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Abstract

In this work, we consider numerical positive solutions of the equation
—Au = Af(u) with Dirichlet boundary condition in a bounded domain

Q, where A >0 and f(u) is a nonlinear function of u. We study the

behavior of the branches of numerical positive solutions for varying A.
1. Introduction

We are interested in the positive solutions of the problem

{_Au(x) =M u(), xeo, ()

u(x) =0, X € 0Q),
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where Q is a bounded domain in R™ (N > 3) with boundary 6Q, and f(u)=
u(l = sinu) + u>.

The problems involving Laplace equation arise quite frequently in the

biological, social and physical sciences. For example, solutions of —Au = Af(u)

correspond to steady states for time motion, with f corresponding to external driving
forces. The Laplace equation also plays an important role in field theories in which a
field (e.g., electric, magnetic gravitational forces, or fluid velocity field) is given as

the gradient of a potential function u [8].

On the other hand, the Dirichlet boundary value condition has an important

physical significance. In electrostatics, for example, this condition specified the
value of the potential function # on 6Q which induces the electric field E=-Vu
in Q. If we can show that the equation —Au = Af(u) with Dirichlet condition is

well-posed, then this means that the electric field is completely determined by the

charge distribution inside (2 together with the value of the potential function u on
oQ.

In this paper, we study numerical solutions of equation (1) that arise in various
fields of physics, and have been studied by several authors. Among others, it
describes the problems of thermal self-ignition [3], diffusion phenomena induced by
nonlinear sources [5], or a ball of isothermal gas in gravitational equilibrium as
proposed by Kelvin [1]. We also refer to [4, 9], where different models and further
references may be found. In this paper, we concentrate on the numerical positive
solutions of temperature distribution in an object heated by the application of a
uniform electric current suggested in [6]. In fact, we show that the first eigenvalue of
the problem

{—Au(x) =du(x), xeQ, @
u(x) =0, x € 0Q

is a bifurcation point of the branch of numerical solutions that tends to right, also

there is a positive A" > A; such that for any A; < L < A", we have two different

. o . . . * . . *
numerical positive solutions, in A", and a unique solution and for A > A".

The outline of this paper is as follows: In the next section, we present a useful
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numerical method and introduce the framework of the procedure to find numerical

solutions. Section 3 contains some numerical results of the problem (1) for varying
A.

2. Finite Difference Method

Numerical techniques based on finite difference schemes can lead us to obtain
approximate solutions for any PFEs [2, 7, 10]. In particular, for an elliptic partial
differential equation of second order such as

o%u ou
Lu = ZZ(—aij —6x,-6xj] + Zbiﬁ_x,-Jrcu = f(A, u),

we can use this technique. In fact, the main idea is to find a numerical solution for
(1) in a bounded domain Q for special points with exact solution, i.e., we seek a
solution array u in a point of a discrete grid @ < Q, u(x) = u(x), where u is the
exact solution of (1). It is often advantageous to study derivatives using the limit of
difference quotients, and for this reason, we define “forward difference quotient” as
follows:

u(x + he;) — u(x) ’

Nu(w) = Hhe

where & # 0, ¢; denotes the unit vector in the x; -direction, / is small enough such
that 0 <|Z| < dist(x, 6Q). Moreover, we can define “backward difference

quotient”:

A;u(x) = w.

If we put together these quotients, then we find a better approximation for

ou(x
Ox;

1

as follows:

u(x + he;) — u(x — he;)
2h '

du(x) =

It is proved in [8] that if we consider u € C'(Q), then

autx)
Ox;

1

diu(x) > as h — 0.
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We continue this procedure to gain higher derivatives such as

u(x + he;) — 2u(x) + u(x — he;)

8;iu(x) = 2
and
u(x + he; + ke;)—u(x + he; —ke;) —u(x — he; + ke; )+ u(x — he; — ke ;)
8,u(x) = J J - J J
that tend to

o%u(x)  0%u(x)
axl_z ’ axiax]'

as h — 0 and |(h, k)| — 0, respectively.

Now, by replacing these approximations in any elliptic equation of second
order, we arrive at a finite system of equations that after solving give the desired

array u.

The method of differences is especially suitable for the solution of boundary
value problems, for instance, the problem of determining a function that satisfies the
Laplace equation in the interior of a given field Q and possesses given values at the
boundary of the field; such problems arise in the exploration of stationary
temperature distribution when the temperature at the boundary of the field is known,
in investigating the tension in a twisted rod of prismatic section, etc. In this case, the

procedure is as above.

It remains how we can choose the points of grid. Suppose Q is a regular

domain, for example, a square in plane, i.c., Q = [a, b] x [c, d]. We can assume that

the solution domain of the problem is covered by a mesh of grid-lines
x;=a+ih, i=0,12,..,m,
yj =c+jk, j=0,12,.. n

parallel to the axes and

Xg=a, X, =b yy=c y, =d
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Approximations u; to u(x;, y j) are calculated at the point of intersection of
these lines, namely, (x;, y;) which is referred to as the (i, j) grid-point. The

constant spatial and temporal grid-spacing are

h:(b—a)’ i - (d—c),

m n
respectively.

But a large number of physical problems have irregular boundary. For
investigation, a point like P near bound of domain that does not have distance equal
to i from the boundary can be used. A precise technique uses interpolation. In this
section, we explain it briefly.

For simplicity, we confine ourselves in a space of dimension two. Suppose P
and P, are the points of a grid Q which are at distances 4 and k& from P in the
directions x and y, respectively, and that Q; and O, are the nearest points to P on the

boundary in the directions x and y respectively. Because of Dirichlet boundary
condition, it follows that u(Q;) =u(Q,) =0.
Let dist(P, Q)) = dy and dist(P, Q) = d,, where 0 <d|, dy <1. We want
62

Ou Ou u o%u .
to find a_x(P) and E(P) and 6x_2(P) and ay—z(P) simultaneously.

By using Taylor expansion around P, we get

s =ty o )51 5 24

o%u y2 o%u
+ xy P)+=—|—=|(P)+---.
[&c@y] 2 8y2
Without loss of generality, we can suppose P to be (0, 0) and so we can write points

B, P, Q) and O, suchas

(_h9 0)» (09 _k)9 (d]h9 0)9 (O’ dzk)’
respectively.

After substituting last formulas in Taylor expansion and omitting o(h3 ) and
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o(k?), we arrive at

1 2
doku,(P) + E(dzk) uy,(P) = u(Q;) - u(P),

dihe,(P)+ 3 (dih)ug(P) = u(@) - u(P),

. 3)
~huy (P) + 5 k2uy, (P) = u(P,) - u(P),
~huy(P) + 5 W (P) = u(R) - u(P)
that gives

Ou ol u(Q) du(P) (1 -d))u(P)

g(P) =l l[dl(l +ld1) - (11+ dl1) - ‘;1 } +o(i?),

u ool wQ)  wR)  u(P)

= g ey | e

Ou 4 u(0,) dyu(P) (1-dy)u(P)
R T~ i e R | ML

u o oo w(@)  u(P)  u(P) N
oy’ (P) =2 [d1(1+d1) (I+dy) d }+ (k).

If the points A and P, lie irregularly, then we can use this procedure for them

again. To find the value of u in the point P, we apply linear interpolation formula in
direction x as follows:

u?) = Jutm)+ (155 Juer)

or in direction y as follows:

uP) = (T2 Jur) + (154 Jutoy)

3. Numerical Results

In this section, we consider problem (1) and use discussions presented in the
previous section to find numerical solutions. At first, we note that to solve problem
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(1), we consider N >3. Let N =3 and Q =0, 1]x[0, 1]x [0, 1] and the grid
Q < Q be adivision of Qand 4 = %(nl =ny, = ny = 4).
We solve, numerically, the problem
{—(um gy +uzz) = Mulx, v, 2)(=sin(u(x, v, 2) +u(x, v, 2L (6, 2) e
u(x, y, z) =0, (x, y, z) € 0Q.

“4)
Dirichlet boundary condition leads us to have

uo’j’k =ul~707k =ul-,_]-,0 =0, VlSi, j,kﬁ3,
where u; ; ;= u(x;, ;. zi)-

By using the approximations of u,,, wu,, and u,,, we have a system of

»
equations of this type

Uil jok F Ui jok YU ek YU ok U ok U1 — O ok
2
h

. 2
= Mu; o (L=sin(u; j )+ 4 g)-
Some of the equations of this system mentioned follows:
. 2
16(up 1 + uppquyyy — 6upyy) + Muyy (1= sin(uy1p)) + uyg) = 0
fori=j=k=1,

. 2
16(up1p + t1pn + uyy3 + uppy = 6uyyn) + Muyio(1 = sin(uy 1)) + ujp) = 0

fori=j =1, k=2,

After solving this system, we can obtain u in grid Q that guides us to understand
the behavior of solution branches. We express just some of values of u;;s in the
following table. It is easy to see that A" (the first eigenvalue of the problem (2)) in

this case is 26.7 with decimal accuracy, also A" is around 50 and after that we have

no positive solution.
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A u
ug = 425x107° oy = 985107 upy =117 x 1071
1073 Uy = 632x107 oy =153x1071% uyy =226 x 1071
uzy =354x107°  ugy = 773x107° ugg =930x1071
uyp; = 80449.8 Uy = 74839.6 g3 = 80932.7
10*3 Uz = 74454.3 Uy = 69480.1 Usrz1 = 74589.3
M311 = 808897 Z/l321 = 744110 u331 = 805090
up = 429%107°  wy =9.92x107% uy =117 x 10712
0.1 Uy = 637x1073  up =1.54x10712 upy =227 x10712
u311 = 357 X 10_13 u321 = 778 X 10_]3 u331 = 935 X 10_13
uppy = 602.65 uppy = 372.71 u3 = 35131
0.1 Uy = 72.231 Urxy1 = 211.48 Uz = 773.04
Uzl = 254.09 Uzl = 266.94 Uzzy = 561.31
upyy = 463x10712 wpy = 1.05x107 u5 =123 <107
1 Uppy = 6.84x10712  upy = 1.63x1071 up3y =236 x 107!
uzp =3.86x10712 w3y =831x10712 ugy =9.85x 10712
Ui = 18.985 Upp = 28912 U3 = 17.173
1 Uy = 23.418 Uyy1 = 27.424 Uzl = 18.457
u311 = 10330 u321 = 13085 u331 = 8961
ugp =1.63x107° =246 x10710 upy =1.64x107"
26.6 uyy = 2.13x107  uyy; =3.09x10710 wupy = 2.15x 107
uzp =145x1077  uzy =2.08x107" g3 =147x107"
U = 2.860 Upp = 1.735 U3 = 0.785
26.6 Uzl = 0.960 Uzl = 0.045 Uzzl = 0.189
Uz = 0.804 Uzl = 0.637 U3zl = 0.358
uppy = 0.1246 ujp) = 0.5945 u3 = 0.5133
26.7 Uzl = 0.5852 Uyl = 1.0570 Uzzl = 0.7829
Uzl = 0.4398 Uyl = 0.6573 Uzl = 0.2708
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upyy = 1.2148 Uy = 2.0266 U3 = 1.6532
26.7 Uy = 1.2040 Uy = 1.4454 uy31 = 0.7634
u3y; = 1.0653 u3p; = 1.6640 U33; = 2.6820
uppy = 1.2955 Uy = 2.2439 uj3 = 1.7846
30 Uy = 2.0192 Uyyy = 2.0925 Uryy = 1.7774
u3q; = 2.3508 u3p; = 0.9996 u33; = 2.3140
uyp; = 0.5280 uyjp; = 1.4508 up3) = 2.4223
30 Upyq = 0.2535 Uyyy = 2.6319 Ur3; = 1.1280
uzy = 2.4035 u3y; = 1.4551 usy = 2.2615
upyy = 1.1952 uppy = 1.5492 up3; = 1.9407
50 Upyy = 2.1985 Uyy; = 1.6464 Ur3; = 1.5396
U311 = 0.6659 u3py = 0.3503 u33; = 1.5895
upyy = 1.1970 Uy, = 1.5679 U3 = 1.8112
50 Uy = 2.2326 Uyyy = 1.6447 Ur3; = 1.5609
u3q; = 0.6524 u3p; = 0.3238 u33; = 1.5956
upyy = 1.5347 uppy = 1.422 u3 = 1.970
51 upy = 2.112 Uy = —0.110 uy3; = —0.2909
u3p; = 1.947 u3p; = 1.066 u33; = 1.609
) = 19.460 Uy = —7.040 U3 = 2.070
60 upyy = —7.192 Uy = 2.459 Uy3) = 2.563
u3p; = 2.118 u3py = 0.9975 u33; = 1.287
upy = 8.716 Uy = —4.885 up3) = 4.527
100 Ury; = 1.899 Uyy; = 2.020 Upy = —2.214
uzy =1.320 uzpy = —1.848 us3 = —2.198

4. Conclusion

In this paper, the finite difference method has been applied for solving nonlinear
elliptic equations. For any bounded domain in any dimension, we recover the
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mentioned formulas that we use here. Further, we accommodate the finite difference

method to deal with Dirichlet, Neumann, and mixed boundary conditions. By using

the results in last section, we can draw the bifurcation diagram of the solutions in the

plane (A,

(1]

u|), where
Nl =1ul, = sup u(x, y, z).
(x, ¥, 2)€[0,1]x[0, 1]x[0, 1]
fulf

Figure 1. Bifurcation diagram.
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