods of the path integral theory with our methods (see next
section). Further, we consider the calculation of the geometric phase of the ground
state of the present system that has been derived variationally. 2D quantum dots are
another area of application of the present theory as the Hamiltonian term of each
single electron appears just in a phase in the final result. Moreover, that phase is
canceled in most of the expressions of interest. What matters in the present theory is

the interaction term.

The paper proceeds as follows. In Section 2, we study the path integral of a 2D
helium like atom and handle it in such a way that we can apply the usual SSP
theorem. In Section 3, we consider the numerical evaluation of the geometric phase
of the ground state of the present system. In Section 4, we give our conclusions.

Finally, in Appendix A we give certain necessary integrals.
2. System Hamiltonian and Path Integration
The Hamiltonian H of a 2D two electrons atom has the form

2 2
P, P2 Y4 Y4 1

H=24+2__=Z = 4+ _ )
2 2 pil P2l IP1-p2l

where Z is the atomic number. p; and p, are the positions of the first and the

second electron respectively, with respect the nucleus placed at the origin.

Moreover, p; and p, are their corresponding momentums.
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The corresponding path integral in its discrete form is
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Pan+1 = P2y Now, we observe that the two electrons interaction term can be

written as
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In the last equality we have set
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=|ps, |- Then the path integral (2) becomes

Moreover, p, = |Pin |,
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To proceed we insert in equation (5) a delta function in order to get

K@yyps Pags trs Pris Pais )
, © dpy, ? dpay
SCRIRER [ VIR v [
N+1 N+l
x HU dw }H [8(wy, — alP1n> P2n)COS P12,)]

vatl Pin - (Bin = Pin—1) + Pan - (P2n = P2n-1)
. TR
XeXplE e p1n+p2n Z Z N 1 1 J . (6)

n=1 2 2 Pin P2n \/plzn + p%n \/1 -w

Now, we observe that the delta functions in equation (6) have the representation

6(wn — O, Cos (P12n)
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where a, = a(py,, P2, ). Moreover, the integrals appearing in equation (7) are

given by the expressions [10]

" cos[2k arcsin(w/a)] lw|<a
for(w, o) = jo d\ cos(Aw)J i (ha) = Va2 w2 ’ ’ (8)
0, [w|> a,
" sin[(2k +1)arcsin(w/a.)] lw|<a
Sors1(w, )= jo dhsin(Aw)J 4 (ha) = o2 — w2 ’ O
0, |w|>a,

and particularly in the case of the first integral in the last equality of equation (7) we
have the expression

* —3 < )
fo(w, a) = J. dh cos(Aw)Jo(ha) = 1./, 2 _ 2 |w|<a (10)
’ 0, | Wl > .

Therefore, we can perform the integrations in equation (7) according to the
expressions (8)-(10) and place the results in equation (6) after keeping leading terms

with respect the k,’s. In fact the angular part of higher order terms in the expansion

(7) gives infinities as N — oo. This is the case in [2, 3, 7, 8] as well, anyhow large
the volume may be there. The presence of the volume just guides us to the correct
route of the solution. Now, expression (6) becomes
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We have set the range of w, in the interval from —a, to o, as otherwise the

functions f5;, and f3),; are zero (see equations (8)-(10)). Moreover, for the case

of the N +1 factor appearing in equation (11) we have kept the full series (7) as it
involves the final coordinates.

Now, in the two dimensional path integral (11) we perform standard
manipulations including angular decomposition according to [11] to obtain the result
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q; and ¢, have appeared after the angular decomposition and are the azimuthal
quantum numbers corresponding to electrons 1 and 2, respectively. The
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c
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c

factors F 57 1 (P11> P12 -+» PIN+1> P215 P22 -» P2n+1) appearing in the two cases
{2k+1}
of equation (13) above have the form
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We can easily observe that the above multiple integral can be decomposed in
N +1 one-dimensional integrals. We can use the results of Appendix A for their

evaluation.
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Now, we solve the sign problem relevant with the path integral (13). It is easy to
observe that

{c
F{zsk }(Pns P125 s PIN+1> P215 P225 = P2N+1) | £ D, (15)
2k+1

where b is a positive constant. The above inequalities can be derived easily if we
take into account both the facts that the phase in equation (14) is bounded by unity
as well as the form of the functions in equations (8), (9), (10) and further if we
perform the transformation w, = a,, sin(0,,). Therefore, the sign solved propagator
theorem of [5, 6] is applicable and the corresponding sign solved propagators are

c
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In equation (16) we have set

2p12 P1 2 Zp% P2

An appropriate sampling function is used in the evaluation of the expectation

2 2 2 2
1 :P71+611;1/4_£+ Py, -4 Z

(17)

value of H g 192 on the phase in equation (16). However, in most of the final results

of interest, that phase does not appear.
3. Application to the Geometric Phase

Our intension now is to apply the above theory to the numerical evaluation of
the geometric phase [12]. Let the wavefunction of the ground state of the 2D helium
atom [13] at time zero be |y(0)). Then the geometric phase ®,4(¢) of the system

has the form

t
0

@, (1) = arg(w(O)w(0) + [ (W), (18)
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where according to standard results of quantum mechanics the wavefunction |y(z))

of the system at time 7 has the form
Birs Bar 10D = [ dpdpoiR iy ag b Bir ois O (Buss Py [w(0).  (19)

The SSP is given by equation (12). We notice that if we take into account
equations (12) and (16), then the phase appearing in equation (16) is canceled in
equation (18).

In our calculations we consider as an initial state the approximate variationally
extracted wavefunction of the singlet ground state of the 2D atom. It has the form

2
exp[-2Z'(py; + p2i))s (20)

. 87
(P1> P2i w1(0)) =

1oz 3T

where Z' = Z TR
The first term on the right hand side of equation (18) is the total phase while the
second one is the opposite of the dynamical one. More specifically in the case of the

ground state of the 2D helium (Z = 2) we give the geometric phase as a function of

time in Figure 1. The range of time is arbitrary and has been extended to large
enough values in order jumps in the value of the geometric phase to be observed.
Larger values of time are not considered due to limited numerical accuracy.
However, we can expect a structure with jumps. In fact in our calculations we use
N = 200 and in the series of the Appendix A we have kept terms until » = 100.

4. Conclusions

In the present paper, we consider the path integral of a 2D two electrons atom.
We have derived its SSP and specializing on helium we have presented results on
the numerical calculation of the geometric phase of its ground state. The
wavefunction has been derived variationally. A complete discussion of the
usefulness of the 2D Helium is given in [13].

The 2D quantum dots are another domain of application of the present
methodology.

Further, we notice that if we consider the interaction of the two electrons with
radiation and treat the radiation term perturbatively in the relevant path integral, then
the present theory is applicable in both of the above physical cases.
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Concluding the present method is tractable and can be used in various problems
concerning the quantum mechanics of a two electrons 2D atom. In future, we intend
to consider the present calculations further when external magnetic fields are

present.
Appendix A

In equations above (see for instance equation (14)) there appear integrals of the

following forms (see equations (8), (9), (10) for the definition of f3;(w, o) and
Sak1(w, @)
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Figure 1. Geometric phase of the ground state of the 2D helium as a function of
time. We have used N = 200.
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