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Abstract

The completeness of several pseudo-Riemannian geometries is examined
from a Hamiltonian point of view.

This paper stresses the role of compactness in determining the
completeness of the geodesic flow on some pseudo-Riemannian manifolds.
We remind the reader that the situation for indefinite metrics is very
different from that of Riemannian geometry, where we have the following
corollaries of the Hopf-Rinow theorem.

Corollary. A compact Riemannian manifold is complete.

Corollary. A left-invariant Riemannian metric on a Lie group is

complete.

Here, completeness is defined as geodesic completeness, which means
that all geodesics may be extended for all values of the affine parameter.
This is equivalent, via the Hopf-Rinow theorem, to the manifold being
complete as a metric space under the distance that the Riemannian
metric defines. In the indefinite case, we have the striking example.
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Example 1. The Clifton-Pohl torus. On ,2R  define a Lorentz metric

by

( ) ( ).cossinsincos xdyxdxxdyxdxk +−⊗+=

Now k is invariant by a 2π translation in x or y, so k descends to a

Lorentz metric on the torus ( ) .2 22 ZR π  It is straightforward to check

that all non-periodic null geodesics are incomplete. This is surprising
because there is

Figure 1. Momenta and energy level intersection in .MTm
∗

even some symmetry in the problem: observe that y∂  is a Killing field.

More information may be found in the book by O’Neill [7].

Example 2. The affine group ( ).,1 RA  This is the group of

transformations baxx +→  with .0≠a  Any indefinite quadratic form

on the Lie algebra ( )R,1a  induces a left-invariant Lorentz metric on

( )RA ,1  whose geodesic flow is incomplete.

In light of these examples, it is perhaps even more striking that the
following theorem holds.

Theorem. A compact pseudo-Riemannian homogeneous space is

geodesically complete.
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We wish to generalize this theorem, viewing it as a compactness
result. This will give us a geometric point of view that is fruitful for
examining several examples.

To begin, let ( )kM ,  be a compact pseudo-Riemannian manifold. Let G

be a Lie group of isometries of ( )., kM  Let rXX ...,,1  be the infinitesimal

generators of the action of the Lie algebra g  on M, and let aa Xj ,ϑ=

be the momentum corresponding to .aX  Here ϑ is the fundamental one-

form on .MT ∗  Now the momenta and the Hamiltonian ( )ppkh ,
2
1=  are

conserved quantities of the geodesic flow, so in a cotangent space MTm
∗

we have the picture in Figure 1.

In Figure 1, the cone is a level set of the quadric ( )ppkm ,
2
1  (call it Q)

and the plane is given by the level sets of the momenta aa cj =  (call it

P). The point of drawing the picture this way is that if we can follow the

intersection around M, and knowing that the Hamiltonian and the
momenta are conserved under the geodesic flow, we can show that under
some conditions the whole intersection sits inside a compact set and
hence the whole geodesic flow is complete. Now take a local trivialization

of MT ∗  about m. If we ask what happens to the intersection of P and Q

as we vary the base point m, we see that if the intersection above m is
compact, then it is still compact for all points in some open neighbourhood

of m. Furthermore, ignoring the base directions, the nearby intersections

are in an open neighbourhood with compact closure of the one above m.
This is seen by observing that the equation for the intersection, viewed in
coordinates on P is the equation for an ellipsoid (since it is compact and
quadratic) and the stability of the intersection follows from the stability of
the defining equation of the ellipsoid. This means that we can put an
open ball with compact closure with centre m about the intersection in

,MTm
∗  and crossed with a ball about m, get a polydisc in MT ∗  that

contains the intersection of the level sets. If the intersection is fiberwise
compact, we can take a finite number of such polydiscs to produce a
compact manifold with corners that contains the geodesic flow for the
level set of momenta and energy that we are interested in. Since the
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geodesic flow never intersects the boundary, we get completeness. More
succinctly, we may say that the polydiscs allow us to construct a
Riemannian metric on M which uniformly bounds the geodesic velocity.

This gives the completeness of the geodesic flow as M is assumed
compact. Formally, we may sum up this discussion as

Theorem. Let ( )kM ,  be a compact pseudo-Riemannian manifold.

Let G be a Lie group of isometries of ( )kM ,  with corresponding

momentum j. Suppose that the level set 0=j  contains no nonzero null

directions. Then the geodesic flow on M is complete.

Corollary [4]. Let ( )kM ,  be a pseudo-Riemannian compact manifold

of signature ( ),, ssn −  where .2 ns ≤  Suppose that there exist s Killing

fields on M, everywhere negative and linearly independent. Then ( )kM ,

is geodesically complete.

Corollary [5]. A compact pseudo-Riemannian homogeneous space is

geodesically complete.

Example 3. Let P be a principal bundle over a compact base B with

compact group G. Endow G with a left-invariant Riemannian metric, and

B with a Riemannian metric. Choosing a principal connection on P allows

us to equip P with a G-invariant pseudo-Riemannian metric k by

declaring the vertical part of a vector to agree with the metric on G, and

the horizontal part to agree with the opposite metric on B. Since G is a

symmetry group of k, we get momenta aa Xj ,ϑ=  from the fundamental

vector fields .aX  The space of vectors with all momenta zero is the

horizontal space given by the connection, as is seen by the splitting of the

fundamental one-form ϑ that the connection induces. Since the horizontal

distribution contains no non-zero null vectors by design, we see that the

pseudo-Riemannian metric k on P is complete.

This point of view may also be usefully applied to examine the

completeness of left-invariant indefinite metrics on a Lie group G. Recall

that the geodesic flow for a left-invariant metric may be formulated as a

G-invariant Hamiltonian system on .GT ∗  Pulling this system back via
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the left trivialization

( ) gppgGTG →→× ∗∗ ,:g

we get the Euler-Arnol’d equations

( )( )pghDLTg ge ,2=

( ) ,,2
padp pghD

∗=

where h is the Hamiltonian. Left invariance means that ( )pgh ,  does not

depend on g. We can study completeness by observing that it is

determined solely by whether or not the Euler equation for p  has a

complete flow. Recall that ∗g  is foliated by the co-adjoint orbits, and

these are invariant manifolds for the Euler equation. Furthermore, in the

left trivialization the Hamiltonian is a quadratic form ( ).,
2
1 ppkh =

Choosing coordinates npp ...,,1  for ∗g  gives us the Euler equations as

{ } ,, nm
nlm

jljj ppkchpp ==

(i.e., constant coefficient homogeneous quadratic differential equations)

where the m
jlc  are the structure constants of the Lie algebra, and the

co-adjoint orbits as the integral manifolds of the distribution spanned by
the vector fields

.l
m

m
jlk pcX ∂=

A more thorough discussion of this can be found in [1]. We now examine
left invariant pseudo-Riemannian metrics on three dimensional Lie
groups.

Example 4. Lorentz metrics on ( ).,2 RSL  ( )RSL ,2  is the group of

22 ×  matrices with determinant .1+  A basis for the Lie algebra may be

taken as

,
01

10
2
1,

01

10
2
1,

10

01
2
1

321 
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Figure 2. Typical intersections of 0C  and .0Q

and with the associated coordinates 321 ,, ppp  on ∗g  we have the

Poisson brackets

{ } { } { } .,,,,, 213132321 ppppppppp ==−=

Now 2
3

2
2

2
1 pppC −+=  is a Casimir for the Poisson bracket, and the

co-adjoint orbits are the level sets of C 0( =C  is the union of three

orbits, the cones ,0,0 33 <> pp  and the origin). The Hamiltonian may

be represented as an indefinite quadratic form Q on .∗g  The zero level

sets of C and Q typically look like one of the cases in Figure 2 (there is

the possibility of 0C  and 0Q  intersecting in four lines, but in order to

reduce clutter in the picture, we have omitted it). Define

( ) == −
ba QaCC ,1  ( ).1 bQ−

Lemma. If the level sets 0C  and 0Q  intersect only at the origin, then

the intersection ba QC ∩  is compact for any choice of a and b.

Proof. Let us add the coordinate 4p  and homogenize the equations

for the intersection ,ba QC ∩

,2
4

2
3

2
2

2
1 apppp =−+

.2
4bpQ =
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Examining these equations in a neighbourhood of the hyperplane at

infinity ( )04 =p  we get

,02
3

2
2

2
1 =−+ ppp

.0=Q

By hypothesis, the only solution of these equations is ( ) =321 ,, ppp

( ),0,0,0  but ( ) ( )0,0,0,0,,, 4321 =pppp  is not a point in projective

space, so the quadrics do not intersect in a neighbourhood of infinity.

Hence the intersection is bounded, and since it is closed, compact.

This shows that if { },000 =QC ∩  then the Lorentz metric is

complete. This is because the remaining equation of the Euler-Arnol’d

equations for the group variable is a non-autonomous linear differential

equation, which for matrix groups looks like ( ) ( ).tptAA =

For the case when 00 QC ∩  is two lines, choose coordinates so that

one of the lines is the 1p  axis. On this line, which is an invariant

manifold for the flow, the differential equation is (up to scale)

,2
11 pp ±=

which is incomplete. Now any reasonable topology on the set of left

invariant Lorentz metrics would preserve the intersection condition

00 QC ∩  for small perturbations of the metric, showing that we have two

open sets of complete left-invariant metrics separated by open sets of

incomplete ones, corresponding to the intersections in Figure 2.

Example 5. The Euclidean group ( ).2E  This is the group of matrices

of form

.
100

cossin
sincos
















θθ
θ−θ

b

a

The dual of the Lie algebra has coordinates x, y, z with brackets

{ } { } { } .,,,,0, yxzxzyyx ===
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The co-adjoint orbits are the cylinders =+ 22 yx  constant, and the

points on the z-axis. For a left-invariant Lorentz metric on ( ),2E  it is easy

to see that the typical intersection of the null cone of the energy with a
co-adjoint orbit is compact. With the same argument as in the case of

( ),,2 RSL  this gives completeness of the geodesic flow for almost all left-

invariant Lorentz metrics. The only way that an energy surface of the
metric can have a noncompact intersection with a co-adjoint orbit is if the
z-axis is a null line. In this case it is easy to see that the Euler equation
for z is linear in z,

( ) ( )yxqzyxpz ,, +=

and since 22 yx +  is constant, the solution ( )tz  is defined for all time.

This shows that the geodesic flow of any left invariant Lorentz metric on
( )2E  is complete. This was previously observed in [3], but the approach is

somewhat different.

There are some special cases of Lorentz metrics on ( )2E  of interest.

The first is the metric ,222 zyx −+  which was shown by Nomizu [6] to

be flat. The second is the family of metrics ( ) 2222 1 zykx −++  for which

the Euler equations are

yzx =

zxy −=

,2xykz −=

where .10 2 << k  The integral curve which passes through ( )1,1,0  at

0=t  defines the Jacobi elliptic functions

( ) ( ) ( )( ) ( ) ( ) ( )( ).;dn,;cn,;sn,, ktktkttztytxt =→

Example 6. The group ( ),1,1E  the rigid motions of two dimensional

Minkowski space. This is the group of matrices of the form

.
100

coshsinh
sinhcosh
















θθ
θ−θ

b

a
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The dual of the Lie algebra has coordinates x, y, z with brackets

{ } { } { } .,,,,0, yxzxzyyx =−==

Co-adjoint orbits are given as the level sets of 22 yxC −=  ( 0=C  is the

orbits { }z,0,0  and the half-planes xy ±=  with ).0≠y  One sees from

the argument for ( )RSL ,2  that a left-invariant indefinite metric on

( )1,1E  will be complete if the null cone for the metric 0Q  only intersects

the planes xy ±=  at the origin. If the null cone intersects the planes

transversally, then we are reduced to the following situation. On
( ){ } { } ( ),,,,,0, zyQhyzyyzy =−=>|  where Q is an indefinite quadratic

form. Then
{ } { } ( ),,,, zyyphzyhyy z −===

where ( )zyp ,  is linear in z. On the null line(s) for Q the equation for y

reduces to ,2cyy =  where .0≠c  This is incomplete. We leave as an

exercise for the reader the case where the null cone is tangent to the
planes .xy ±=

Example 7. The Heisenberg group H. This is the group of matrices of
form

.
100

10
1
















c
ba

The dual of the Lie algebra has coordinates x, y, z with brackets

{ } { } { } .0,,0,,, === xzzyzyx

Co-adjoint orbits are given by the level sets of the Casimir z, except when

0=z  they are points. It is clear that any left invariant metric on H is

complete if the null cone does not intersect the plane 0=z  except at the

origin, because then the intersection of any co-adjoint orbit and any
energy level set is compact. In the case when the intersection is not
compact, the Euler equations restricted to the co-adjoint orbits =z

constant are all linear differential equations and so complete. We note

the special case of the metric ,2 xzy −  which is flat, a calculation done by

Nomizu [6].
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Continuing in this manner one can examine all three dimensional Lie

groups. If the commutation relations of the algebra are reduced to the

form

[ ] ,, 3
3

221 ebaeee +=

[ ] ,, 1
1

32 ebee =

[ ] ,, 32
2

13 aeebee −=

then according to [2], the isomorphism classes of three-dimensional Lie

algebras are given by the ‘Bianchi’ classification of Table 1. The

completeness column refers to the completeness of Lorentz metrics on the

corresponding group. The table is divided in two to reflect the fact that

the first section is the unimodular algebras and the second part is not.

Note further that the algebra of type V is discussed more fully below in

the discussion of the special class .S  Also, the calculations involved for

the nonunimodular algebras of types V, VI, and VII are a little more

involved because these algebras have no nontrivial Casimirs, and

consequently more work is required in order to find the co-adjoint orbits.

Example 8. A special class of solvable groups .S  Groups G in S

have the property that the bracket [ ]fe,  of any two elements in the Lie

algebra g  of G is a linear combination of e and f. Nomizu [6] showed that

G belongs to S  if and only if the Lie algebra contains a codimension one

commutative ideal u  and an element u∉b  such that [ ] eeb =,  for all

.u∈e

Picking a basis neeb ...,,, 1  for g  with nee ...,,1  spanning u  we see

that matrices for the co-adjoint action are of the form

[ ] ,
0
0









α
β

=∗

I
ade

where ., nRR ∈β∈α  From this we see that the co-adjoint orbit through

∗∈ gp  is the half-plane consisting of vectors of form ypxb +∗  with

.0>y
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Table 1. Completeness of 3-d Lie algebras

Type a 1b 2b 3b Completeness

I 0 0 0 0 Complete

II 0 1 0 0 Complete

VII 0 1 1 0 Complete

VI 0 1 – 1 0 Mixed

IX 0 1 1 1 Complete

VIII 0 1 1 – 1 Mixed

V 1 0 0 0 Incomplete

VI 1 0 0 1 Mixed

VII a 0 1 1 Mixed

( )1III =a a 0 1 – 1 Mixed

( )1VI ≠a a 0 1 – 1 Mixed

If { },span ∗∈ bp  then the co-adjoint orbit is just the point { }.p  The

Poisson bracket on the orbit is { } cyyx =,  with .0≠c  If we take any left

invariant pseudo-Riemannian metric on G, then there is a two-plane in
∗g  containing { }∗bspan  on which the associated quadratic form restricts

to an indefinite one. By the same argument we used for ( ),1,1E  there is a

null line on which the Euler equation reduces to ,2xx =  which is

incomplete. We summarize this discussion as

Proposition. Any left-invariant pseudo-Riemannian metric on a Lie

group G in the class S  is geodesically incomplete.

Example 9. The Killing form on a semi-simple Lie group is
nondegenerate and so may be used for a left-invariant indefinite metric
on the group. Such a metric is always complete as the following

calculation shows. If ∗→ gg:k  is the Killing form, with inverse ,1−k

then the Euler equation is

( ) .1 padp
pk

∗
−=
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Letting ( ),1 pkX −=  and pairing the Euler equation with Y in g  gives

( ) YpadYp
pk

,, 1
∗
−=

[ ( ) ]Ypkp ,, 1−=

( ) [ ]YXXk ,,=

[ ]( ).,, YXXk=

Furthermore, ( ) ( )YXkYXkYp ,,, ==  or ( ) [ ]( ).,,, YXXkYXk =  Ad-

invariance of the Killing form implies that [ ]( ) [ ]( ) ,0,,,, =+ ZXYkZYXk

so that [ ]( ) [ ]( ) ,0,,,, == YXXkYXXk  which gives us that .0=p  By

our previous comments, this implies that the geodesic flow is complete.

The reader will have noticed that in all the Lie group examples the

incompleteness was shown by examining the null geodesics. If one has a

solution to the Euler equations that blows up in finite time that

represents an incomplete geodesic, it becomes asymptotically close to the

null cone .0=Q  It seems reasonable to make the following conjecture.

Conjecture. An incomplete left-invariant pseudo-Riemannian metric

on a Lie group is necessarily null-incomplete.

Notes:

1. If X is a conformal Killing field, then fggLX =  for some function

f, if Xj ,ϑ=  and ( ),,
2
1 ppgh =  then { } ., hfhjdtdj −==  If M is

compact, then we get a uniform bound on dtdj  under the geodesic flow,

and hence a growth estimate on j. This can be used to extend our theorem

in the spirit of a compactness argument. This extension of the result of

Guediri and Lafontaine was observed by Romero and Sanchez [9].

2. The first example of the completeness of the bundle P removes the

restriction that BG dimdim ≤  in [4].

3. The discussion for ( )RSL ,2  corrects the assertion in [3] that a

generic left-invariant Lorentz metric on ( )RSL ,2  is incomplete.
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4. The proposition about the incompleteness of groups in the class S

was also proven by Guediri [3].

5. The conjecture about null-incompleteness is similar to one
described in Romero and Sanchez [8] that an incomplete compact Lorentz
metric is null incomplete.
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