Far East Journal of Applied Mathematics

This paper is available online at http://pphmj.com/journals/fjam.htm

© 2010 Pushpa Publishing House

ON n-TOTAL EDGE DOMINATION NUMBER IN GRAPHS

D. G. AKKA and SUNITA S. CHINAMALLI

H. No. 1-867/24/A/1 Venkatesh Nagar, Gulbarga-585102 Karanataka, India

Department of Mathematics S. S. Margol College, Shahabad Dist/Tq: Gulbarga, Karanataka, India

e-mail: sunitamugali1234@yahoomail.com

Abstract

A set D of edges is a total edge dominating set of G, if every edge in G is adjacent to at least one edge in D. The total edge domination number $\gamma'_t(G)$ is defined to be the minimum number of edges in a total edge dominating set of G. A set D of edges is an n-total edge dominating set of G if every edge in G is adjacent to at least n-edges in G. The G-total edge domination number G-total edge dominating set of G. In this paper, we initiate a study of G-total edge dominating set of G. In this paper, we establish some results concerning the G-total edge domination number of a graph.

1. Introduction

The graphs considered here are finite, nonempty, connected, undirected without

2010 Mathematics Subject Classification: 05C69.

Keywords and phrases: edge domination, total edge domination, n-total domination, n-total edge domination.

Received September 13, 2010

loops and multiple edges and without isolates. Any undefined terms in this paper may be found in Harary [3].

A set F of edges is an *edge dominating set* of G if every edge not in F is adjacent to at least one edge in F. The *edge domination number* $\gamma'(G)$ is defined to be the cardinality of a minimum edge dominating set in G. This parameter was introduced by Mitchell and Hedetniemi [4].

A set D of edges is a *total edge dominating set* of G if every edge in G adjacent to at least one edge in D. The *total edge domination number* $\gamma'_t(G)$ is defined to be the cardinality of a minimum total edge dominating set in G. This parameter was introduced by Kulli and Patwari [6].

A set D of edges is an n-total edge dominating set of G if every edge in G is adjacent to at least n-edges in D. The n-total edge domination number $\gamma'_{tn}(G)$ is defined to be the cardinality of a minimum n-total edge dominating set in G.

The paper contains the following notations and terminology:

- $\Delta'(G)$ the maximum degree among the lines of G (the degree of a line is the number of lines adjacent to it).
- $\gamma_{tn}(G)$ n-total domination number in graphs. This parameter was introduced by Kulli [5].

Results.

2. n-total Edge Domination Number

We note the following:

- (2.1) Every *n*-total edge dominating set is a total edge dominating set and hence for every graph G, we have $\gamma'_t(G) \leq \gamma'_{tn}(G)$.
 - (2.2) $\gamma'_{tn}(G)$ does not exist for graphs with less than two edges.
 - (2.3) For any connected graph G with $p \ge 3$ vertices

$$\gamma'_{tm}(G) = \gamma_{tm}(L(G)).$$

In the following proposition, we list the $\gamma'_{tn}(G)$ for some standard graphs, which are simple to observe, hence, we omit the proof.

Proposition 1. (1) $\gamma'_{tn}(K_{m1,n1}) = m1$, where $2 \le m1 \le n1$,

$$(2) \gamma'_{tn}(W_p) = \left\lfloor \frac{p+2}{3} \right\rfloor,$$

(3)
$$\gamma'_{tn}(P_p) = \left\lfloor \frac{p}{3} \right\rfloor$$
,

$$(4) \ \gamma'_{tn}(C_p) = \left| \frac{p}{2} \right|.$$

The following result is easy to prove, hence we omit the proof.

Theorem 1. For any graph G,

$$\gamma'_{tn}(G) \leq \delta(G)$$
.

Theorem 2. Let K_p be the complete graph. Then

$$\gamma'_{tn}(K_n) = n+1$$
, where $1 \le n \le q$,

where q is number of edges in G.

Proof. Let S be a minimum n-total edge dominating set in K_p , and for each edge e_1 in E, e_1 is adjacent with at least n edges of S. Then in particular, if e_2 is an edge in S, then e_2 is adjacent with at least n edges of S. This implies that S has at least n+1 edges. Also, since n-total edge dominating set is minimum, we have $\gamma'_m(K_p) = n+1$.

Theorem 3. Let G be a graph with minimum degree at least n. Let D be a minimal n-total edge dominating set. Then G contains a minimal edge dominating set.

Proof. Let D be a minimal n-total edge dominating set of G. Suppose there is an edge $e \in D$ which is not adjacent to any edges in G. Then e is adjacent to at least n edges in D itself. Therefore, $D - \{e\}$ is an n-total edge dominating set, a contradiction. Thus every edge in D must be adjacent to at least one edge in G. Hence, G is an edge dominating set.

Theorem 4. For any graph G,

$$\gamma'_{tn}(G) \geq m$$
.

Proof. Let D be a minimum n-total edge dominating set of G. Then every edge in G is dominated by at least m edges in D.

Therefore, $D \ge m$,

$$\gamma'_{tn}(G) \geq m$$
.

Theorem 5. *Let G be a tree. Then*

$$\gamma'_{tn}(G) \leq \gamma'_{t}(G)$$
.

Proof. Let G be a tree and D be a total edge dominating set with minimum number of edges. Let E' denote the edge set of $\langle D \rangle$ the subgraph induced by D.

Let E' be an edge dominating set of G and F be the set of edges which are not adjacent to any edge in E'.

For every edge $e \in F$, we take exactly one edge adjacent to e and form a set F' of edges. Then we have

D' = E'UF' is an *n*-total edge dominating set of G and

$$\gamma'_{tn}(G) \leq D' \leq D$$

$$\leq \gamma'_t(G)$$
.

Hence the proof.

Proposition 2. For any connected graph

$$\gamma'_{tn}(G) \leq q - \Delta'(G),$$

q is the number of edges in G and $q \ge 4$.

Proof. Let D be an n-total edge dominating set of G with minimum number of edges. Then every edge in D is adjacent to utmost $q - \Delta'(G)$ edges.

Hence,
$$\gamma'_{tn}(G) \leq q - \Delta'(G)$$
.

Proposition 3. Let F be a minimum edge dominating set of G such that the induced subgraph $\langle E - F \rangle$ is mK_2 , $m \ge 1$. Thus

$$\gamma'_{tn}(G) + \gamma'(G) = q.$$

Proof. Since for a γ'_t set F of G, the induced subgraph $\langle E - F \rangle$ is mK_2 , $m \ge 1$, E - F itself is a γ'_{tm} -set of G, thus

$$\gamma'_{tm}(G) + \gamma'(G) = |E - F| + |F|$$

$$= q.$$

Theorem 6. For any graph G,

$$\gamma'_t(G) + q \ge \gamma'_{tn}(G)$$
.

Proof. Let S be a minimum n-total edge dominating set of G.

Let $e \in E - S$. Let e be adjacent with at least n edges of S, say $e_1, e_2, ..., e_n$. Suppose

$$D = S - \{e_1, e_2, ..., e_n\}.$$

Since S is an n-total edge dominating set, e is adjacent with at least one edge of D.

Therefore, we conclude that every edge of G is adjacent with at least one edge of D.

Thus, D is a total edge dominating set of G,

$$\gamma'_{t}(G) \ge \gamma'_{tm}(G) - |E|$$

$$\ge \gamma'_{tm}(G) - |\{e_{1}, e_{2}, ..., e_{n}\}|$$

$$\ge \gamma'_{tm}(G) - q,$$

q denotes the number of edges in S,

$$\gamma'_t(G) + q \ge \gamma'_{tn}(G)$$
.

Theorem 7. For any graph G,

$$\gamma'_{tn}(G) \leq \beta_1(G),$$

where $\beta_1(G)$ is the line independence number of G.

Proof. Let $D = \{e_1, e_2, e_3, ..., e_n\}$ be the maximal line independent set of G and it is also n-total edge dominating set of G.

Suppose e is an edge of G which is not adjacent to any edge of D. Then E(G) - D forms n-total edge dominating set of G and

$$|E(G)-D|\leq |D|,$$

$$\gamma'_{tn}(G) \leq \beta_1(G)$$
.

Theorem 8. For any nontrivial tree T,

$$\gamma'_{tn}(T) \leq c$$
,

where c is the number of cutvertices.

Proof. This follows from the fact that each edge is incident with a cutvertex.

We use the following result to prove our next result.

Theorem A [2]. For any graph G of order $p \ge 3$ vertices,

(i)
$$\beta_1(G) + \beta_1(\overline{G}) \le 2 \left\lceil \frac{p}{2} \right\rceil$$
,

(ii)
$$\beta_1(G) \cdot \beta_1(\overline{G}) \le \left\lceil \frac{p}{2} \right\rceil^2$$
.

We establish Nordhaus-Gaddum [1] type result for an n-total edge domination number of a graph.

Theorem 9. Let G be a graph such that both G and \overline{G} have no isolated edges. Then

(i)
$$\gamma'_{tn}(G) + \gamma'_{tn}(\overline{G}) \le 2 \left\lceil \frac{p}{2} \right\rceil$$
,

(ii)
$$\gamma'_{tn}(G) \cdot \gamma'_{tn}(\overline{G}) \leq \left\lceil \frac{p}{2} \right\rceil^2$$
.

Proof. This follows from Theorem A and Theorem 7.

References

[1] E. A. Nordhaus and J. W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956), 175-177.

- [2] G. Chartrand and S. Schuster, On the independence number of complementary graphs, Trans. New York Academy of Sci., Series II 36 (1974), 247-251.
- [3] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1969.
- [4] S. L. Mitchell and S. T. Hedetniemi, Edge domination in trees, Proceeding of the 8th Southeast Conference in Graph Theory, Combinatorics and Computing, Utilitas Mathematics, Winnepeg, 1977, pp. 489-509.
- [5] V. R. Kulli, On *n*-total domination number in graph, Proc. Second China-USA International Conf. in Graph Theory, Combinatorics, Algorithms and Appl., SIAM, 1991, pp. 319-324.
- [6] V. R. Kulli and D. K. Patwari, On the total edge domination number of a graph, Proc. of the Symposium Graph Theory and Combinatorics, Kochi, Kerala, India, 1991, pp. 75-81.