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Abstract

We examine the defining relations of the Nichols algebra associated to
—i i 1

(gj) =11 -1 —i | of rank 3 by using the results by Angiono
1 1 i

[2] and the method by Nichols [1].

1. Introduction

Nichols algebras are graded braided Hopf algebras with the base field in degree
0 and which are coradically graded and generated by its primitive elements ([3], [4],
[5], [6], [7]). Let V be a vector space and c:V ®V —»V ®V be a linear
isomorphism. Then (V, c) is called a braided vector space, if ¢ is a solution of the

braid equation, that is, (c®id)(id ® ¢)(c ®id) = (id ® ¢)(c ®id)(id ® c). The
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pair (V, ¢) determines the Nichols algebras up to isomorphism. Let G be a group.

Then a Yetter-Drinfeld module V over KG is a G-graded vector space V =
, which 1s a G-module such that g - (e 1 torall g,nedG. e
@, Vg, which is a G-module such that g - 7, V gt forall g heG. Th

category gYD of KG -Yetter-Drinfeld module is braided. For V, W e gYD, the
braiding c:V ®W — W ®V is defined by c(v®w)=(g-w)®v, veV,, wel.

Let ¥ be a Yetter-Drinfeld module over G and let (V) = @® 20T (V) (n) denote the

tensor algebra of the vector space V. Let S be the set of all ideals and coideals 7 of

T(V) which are generated as ideals by N-homogeneous elements of degree > 2,

and which are Yetter-Drinfeld submodule of 7(V). Let [(V):ZIESI' Then

B(V):=T(¥)/1(V) is called the Nichols algebra of V e SYD. In this article, we
examine the defining relations of the Nichols algebra B(V) associate to (g;)=
-1 i 1
1 -1 —il|, ofrank 3.
1 1 i
2. Nichols Algebras of Cartan Type

Let K be an algebraically closed field of characteristic 0. Let G an abelian
group and V be a finite dimensional Yetter-Drinfeld module. Then the braiding is

given by a non zero scalar ¢; € K, 1<i, j<0, in the form c(x; ® x;) =
q;x; ® x;, where xi, .., xg is a basis of V. If there is a basis such that
g x; =%;(g)x; and x; €V, then Vis called diagonal type. For the braiding, we
have c(x; ® x;) = y;(g;)x; ® x; for 1 <i, j < 0. Hence we have (qz’/)lsl',jse =
(gi)i<; i<g- Let B(V) be the Nichols algebra of V. Then we can construct the

XJ Si<i Jj<6 g

Nichols algebra by B(V) = T(V')/I, where I denotes the sum of all ideals of 7(V)

that are generated by homogeneous elements of degree > 2 and that are coideals. If
B(V) is finite-dimensional, then the matrix (a;;) defined by forall 1<i= ;<6

by a; =2 and a; = -min{r € N|q;q,q;; =1 or (r + l)qﬁ = 0} is a generalized

Cartan matrix fulfilling g;;q; = qzij or ord q; =1-ay. (a;) is called Cartan
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matrix associated to B(V'). To examine the defining relations of B(V), we use the

results [2] and [3].

Proposition 2.1 [3]. (1) For all 1 <i <0, there exists a uniquely determined

(id, ) -derivation D; : B(V) — B(V) with D;(x;) = 8; (Kronecker 3) for all ;.

@ (), ker(D;) = KL

Proposition 2.2 [2]. Let(V, ¢) be a braided vector space that dimV = 3, and

q q_l -1y
the corresponding generalized Dynkin diagram is O——C0O———O . Then

B(V) is presented by generators x|, x5, x3, and relations

M _ 2_ N __P -
221) x" =x5 =x3 = Xy +20p +o3=0 = 0,

2 2
(2.2.2) (ad x1)"xy = (ad .x3) x5 = (ad x;)x3 = 0,
(223) [xa1+0L2 H x(x1+(x2+a3 ]c = [x(x1+(x2+a3: x(x2+a3 ]C = O
If M, N, P <, then dim B(V) = 16 MNP.

Using these, we obtain the following:

- i 1 . .

—-ii -1 —ii

Proposition 2.3. Let (g;)=|1 -1 —i|, ( O——0——0 ) (where

1 1 i

o is a primitive cube root of unity.). Then the Nichols algebra B(V) is described as

follows:

Generators : xy, Xy, X3.
Relations : xf =0, x3=0, x5 =0, xPxy—(i+1)xxox] +ixox? =0,
2 . 2
x3xy — (i + Dxgxpx3 + ixgxy =0,

2 . 2 2 . 2
(x1x2) :l(xle) > X1X3 = X3X], (X3x2) =l(x2x3) >

XX XpX3 + (l - 1)x2x1x3x2 + XpX3XpX] — ix1x2x3x2 — ix3x2x1x2 =0.
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1Its basis is given as follows:
1 2 2 3 2 2
L Xy, xp, X3, X, XX, X1X3, XpX|, XpX3, X3, X3Xp, X[, XpX{ , X3X] , X|XpX{,
3 2 2
XX X3, XpX1Xp, XpX1X3, XpX3Xp, X3, X]X3, XpX3, X3XpX],
3 3 2 2
X3XpX3, XpXi » X3X[ , X1XpX] , (X1X2)7, X101 X3, X1 XpX3X7, X]X3Xp X3
2 2
X1 X3X2X], XpX1XpX3, X3XpX] , XpX3X] , XpX3XpX],
2 3 3
(x2X3)7, X3X2X3X], XpX3X]Xp, X X3, X|X3,
2 2 2.2 2 3 3
XX X3, XpX1 X3, X] X3, X3XpX3, X]XpX], XpX3X],
3 2 2 2 2 2 2
X3X0X[ 5 XpX|Xp X[, X3X1 X X[ » XpX3X X[, X3XpX3X] » X1 XpX3x1, (X1%) " x3,
2 2 2
X1 XpX3X0 X1, X] (x2x3) > X1 X3X2X3X], x3(x1x2) > XX XpX3X7, (x2x3) X1
3 3 3
XpX3X1 XX, XpX3X1 X2 X3, X3XpX3X1X), X]XpX3X1Xp, X[ XpX3, XpX1X3, X3XpX3,
2 2 2 2 2 2.2 2.3 32
XX X1 X3, Xp X[ Xp X3, X3X]Xp X3, XpX3XpX3, X3XpX1X3, XpX] X3, X] X3, X] X3,
3 3 3 3 3 2
XpX1XpX] , X3X1XpX] , X]XpX3X] , XpX3XpX] , X3XpX3X] , X XpX3XpX] ,
2.2 2 2 2 2
(x2x3) X1 > Xp X1 X2 X3X] 5, X3X1XpX3X] (xlxz) X3X2, x1(x2x3) X5
2 2 2 2
XX (x23)7, x3(xpx0 )7 X3, Xpx1X2X3X0 %7, X2X3(x1X2 )7, (Xpx3%1)7,
2 2 2 2 3
(0223)" X122, (X330X1)7, Xp2x1203X0X1, (X122%3)7, X X343,
3 3 3 3 2 2.2
X|X¥3X9 X3, X3XpX|X3, XpX|XpX3, X|XpX|X3, X3Xp XX x5, (Xx1) x5,
2 2 2 2.2 2.2 3.3 2.3
XpX3Xp X1 X3, X X3Xp X1 X3, XpX3X|Xp X3, X3XpX] X3, X|XpX] X3, X] X3, XpX| X3,
3.2 3 3 3 3
X X1 X3, XpX3X1XpX] , XpX|XpX3X] , X3X1XpX3X] , X]XpX3X0 X,
2.3 2 2.2 2 2
(223 )7 X7, X321 X3%7 5 X1 (X0203)7 X7, XXy Xp X331, (XX )" X322y,

2 2 2 2
(xlxz) X3XpX3, X2X1(x2x3) X1 X2X3(X1x2) X3, (x2x3x1) X2,
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2 2 2 2 2
(x2x3) X1 X2 X1, X]XpX1X3X2 X7 5 (x3x2x1) X2, (x3x2x1) X1» (x1x2x3) X1»
2 3 3 3 3
x1(X223)7 X1 X0, XpX|X3X9 X3, XpX3XpX|X3, X X3XpX| X3, X3XpX| X X3,
2.3 2 2.2 2 2
(22x1 )7 x5, X1Xx3%021X%, X3(X0X) )7 X3, XpX3Xp X X0 X3, X3XpX3X| X X3,
2 2.2 2.2 3.3 2.3
X1 XpX3X1Xp X3, XpX3XpX] X3, XpX|XpX] X3, XpX| X3, X3XpX] X3,
3.2 2.3 3.2 2.2 2 2
X3X9X] X, XXX} X3, XXX X3, (X1x2x3)7 %7, (x2x3) 7 xp 207,
3 3 3 2.3 2.2
X3XpX3X] X0 X] » XpX3X]XpX3X] , XpX)XpX3XpX] , xl(x2x3) X7 s %% (X23) " X,
2 2 2 2
(30122 )" 320020307, X3(21X2 )7 X320, (X307 )" XXy, (720003 )7 X162,
2 2 2 2 2.2
(xlxz) X3X2X1 , XpX] (x2x3) X1X2, x1x2x3(x1x2) X3, (x1x3x2) X1
2.2 2 2 3 3
(d322x7 )7 x5 5 (21 )7 X309 X%, X| XX X3X9 X3, X9 X[ X3X2X] X3
3 2.3 2.2 2 2
XpX3X0 %1% %3, X3(XpX))” X3, xzxa(x2x1) x5, (x3)" X203,
2.2 2.2 222 2.2 3.3
(332122 )7 X3, XX X3X0 XX X3, (XpX3)” X[ X3, XpX3XXp X[ X3, X XpX] X3,
3.3 2.3 3.2 3.2 3.2
X3XpX] X3, X X3XpX] X3, XpX3XpX] X3, X]X3XpX] X3, XpX|XpX] X3,
2 2 3 2 2 2.3 2 3
(203327 x129.2013, (0203 )™ g 0007 5 7 (0203 ™ X1 207, (30720003 )7 67, (2102 ) 20307
2.2 2.2 2 2 2
x3%0X) (X203 )7 X1, XX (Xx3) 7 x5 (X1200x3) 7 Xy 007, X3(xp X0 )7 X320 %7,
2 2 2 2.2 2.2
xX) (X003 )7 XXXy, (X2X)123)7 X0 XT 5 XX XpX3Xp X[ X3, X3XpX3X1 X9 X] X7,
2.2 3.3 3.3 3.3
XX X3 X1 XpX] X3, XpX|XpX] X3, X3X|XpX] X3, XpX3XpX] X3,
2.3 2.3 3.2 3.2
XX X3X1 X0 X] X3, XpX3X1XpX] X3, X]XpX3XpX] X3, XpX3X1XpX] X3,
2 3 2 2 2.3 2 3
(22x1)" w3393, x3(xX0x7 )" X3%2X3 , (0302 )7 X3, (X322)7 %1 x2X3,
2.2 2.2 2 2 2 2
X1 %03 (X021 )7 X%, X303 (X1 )7 %3, X1 (X3x2 )7 21 x2x5 , (%2X3%) )7 X3,

2 2 2 3 2.3
(x3x2x1) X3X2X3, x2x3(x2x1) X3XpX3, X] (x2x3) X1X2X7 5 (x2x1x3) X2 X1
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(x2x; )29539523633613 s Xpx3 (X1 )2x3x2x12 , X3 (%10 )2x3x2x1, (x1x2x3)2(x1x2 )2
x3(xpx) )2x3x2x§, (x2x3x) )2x2x§, (23 )2X1X2X1x§, X1 (X337 )2x1x2x32’
(x1x223 )2x1x2x32= (xx2x3 )2x1x2x32, (x1x, )2x3x2x12x32= (x23 )2x1x2x12x32=
x1x2x3x2x13 xg > x2x3x1x2x13 xg > X2X1x2x3x2x12 x% > x3x2x3x1x2x12 x% >
x1x2x3x1x2x12x§, x2x1x2x3x2x13x32» x3x2x3x1x2x13x32» x1x2x3x1x2x13x32=
xle(xzxs)lexzxfa X1x2x3(x1x2)2x3x2x12, (1323 )2(x1x2 )2x1,
x2x3(x2x1)2x3x2x§’, X3X X1 (x3x2)2x1x2x32= (x3x2x) )2(x3x2)2x3,
(223 )2 x2x12x32, (963)62361)2 x2x12x32, X1 (x2x3)2 X1X2x12x32,
xlexzxsxzxfxg, x1x2x3x1x2x13x§» (3137 )3x3x2x12x§, (323 )2x1x2x13x32=
(1323 )2(x1x2 )lezs (X3x2x1)2(x3x2)2x32, (x1x23 )2x1x2x12X32’
(x3x2x) )2 x3x2x12x32» X2 X3 (xle)2 x3x2x12x32» x1(xpx3 )2 x1x2x13x32»
x3(xpxp )2 x3x2x12x§, X5 (X1x03 )2 x1x2x12x33, X2 (963962?61)2 x3x2x12x32,
X2X3 (x1x2)2(x3x2x1 )2 X3, X305 (1203 )2 x1x2x12x32}«

Hence the Hilbert polynomial of B(V) is given as follows:

P(t) =143t + 72 + 1363 + 216* + 308 +35% + 3607 +35¢% + 30°

+ 20600 136 1 7412 313 14

Proof. They are directly calculated. [
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